PRE-GATE-2019
Civil Engineering

(Questions with Detailed Solutions)

The GA section consists of 10 questions. Questions 1 to 5 are of 1 mark each, and Questions 6 to 10 are of 2 marks each.

Q. 1 - Q. 5 carry one mark each.

01 . Find the missing number from the given alternatives

(A) 36
(B) 33
(C) 45
(D) 60

1. Ans: (B)

Sol: As, $25+45+35+30=135=\frac{135}{5}=27$
And $60+20+40+30=150=\frac{150}{5}=30$
Similarly $25+40+35+65=165$

$$
\therefore \frac{165}{5}=33
$$

Hence option (B) is correct.

02. Identify the correct sentence as per the standard English

(A) I taught the dog to lay down and roll over.
(B) I taught the dog to lie down and roll over.
(C) I taught the dog to laid down and roll over.
(D) I taught the dog to lied down and roll over.
02. Ans: (B)

03. Fill in the blank with an appropriate phrase

The gardens were \qquad with lawns and flower beds.
(A) laid about
(B) laid out
(C) laid off
(D) laid by
03. Ans: (B)
04. Out of the following four sentences, select the most suitable sentence with respect to grammar and usage
(A) I will not leave the place until the minister will not meet me.
(B) I will not leave the place until the minister doesn't meet me.
(C) I will not leave the place until the minister meet me.
(D) I will not leave the place until the minister meets me.
04. Ans: (D)
05. Which of the following options is closest in meaning to the underlined word?

There was a homogeneity of outlook.
(A) diversity
(B) unspoiled freshness
(C) similarity
(D) stubbornness
05. Ans: (C)
Q. 6 - Q. 10 carry Two marks each.
06. Nine men and seven women can complete a piece of work in five days. The same work can be completed by seven men and eleven women in four days. Which of the following statements is true regarding the efficiency of the men and women?
(A) Men are more efficient than women by $88 \frac{8}{9} \%$
(B) Women are more efficient than men by $88 \frac{8}{9} \%$
(C) Men are more efficient than women by $18 \frac{8}{9} \%$
(D) Women are more efficient than men by $18 \frac{8}{9} \%$

PRE-GATE_2019
06. Ans: (B)

Sol: 9 men and 7 women complete $\frac{1}{5}$ th of the work in 1 day
$\therefore 45$ men and 35 women can complete the work in 1 day
7 men and 11 women can complete $\frac{1}{4}$ th of the same work in 1 day
$\therefore 28$ men and 44 women can complete the work in 1 day
$\therefore 45$ men +35 women
$\Rightarrow 28$ men +44 women
$\Rightarrow 17$ men $=9$ women
$\Rightarrow \frac{\text { women }}{\text { men }}=\frac{17}{9}=1 \frac{8}{9}$
\therefore Women are more efficient by $\frac{8}{9} \times 100=88 \frac{8}{9} \%$
Hence option (B) is correct
07. What is the approximate volume of the piece shown in the given figure which has a rectangular prism surrounded by a triangular prism (of cross-section equilateral triangle)? The height of the entire piece is 13 cm and that of the rectangular piece is 10 cm

(A) $252 \mathrm{~cm}^{3}$
(B) $400 \mathrm{~cm}^{3}$
(C) $216 \mathrm{~cm}^{3}$
(D) $236 \mathrm{~cm}^{3}$
07. Ans: (A)

Sol: The total height of the piece is 13 cm and the height of the rectangular piece is 10 cm , the height of the triangular piece $=13-10=3 \mathrm{~cm}$ since the triangular piece is an equilateral triangle, from its height 3 cm , we get the side of the triangle as $2 \sqrt{3} \mathrm{~cm}$.

Volume of the top portion $=$ Area \times length $=\frac{\sqrt{3}}{4} \times(\text { side })^{2} \times$ length

$$
=\frac{\sqrt{3}}{4} \times(2 \sqrt{3})^{2} \times 10=30 \sqrt{3}=52 \mathrm{~cm}^{3}
$$

Volume of the bottom portion $=10 \times 10 \times 2=200 \mathrm{~cm}^{3}$
\therefore Total volume

$$
=252 \mathrm{~cm}^{3}
$$

\therefore Hence option (A) is correct
08. In a primary school, the average weight of male students is 65.9 kg and the average weight of female students is 57 kg . If the average weight of all the students (both male and female) is 60.3 kg and the number of male students in the school is 66 , then what is the number of female students in the school?
(A) 152
(B) 162
(C) 168
(D) 112
08. Ans: (D)

Sol: Average weight of male students $=65.9 \mathrm{~kg}$
Average weight of female students $=57.0 \mathrm{~kg}$
Average weight of total students $=60.3 \mathrm{~kg}$
Let the total number of students be ' x '

$$
\text { Then, } \begin{aligned}
\frac{65.9 \times 66+(x-66) \times 57}{x} & =60.3 \\
65.9 \times 66+57 x-57 \times 66 & =60.3 x \\
(65.9-57) \times 66 & =3.3 x \\
8.9 \times 66 & =3.3 x \\
x & =178
\end{aligned}
$$

\therefore Number of female students $=178-66=112$
Hence option (D) is correct

ESE - 2018

STAGE-II (MAINS)

New Batches @

HYDERABAD

17th Feb 2019

18th Feh 2018

PUNE

16th Feh 2018

ESE - 2019 Mains Test Series (offline/Onine)

Starts from 30 ${ }^{\text {tII }}$ March 2019.
Test Series will be conducted at all our centres

ACE	\$SHORT TERM BATCHES
	GATE+PSUs - 2020

$29^{\text {th }}$ April $\mid 06^{\text {th }}$ May $\mid 11^{\text {th }}$ May
$18^{\text {th }}$ May | $26^{\text {th }}$ May | O2 ${ }^{\text {nd }}$ June 2019
DELHI
$11^{\text {th }}$ May | $23^{\text {rd }}$ May 2019
ADMISSIONS ARE OPEN

EARLY BIRD OFFER :

Register on or Before $31^{\text {st }}$ March 2019: 3000/- Off
09. Study the following pie charts and answer the given question. Distribution of total number of Dell laptops sold by 5 stores

Total number $=2400$

Distribution of number of Laptops (both Dell and Lenovo) sold by 5 stores in 2011

Total number $=4500$
What is the difference between number of Laptops (both Dell and Lenovo) sold by store Q and total number of Lenovo Laptops sold by store ' R ' and ' S ' together?
(A) 185
(B) 99
(C) 91
(D) 119
09. Ans: (B)

Sol: Number of laptops (Dell and Lenovo) sold by store $\mathrm{Q}=4500 \times \frac{23}{100}=45 \times 23=1035$
Now, total number of Laptops (Lenovo and Dell) sold by R and S together $=4500 \times \frac{46}{100}=2070$
Number of Dell laptops sold by ' R ' and ' S ' together $=2400 \times \frac{39}{100}=936$
Number of Lenovo laptops $=2070-936=1134$
\therefore Required difference $=1134-1035=99$
10. Stronger patent laws are needed to protect inventions from being pirated. With that protection manufacturers would be encouraged to invest in the development of new products and technologies. Such investment frequently results in an increase in manufacturer's productivity.

Which of the following conclusions can most properly be drawn from the information above?

(A) Stronger patent laws tend to benefit financial institutions as well as manufacturers.
(B) Increased productivity in manufacturing is likely to be accompanied by the creation of more manufacturing jobs.
(C) Manufacturers will decreases investment in the development of new products and technologies unless there are stronger patent laws.
(D) Stronger patent laws would stimulate improvements in productivity for many manufacturers.
10. Ans: (D)

Sol: Stronger patent laws increase protection; protection encourages investment; investment often raises productivity. Thus, stronger patent laws initiate a chain of events that often culminates in improved productivity. Choice D expresses that and is, therefore, the best answer.

Choice A is inappropriate because the role, if any, that financial institutions would play in investments is left open. The increased productivity mentioned in B may mean fewer hours of labour for a given level of output, and may, thus, threaten jobs. Investments of the sort described in C may already be at the lowest possible level.

Q. 11 - Q. 35 carry one mark each.

11. Which of the following Mohr circle is correct representation of pure shear in a beam acting on the centroidal axis?
(A)

(B)

(C)

Hyderabad \mid Delhi \mid Bhopal \mid Pune \mid Bhubaneswar \mid Lucknow \mid Patna \mid Bengaluru \mid Chennai \mid Vijayawada \mid Vizag \mid Tirupati \mid Kukatpally \mid Kolkata \mid Ahmedabad

11. Ans: (C)

Sol: For pure shear at the centroidal axis of the beam element is shown in figure below.
The corresponding Mohr circle should be concentric with origin.

Distractor logic:

(A) This option is for axial tension member
(B) Point circle is for hydrostatic stress system.
(C) This is pure shear condition
(D) Centre of Mohr circle should be on the x -axis. The given Mohr circle is not possible
12. The degree of kinematic indeterminacy for the frame shown below, considering Beams only as axially rigid, is

(A) 10
(B) 14
(C) 15
(D) 16
12. Ans: (B)

Sol:

Value of $\quad j=8, r=3 \times 3=9$

$$
\mathrm{D}_{\mathrm{K}}^{\prime}=3 \mathrm{j}-\mathrm{r}=3 \times 8-9=15
$$

Final D_{K} (taking hinges effect) $\quad=15+2+1=18$
Considering Beams only rigid $\mathrm{D}_{\mathrm{K}}=18-4=14$

Distractor logic:

Option A: Wrong answer

$$
\mathrm{D}_{\mathrm{K}}=18-8=10 \text { (Taking all members as axially rigid) }
$$

Option B: Correct Answer
Option C: Wrong Answer

$$
\mathrm{D}_{\mathrm{K}}=18-3=15 \text { (Taking top beam as single member) }
$$

Option D: Wrong Answer

$$
\mathrm{D}_{\mathrm{K}}^{\prime}=(3 j-\mathrm{r})+4=19 ; \mathrm{D}_{\mathrm{K}}=19-3=16
$$

13. A roller of weight 20 kN is in equilibrium on the inclined plane with string connected as shown in the figure. The tension force in the string is

(A) 15.2 kN
(B) 8.3 kN
(C) 10.35 kN
(D) 20 kN

13. Ans: (C)

Sol: Free body diagram of Roller

For equilibrium, all the forces should form concurrent force system.
Applying Lami's theorem,

$$
\frac{\mathrm{T}}{\sin 150^{\circ}}=\frac{\mathrm{W}}{\sin 105^{\circ}}
$$

$$
\mathrm{T}=10.35 \mathrm{kN}
$$

14. An unconfined aquifer has an area of $325 \mathrm{~km}^{2}$, thickness of 24.5 m and a porosity of 30%. What is the specific retention if it can yield $1890 \mathrm{Mm}^{3}$ of free draining water?
(A) 0.2374
(B) 0.0626
(C) 0.5375
(D) 0.7626
15. Ans: (B)

Sol: $\mathrm{A}=325 \mathrm{~km}^{2}$,

$$
\mathrm{H}=24.5 \mathrm{~m}, \quad \mathrm{n}=30 \%
$$

Volume of free draining water $=1890 \mathrm{Mm}^{3}$

$$
\begin{aligned}
S_{y} & =\frac{\text { Vol.of draining water }}{A \times H} \\
& =\frac{1890 \times 10^{6}}{325 \times 10^{6} \times 24.5}=0.2374
\end{aligned}
$$

$\mathrm{S}_{\mathrm{y}}+\mathrm{S}_{\mathrm{r}}=\mathrm{n}$
$0.2374+\mathrm{S}_{\mathrm{r}}=0.3$
$\mathrm{S}_{\mathrm{r}}=0.0626$
: 11:
PRE-GATE_2019

Distractor Logic

(A) If only S_{y} is found
(B) Correct answer
(C) If equation is wrongly written
(D) If sum is taken equal to 1
15. The stiffness coefficient K_{ij} indicate
(A) Force at i due to a unit deformation at j
(B) Deformation at j due to unit force at i
(C) Deformation at i due to a unit force at j
(D) Force at j due to a unit deformation at i
15. Ans: (A)
16. The general solution of $x^{2} \frac{d^{2} y}{d x^{2}}-5 x \frac{d y}{d x}+9 y=0$ is
(A) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) \mathrm{e}^{3 \mathrm{x}}$
(B) $\left(C_{1}+C_{2} \ln x\right) x^{3}$
(C) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \mathrm{x}\right) \mathrm{x}^{3}$
(D) $\left(\mathrm{C}_{1}+\mathrm{C}_{2} \ln \mathrm{x}\right) \mathrm{e}^{\mathrm{x}^{3}}$
(Here, $\mathrm{C}_{1} \& \mathrm{C}_{2}$ are arbitrary constants)
16. Ans: (B)

Sol: Given $x^{2} \frac{d^{2} y}{d x^{2}}-5 x \frac{d y}{d x}+9 y=0$
Put $\mathrm{z}=\log \mathrm{x}$ or $\mathrm{x}=\mathrm{e}^{\mathrm{z}}$ and $\mathrm{D}=\frac{d}{d z}$
The given equation becomes,

$$
\begin{array}{r}
D(D-1) y-5 D y+9 y=0 \\
\left(D^{2}-6 D+9\right) y=0
\end{array}
$$

The Auxiliary equation is $D^{2}-6 D+9=0$
Roots are 3, 3
The general solution is $y=\left(C_{1}+C_{2} z\right) e^{3 z}$

$$
\therefore \mathrm{y}=\left(\mathrm{C}_{1}+\mathrm{C}_{2} \ln \mathrm{x}\right) \mathrm{x}^{3}
$$

Hence, option (B) is correct.

APPSC-AEE (Prelims) Online Test Series

No. of Tests : 18
Topic Wise Tests : 15 I Mock Tests - 3 Civil | Mechanical | Electrical

Available Now

All Tests will be available till $18^{\text {th }}$ February 2019
(C) 040-48539866/040-40136222 testseries@aceenggacademy.com
17. When a fair coin is tossed 200 times then mean and standard deviation are
(A) 100,50
(B) $100, \sqrt{50}$
(C) 50,100
(D) $\sqrt{100}, 50$
17. Ans: (B)

Sol: $\mathrm{n}=200, \mathrm{p}=\frac{1}{2}, \mathrm{q}=\frac{1}{2}$
Mean $=E(X)=n p=200 \times \frac{1}{2}=100$
Variance $=V(X)=n p q=200 \times \frac{1}{2} \times \frac{1}{2}=50$
Standard deviation $=\sqrt{50}$
18. The ordinates of a 4-hour unit hydrograph of a basin in $\mathrm{m}^{3} / \mathrm{s}$ at one hour time intervals starting from time $\mathrm{t}=0$ are $0,4,25,44,60,70,61,52,45,38,32,27,22,18,14,11,8,6,4,2,1 \& 0$. The maximum ordinate of S-curve derived using 4 hour UH would be \qquad .
(A) $544 \mathrm{~m}^{3} / \mathrm{s}$
(B) $272 \mathrm{~m}^{3} / \mathrm{s}$
(C) $181 \mathrm{~m}^{3} / \mathrm{s}$
(D) $136 \mathrm{~m}^{3} / \mathrm{s}$
18. Ans: (D)

Sol: $\mathrm{D}=4 \mathrm{hr}, \Delta \mathrm{t}=1$ hour,

$$
\begin{aligned}
\Sigma \mathrm{D} & =0+4+25+44+60+70+61+52+45+38+32+27+22+18+14+11+8+6+4+2+1+0 \\
& =544
\end{aligned}
$$

Area of $\mathrm{UH}=\mathrm{C} . \mathrm{A} \times 0.01$
$1 \times 3600 \times 544=\mathrm{C} . \mathrm{A} \times 0.01$
C. $\mathrm{A}=195.84 \mathrm{~km}^{2}$

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{c}} & =2.778 \times \frac{\mathrm{A}}{\mathrm{D}} \\
& =2.778 \times \frac{195.84}{4}=136 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Distractor logic

(A) If D is taken as 1 decimal answer will be 544
(B) $\frac{544}{2}=272$
(C) If solved by table \& incomplete table
(D) Correct answer is (D)
19. The fineness modulus of fine aggregate is 2.5 and of coarse aggregate is 7.5 and the desired fineness modulus of mixed aggregate is 5.5 . What is the amount of coarse aggregate to be mixed with one part of fine aggregate?
A) 0.4 part
(B) 1 part
(C) 1.5 part
(D) 1.7 part
19. Ans: (C)

Sol: Required answer $=\frac{\text { Proportion of coarse aggregate }(\mathrm{C})}{\text { Proportion of fine aggregate }(\mathrm{F})}$

$$
\begin{aligned}
\text { say } \mathrm{X} & =\frac{\mathrm{C}}{\mathrm{~F}} \\
5.5 & =\frac{2.5 \mathrm{~F}+7.5 \mathrm{C}}{\mathrm{~F}+\mathrm{C}}=\frac{2.5+7.5(\mathrm{C} / \mathrm{F})}{1+\mathrm{C} / \mathrm{F}} \\
5.5 & =\frac{2.5+7.5 \mathrm{X}}{1+\mathrm{X}} \quad \text { Since } \\
\mathrm{X} & =1.5
\end{aligned}
$$

20. The Recursion relation to solve $\mathrm{x}=\mathrm{e}^{\mathrm{x}}$ using Newton-Raphson method is
(A) $x_{n+1}=e^{x_{n}}$
(B) $x_{n+1}=x_{n}-e^{x_{n}}$
(C) $x_{n+1}=\frac{\left(1-x_{n}\right) e^{x_{n}}}{1-e^{x_{n}}}$
(D) $x_{n+1}=\frac{\left(1+x_{n}\right) e^{x_{n}}}{1-e^{x_{n}}}$
21. Ans: (C)

Sol: Given equation $\mathrm{x}=\mathrm{e}^{\mathrm{x}}$
Let $f(x)=x-e^{x}$
$\Rightarrow f^{\prime}(\mathrm{x})=1-\mathrm{e}^{\mathrm{x}}$

By Newton-Raphson Formula

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& =x_{n}-\frac{\left(x_{n}-e^{x_{n}}\right)}{1-e^{x_{n}}} \\
& =\frac{x_{n}-x_{n} e^{x_{n}}-x_{n}+e^{x_{n}}}{1-e^{x_{n}}} \\
x_{n+1} & =\frac{\left(1-x_{n}\right) e^{x_{n}}}{1-e^{x_{n}}}
\end{aligned}
$$

21. A sample of water has $100 \mathrm{mg} / \mathrm{l}$ as Ca^{2+} and 5 m .eq/ lit of Mg^{2+} then the total hardness in terms of mg / l as CaCO_{3} is
(A) 500
(B) 271
(C) 250
(D) 200
22. Ans: (A)

Sol: Total Hardness "TH" $=\mathrm{Ca}^{2+}(\mathrm{mg} / \ell) \times \frac{50}{20}+\mathrm{Mg}^{2+}(\mathrm{m} . \mathrm{eq} / \ell \mathrm{it}) \times 50$

$$
=100 \times \frac{50}{20}+5 \times 50=500 \mathrm{mg} / \mathrm{l} \text { as } \mathrm{CaCO}_{3}
$$

22. The radius of gyration of a ship is $12 \mathrm{~m} \&$ its metacentric height is 0.9 m . The time period of oscillation experienced by the ship is
(A) 12.68 sec
(B) 19.03 sec
(C) 25.37 sec
(D) 31.72 sec
23. Ans: (C)

Sol: $\quad T=2 \pi \sqrt{\frac{K^{2}}{\text { g.GM }}}$
$=2 \pi \sqrt{\frac{12^{2}}{9.81 \times 0.9}}$
$=25.375 \mathrm{sec}$
 in Top 10

34

E	TOP 10
	4

$=$	TOP 10
$=$	

	TOP 10
	0

	TOP 10
	0

23. The creep co-efficient, when the age at loading is 14 days (As per IS: 456-2000), is
(A) 2.2
(B) 1.9
(C) 1.7
(D) 1.6
24. Ans: (b)

Sol: Age of loading Creep co-efficient
7 days
2.2

28 days 1.6

Creep co-efficient
$\theta-2.2=0.6 \times \frac{\log 14-\log 7}{\log 7-\log 28}=1.9$
24. The initial pore water pressure at a point A in a submerged clay layer was 10 kPa . A surcharge of $15 \mathrm{kN} / \mathrm{m}^{2}$ was placed on Ground surface. The excess pore water pressure at beginning and end of the consolidation of clay layer are (in $\mathrm{kN} / \mathrm{m}^{2}$)
(A) 15 and 0
(B) 25 and 15
(C) 25 and 0
(D) 25 and 10
24. Ans: (A)

Sol: Increase in vertical stress $=\Delta \bar{\sigma}=15 \mathrm{kPa}$
Initial excess pore water pressure $=\Delta \mathfrak{u}=15 \mathrm{kPa}$
This dissipates and become zero at end
25. In a 2% solution of waste water sample tested for 5 day BOD depleted $3 \mathrm{mg} / l$ of DO at $20^{\circ} \mathrm{C}$ then 5 day BOD at $20^{\circ} \mathrm{C}$ is
(A) $300 \mathrm{mg} / \mathrm{l}$
(B) $100 \mathrm{mg} / \mathrm{l}$
(C) $150 \mathrm{mg} / \mathrm{l}$
(D) $75 \mathrm{mg} / \mathrm{l}$
25. Ans: (C)

Sol: 5 day BOD at $20^{\circ} \mathrm{C} y_{5}^{20^{\circ} \mathrm{C}}=\left[(\mathrm{DO})_{\mathrm{I}}-(\mathrm{DO})_{\mathrm{F}}\right] \times$ Dilution Factor

$$
\begin{aligned}
\text { Dilution Factor } & =\frac{100}{\% \text { Sludge dilution }}=\frac{100}{2} \\
(\mathrm{DO})_{\mathrm{I}}-(\mathrm{DO})_{\mathrm{F}} & =3 \mathrm{mg} / l \\
\mathrm{y}_{5}^{20^{\circ} \mathrm{C}} & =3 \times \frac{100}{2}=150 \mathrm{mg} / \mathrm{l}
\end{aligned}
$$

26. Let $A=\left[\begin{array}{cc}2 & -3 \\ a & 5\end{array}\right]$. If one of the Eigen values of A is 3, then $\mathrm{a}=$ \qquad .
27. Ans: 0.6667

Range: (0.65 to 0.67)

Sol: Let λ be the second Eigen value of A.
We know that, sum of the Eigen values of $A=$ Trace of A
$\Rightarrow 3+\lambda=2+5$
$\Rightarrow \lambda=4$
Again, product of the Eigen values of $\mathrm{A}=|\mathrm{A}|$
$\Rightarrow 12=10+3 \mathrm{a}$
$\Rightarrow \mathrm{a}=\frac{2}{3}=0.6667$
27. A strip foundation is to be provided at a depth of 1.5 m below ground surface. Water table is close to the ground level and the soil is cohesionless. The footing is supposed to carry a net safe load of $400 \mathrm{kN} / \mathrm{m}^{2}$ with factor of safety of 3.0 . Given $\gamma_{\text {sat }}=20.85 \mathrm{kN} / \mathrm{m}^{3}, \phi=30^{\circ}, \gamma_{\mathrm{w}}=9.81 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{~N}_{\mathrm{q}}=$ $41.4 \quad, \mathrm{~N}_{\gamma}=42.4$.
The width of footing under general failure criteria of Terzaghi is \qquad m.
27. Ans: 2.27 m

Range: $\mathbf{2 . 2 5}$ to $\mathbf{2 . 3 0}$
Sol: $\mathrm{q}_{\mathrm{ns}}=400 \mathrm{kN} / \mathrm{m}^{2}$ (given)

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{ns}}=\frac{\mathrm{q}_{\mathrm{nu}}}{\mathrm{~F}} \\
& \mathrm{q}_{\mathrm{nu}}=\mathrm{q}_{\mathrm{ns}} \times \mathrm{F}=400 \times 3=1200 \mathrm{kN} / \mathrm{m}^{3} \\
& \mathrm{q}_{\mathrm{nu}}=\mathrm{CN}_{\mathrm{C}}+\mathrm{q}\left(\mathrm{~N}_{\mathrm{q}}-1\right)+0.5 \mathrm{~B} \gamma_{\mathrm{sub}} \mathrm{~N}_{\gamma}
\end{aligned}
$$

$$
\begin{aligned}
& q=\gamma_{\text {sub }} D_{f} \\
& \gamma_{\text {sub }}=\gamma_{\text {sat }}-\gamma_{w}=20.85-9.81=11.04 \mathrm{kN} / \mathrm{m}^{2} \\
& 1200=11.04 \times 1.5(41.4-1)+0.5 \mathrm{~B} \times 42.4 \times 11.04 \\
& 1200=669.024+234.048 \mathrm{~B} \\
& \mathrm{~B}=2.268 \mathrm{~m}
\end{aligned}
$$

28. If $f(x)=x^{2}$ and $g(x)=x^{3}$ then, the mean value C satisfying Cauchy's Mean Value theorem in the interval $(1,2)$ is \qquad .
29. Ans: 1.555

Range: 1.5 to 1.6

Sol: Here, $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ satisfy the conditions of Cauchy's mean value theorem.
By Cauchy's mean value theorem, there exists a value $\mathrm{C} \in(1,2)$ such that

$$
\begin{aligned}
& \frac{f^{\prime}(C)}{g^{\prime}(C)}=\frac{f(2)-f(1)}{g(2)-g(1)} . \\
\Rightarrow \quad & \frac{2 C}{3 C^{2}}=\frac{4-1}{8-1} \\
\therefore & C=\frac{14}{9}=1.555
\end{aligned}
$$

29. A shaft shown in figure is subjected to torsion due to belt drives connected. The maximum shear stress developed (in MPa) \qquad S.

$$
\mathrm{T}=100 \mathrm{~N}-\mathrm{m} ; \mathrm{G}=80 \mathrm{GPa}
$$

29. Ans: 509.29

Range: 509.00 to 509.50
Sol: \quad The maximum torsion on the shaft $=T=100 \mathrm{~N}-\mathrm{m}$

$$
=100 \times 10^{3} \mathrm{~N}-\mathrm{mm}
$$

$$
\begin{aligned}
& \text { From Torsion equation } \frac{T}{J}=\frac{\tau}{r} \\
& \qquad \tau_{\max }=\frac{T}{J} r_{\max }=\frac{T}{Z_{p}}=\frac{100 \times 10^{3}}{\frac{\pi}{16}\left(10^{3}\right)}
\end{aligned}
$$

$$
\therefore \tau_{\max }=509.295 \mathrm{MPa} \simeq 509.30 \mathrm{MPa}
$$

30. A rigid retaining wall 6 m high has a saturated backfill of soft clay soil. $\gamma_{\text {sat }}=17.56 \mathrm{kN} / \mathrm{m}^{3}$. A surcharge of intensity $36 \mathrm{kN} / \mathrm{m}^{2}$ is required to avoid tension cracks. The depth of tension cracks is
\qquad (m), when surcharge is removed.
31. Ans: 2.05

Sol: Clay

$$
\begin{aligned}
& \phi=0 \\
& \mathrm{k}_{\mathrm{a}}=1
\end{aligned}
$$

Surcharge required to avoid tension cracks $=\mathrm{q}$

$$
\mathrm{k}_{\mathrm{a}} \mathrm{q}=2 \mathrm{C} \sqrt{\mathrm{k}_{\mathrm{a}}}
$$

$$
\mathrm{q}=\frac{2 \mathrm{C}}{\sqrt{\mathrm{k}_{\mathrm{a}}}}=2 \mathrm{C}
$$

$$
\text { As } \mathrm{k}_{\mathrm{a}}=1
$$

$$
\mathrm{q}=36 \mathrm{kN} / \mathrm{m}^{2} \text { (Given) }
$$

$$
=2 \mathrm{C}
$$

$\mathrm{C}=18 \mathrm{kN} / \mathrm{m}^{2}$
Depth of tension crack $=Z_{o}=\frac{2 \mathrm{C}}{\gamma \sqrt{\mathrm{k}_{\mathrm{a}}}}$
$\frac{2 \mathrm{C}}{\gamma_{\text {sat }} \sqrt{\mathrm{k}_{\mathrm{a}}}}=\frac{2 \times 18}{17.56}=(2.05 \mathrm{~m})$
31. An instrument was set up at P and the angle of depression to a vane 3 m above the foot of the staff held at Q was $4^{\circ} 30^{\prime}$. The horizontal distance between P and Q was known to be 1000 m . If the height of instrument axis is 450.250 m , the R.L of the staff station ' Q ' (in m, upto two decimal places) is \qquad . (Consider the combined correction).
31. Ans: $\mathbf{3 6 8 . 6 1 7} \mathrm{m}$

Range: $\mathbf{3 6 8 . 6 0}$ to $\mathbf{3 6 8 . 6 3}$
Sol:

$\mathrm{V}=1000 \tan 4^{\circ} 30^{\prime}=78.70 \mathrm{~m}$
Correct value of $V=78.70-0.06735 \times 1^{2}=78.633 \mathrm{~m}$
$R L$ of $Q=450.250-78.633-3=368.617 \mathrm{~m}$
32. The average water content of mixed sample consists of two soils each of 1 kg weight and having water contents of 40% and 60% is \qquad \%.
32. Ans: 49.30

Range: $\mathbf{4 8 . 8 0}$ to $\mathbf{4 9 . 8 0}$

Sol: Soil A:

$$
\begin{aligned}
\text { Water content } & =\frac{\mathrm{W}_{\mathrm{w}}}{\mathrm{~W}_{\mathrm{s}}}=40 \% \\
\mathrm{~W}_{\mathrm{w}} & =\frac{2}{5} \mathrm{~W}_{\mathrm{s}} \\
\mathrm{~W}_{\mathrm{w}}+\mathrm{W}_{\mathrm{s}} & =1 \mathrm{~kg} \\
\frac{2}{5} \mathrm{~W}_{\mathrm{s}}+\mathrm{W}_{\mathrm{s}} & =1 \\
\frac{7}{5} \mathrm{~W}_{\mathrm{s}} & =1 \\
\mathrm{~W}_{\mathrm{s}}=\frac{5}{7} ; \mathrm{W}_{\mathrm{w}} & =\frac{2}{7}
\end{aligned}
$$

Soil B:

$$
\begin{gathered}
\text { Water content }=\frac{\mathrm{W}_{\mathrm{w}}}{\mathrm{~W}_{\mathrm{s}}}=60 \%=\frac{3}{5} \\
\mathrm{~W}_{\mathrm{w}}=\frac{3}{5} \mathrm{~W}_{\mathrm{s}} \\
\mathrm{~W}_{\mathrm{w}}+\mathrm{W}_{\mathrm{s}}=1 \mathrm{~kg} \\
\frac{3}{5} \mathrm{~W}_{\mathrm{s}}+\mathrm{W}_{\mathrm{s}}=1 \\
\mathrm{~W}_{\mathrm{s}}=\frac{5}{8} ; \mathrm{W}_{\mathrm{w}}=\frac{3}{8}
\end{gathered}
$$

For mixed soil,
Water content $=\frac{\mathrm{W}_{\mathrm{w}}}{\mathrm{W}_{\mathrm{s}}}=\left[\begin{array}{l}\frac{3}{8}+\frac{2}{7} \\ \frac{5}{8}+\frac{5}{7}\end{array}\right]=0.4933=49.3 \%$
33. On a highway the time head way is 3 sec . The flow expressed in vehicles $/ \mathrm{hr}$ in traffic stream is \qquad .
33. Ans: $1200 \mathrm{Veh} / \mathrm{hr}$

Sol: Time head way $=3 \mathrm{sec}$
Traffic flow, $q=\frac{3600}{H_{t}}=\frac{3600}{3}=1200 \mathrm{Veh} / \mathrm{hr}$
34. A fluid of viscosity 0.1 poise and density $800 \mathrm{~kg} / \mathrm{m}^{3}$ flows through a pipe of diameter 1 cm at velocity of $1 \mathrm{~m} / \mathrm{s}$. Assuming flow to be fully developed the Darcy-Weisbach friction factor for the flow is \qquad .
34. Ans: 0.08

Sol: $\operatorname{Re}=\frac{\rho V D}{\mu}=\frac{800 \times 1 \times 0.01}{0.01}=800<2000$
\Rightarrow Flow is laminar
For laminar flow
$\mathrm{f}=\frac{64}{\mathrm{Re}}=\frac{64}{800}=0.08$
35. The size (area) of an oxidation pond required in "ha" for a population 10000 producing a per capita BOD of $40 \mathrm{gm} /$ day at place, when BOD loading rate adopted is $200 \mathrm{~kg} / \mathrm{ha} /$ day is \qquad .
35. Ans: 2

Sol: Total $\mathrm{BOD}=\mathrm{Qy}_{\mathrm{i}}=$ Population \times Per capita BOD

$$
\begin{aligned}
& =10000 \times 40 \times 10^{-3} \\
& =400 \mathrm{~kg} / \text { day }
\end{aligned}
$$

Area of oxidation pond $=\frac{\mathrm{Qy}_{\mathrm{i}}}{\mathrm{OLR}}=\frac{400}{200}=2 \mathrm{ha}$
Q. 36 - Q. 65 carry Two marks each.
36. A Pelton water wheel turbine is receiving flow rate of water 900 litres per second, the water jet velocity at turbine runner is $65 \mathrm{~m} / \mathrm{s}$ and the peripheral velocity of the runner wheel is $25 \mathrm{~m} / \mathrm{s}$. The blade friction coefficient is 0.9 and the water jet is deflected by 160° by the bucket at exit, then the runner power developed (in MW) is:
(A) 1.66
(B) 2.67
(C) 16.7
(D) 26.7
36. Ans: (A)

Sol: $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{u} 1}=65 \mathrm{~m} / \mathrm{s}$

$$
\mathrm{u}=25 \mathrm{~m} / \mathrm{s}
$$

$\mathrm{V}_{\mathrm{r} 1}=65-25=40 \mathrm{~m} / \mathrm{s}$

As $36 \cos 20=33.82<25$ the shape of the exit triangle is as in figure.

$$
\begin{aligned}
\mathrm{V}_{\mathrm{u} 2} & =36 \cos 20-25 \\
& =33.83-25=8.83 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

In the opposite direction of $\mathrm{V}_{\mathrm{u} 1}$ hence addition $\mathrm{P}=900 \times 25(65+8.83)=1.661 \mathrm{MW}$

ACE
CENTER

HYDERABAD - DSNR	GATE + PSUS - 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	ESE + GATE + PSUs - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Morning/Evening Batch	21st Jan 2019
HYDERABAD - DSNR	ESE - 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUS - 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Abids	ESE + GATE + PSUs - 2020	Morning Batch	21st Jan 2019
HYDERABAD - Abids	ESE - 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Weekend Batch	19th Jan 2019
HYDERABAD - Abids	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Morning/Evening Batch	21st Jan 2019
HYDERABAD - Kukatpally	GATE + PSUS - 2020	Regular Batches	17th May, 1st, 16th June, 1st July 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Kothapet	ESE + GATE + PSUS - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Kothapet	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
DELHI	ESE+GATE+PSUs - 2020	Weekend Batches	$13^{\text {th }}$ Jan, $2^{\text {nd }}$ Feb 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Evening Batch	$18^{\text {th }}$ Feb 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Day Batch	11 ${ }^{\text {th }}$ May 2019
DELHI	ESE+GATE+PSUs - 2020	Spark Batch	$11^{\text {th }}$ May 2019
DELHI	ESE+GATE+PSUs - 2021	Weekend Batch	$13^{\text {th }}$ Jan 2019
DELHI	GATE+PSUs - 2020	Short Term Batches	11 ${ }^{\text {th }}$, 23 ${ }^{\text {rd }}$ May 2019
BHOPAL	ESE + GATE+PSUs - 2020 \& 21	Evening Batch	09 ${ }^{\text {th }}$ Jan 2019
BHOPAL	ESE+GATE+PSUs - 2020	Regular Day Batch	01st Week of June 2019
PUNE	GATE+PSUs - 2020	Weekend Batch	$19^{\text {th }}$ Jan 2019
PUNE	ESE+GATE+PSUs - 2021	Weekend Batch	26 ${ }^{\text {th }}$ Jan 2019
BHUBANESWAR	GATE+PSUs - 2020 \& 21	Weekend Batch	$12^{\text {th }}$ Jan 2019
BHUBANESWAR	GATE+PSUs - 2020	Regular Batch	O2nd Week of May 2019

37. Data from a pile load test on a 300 mm diameter pile is given below:

Load $(\mathbf{k N})$	20	40	60	80	100	120	140	160	180	200
Total settlement $(\mathbf{m m})$	3	5	9	13	16	23	28	32	42	50

The design load on the pile is (in kN)
(A) 50
(B) 75
(C) 150
(D) 37.5
37. Ans: (A)

Sol: The criteria for determining the design load is that it shall be taken lower of
(i) Half the load at which pile settlement is 10% of the pile diameter
10% of pile diameter means 30 mm from given data load corresponds to 30 mm settlement is 150 kN , after interpolation from the data given
But we take half load only i.e. 75 kN
(ii) $2 / 3$ load at which pile total settlement is 12 mm

$$
\begin{aligned}
9 \mathrm{~mm} & \rightarrow 60 \\
12 \mathrm{~mm} & \rightarrow \mathrm{y} \Rightarrow \quad \begin{array}{l}
3 \\
\end{array} \mathrm{y}-60 \\
4 & \rightarrow 20
\end{aligned}
$$

$$
13 \mathrm{~mm} \rightarrow 80
$$

from that $\mathrm{y}=75$
But take $2 / 3$ of load only i.e $75 \times \frac{2}{3}=50 \mathrm{kN}$
From above 2 equations least load is 50 kN
38. What are the values of constants a and b for which the vector $\vec{F}=\left[x^{2}+y+(a-b) z\right] \vec{i}+\left[(a+b) x-y^{2}-z\right] \vec{j}+\left[2 x-y+z^{2}\right] \vec{k}$ is irrotational ?
(A) $\mathrm{a}=\frac{3}{2}, \mathrm{~b}=\frac{1}{2}$
(B) $\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{3}{2}$
(C) $\mathrm{a}=\frac{-1}{2}, \mathrm{~b}=\frac{3}{2}$
(D) $\mathrm{a}=\frac{3}{2}, \mathrm{~b}=\frac{-1}{2}$
38. Ans: (D)

Sol: $\operatorname{curl} \overrightarrow{\mathrm{F}}=\nabla \times \overrightarrow{\mathrm{F}}=0$

$$
\begin{aligned}
& \left|\begin{array}{cc}
\vec{i} & \vec{j} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
x^{2}+y+(a-b) z & (a+b) x-y^{2}-z \\
\hline & 2 x-y+z^{2}
\end{array}\right|=0 \\
& \Rightarrow \overrightarrow{\mathrm{i}}(-1+1)-\overrightarrow{\mathrm{j}}(2-(\mathrm{a}-\mathrm{b}))+\overrightarrow{\mathrm{k}}[(\mathrm{a}+\mathrm{b})-1]=0 \\
& \Rightarrow 0 \overrightarrow{\mathrm{i}}+\overrightarrow{\mathrm{j}}[(\mathrm{a}-\mathrm{b})-2]+\overrightarrow{\mathrm{k}}[(\mathrm{a}+\mathrm{b})-1]=0 \overrightarrow{\mathrm{i}}+0 \overrightarrow{\mathrm{j}}+0 \overrightarrow{\mathrm{k}} \\
& \mathrm{a}-\mathrm{b}-2=0 ; \mathrm{a}+\mathrm{b}-1=0 \\
& \mathrm{a}-\mathrm{b}=2 \\
& \mathrm{a}+\mathrm{b}=1 \\
& \text { on solving these two equations, we get } \\
& \mathrm{a}=\frac{3}{2}, \mathrm{~b}=\frac{-1}{2} \\
& \therefore \text { Option (D) is correct. }
\end{aligned}
$$

39. Influence line for member force in AB of the truss shown is obtained by

(A) $\sqrt{2}$ times the ordinates of influence line for bending moment at A
(B) $\sqrt{2}$ times the ordinates of influence line for shear in $3^{\text {rd }}$ panel from left
(C) $\sqrt{2}$ times the ordinates of influence line for shear in $3^{\text {rd }}$ panel from right
(D) $\sqrt{2}$ times the ordinates of influence line for bending moment at B
40. Ans: (B)
: 27 :
PRE-GATE_2019

Sol: When unit load at joint 'C'

$\Sigma \mathrm{V}=0$ [Right part]
$\mathrm{F}_{\mathrm{AB}} \sin 45^{\circ}+\mathrm{R}_{2}=0$
$\mathrm{F}_{\mathrm{AB}}=-\sqrt{2} \mathrm{R}_{2}$ (compressive)
When unit load at joint ' B '

$\sum \mathrm{V}=0$ [left part]
$\mathrm{F}_{\mathrm{AB}} \sin 45^{\circ}=\mathrm{R}_{1}$
$\mathrm{F}_{\mathrm{AB}}=\sqrt{2} \mathrm{R}_{1}$ [Tension]

40. A cantilever beam is subjected to loading as shown in figure. What will be corresponding bending moment diagram?

(A)

(B)

(C)

(D)

40. Ans: (B)

Sol:

Slope of SFD = Rate of loading and
Slope of BMD = Shear force value on the beam

Distractor Logic:

(A) Bending moment value should not change the sign (nature) in the beam.
(B) The appropriate answer.
(C) Slope of BMD can not be zero at the middle of its length
(D) BMD can not change its sign
41. A propped cantilever of uniform M_{p} is loaded as shown in figure below. Collapse load for the beam will be

(A) $\frac{4 \mathrm{M}_{\mathrm{P}}}{\mathrm{L}}$
(B) $\frac{6 M_{p}}{L}$
(C) $\frac{8 \mathrm{M}_{\mathrm{P}}}{\mathrm{L}}$
(D) $\frac{12 \mathrm{M}_{\mathrm{P}}}{\mathrm{L}}$
41. Ans: (C)

Sol: Number of reaction ' r ' $=3$
Number of equilibrium equations ' S ' $=2$
Static indeterminacy ' D_{s} ' $=\mathrm{D}_{\text {se }}+\mathrm{D}_{\text {si }}$

$$
=r-S=3-2=1
$$

Number of possible plastic hinges ' N ' $=3$ [At A, B \& D]
Number of plastic hinges required to form a mechanism ' n ' $=D_{s}+1=2$
Number of independent mechanism ' I ' $=\mathrm{N}-\mathrm{D}_{\mathrm{s}}=3-1=2$
(Two independent beam mechanisms)

$1^{\text {st }}$ beam mechanism:

External work done ' W_{e} ' $=$ load \times displacement under the load

$$
\begin{aligned}
\mathrm{W}_{\mathrm{e}} & =+\mathrm{W}_{\mathrm{c}} \delta_{1}-\frac{\mathrm{W}_{\mathrm{c}}}{2} \cdot \delta_{2} \\
\mathrm{~W}_{\mathrm{e}} & =\mathrm{W}_{\mathrm{c}} \times \frac{\mathrm{L}}{2} \theta-\frac{\mathrm{W}_{\mathrm{c}}}{2} \cdot \frac{\mathrm{~L}}{4} \theta \\
& =\mathrm{W}_{\mathrm{C}} \mathrm{~L} \theta\left[\frac{1}{2}-\frac{1}{8}\right]=\frac{3 \mathrm{~W}_{\mathrm{c}} \mathrm{~L} \theta}{8}
\end{aligned}
$$

Internal work done $\left(\mathrm{W}_{\mathrm{i}}\right)-$ Moment \times rotation $=3 \mathrm{M}_{\mathrm{p}} \theta$
External work done $=$ Internal work done

$$
\begin{array}{r}
\frac{3 \mathrm{~W}_{\mathrm{c}} \mathrm{~L} \theta}{8}=3 \mathrm{M}_{\mathrm{p}} \theta \\
\mathrm{~W}_{\mathrm{c}}=\frac{8 \mathrm{M}_{\mathrm{p}}}{\mathrm{~L}}
\end{array}
$$

$2^{\text {nd }}$ Beam mechanism:
$\mathrm{W}_{\mathrm{e}}=\frac{\mathrm{W}_{\mathrm{c}}}{2} \times \delta$
$\mathrm{W}_{\mathrm{e}}=\frac{\mathrm{W}_{\mathrm{c}}}{2} \times \frac{\mathrm{L} \theta}{4}=\frac{\mathrm{W}_{\mathrm{c}} \mathrm{L} \theta}{8}$
$\mathrm{W}_{\mathrm{i}}=\mathrm{M}_{\mathrm{p}} \theta$
$\mathrm{W}_{\mathrm{e}}=\mathrm{W}_{\mathrm{i}}$
$\frac{\mathrm{W}_{\mathrm{c}} \mathrm{L} \theta}{8}=\mathrm{M}_{\mathrm{p}} \theta$
$\mathrm{W}_{\mathrm{C}}=\frac{8 \mathrm{M}_{\mathrm{p}}}{\mathrm{L}}$
True collapse load is $\frac{8 \mathrm{M}_{\mathrm{P}}}{\mathrm{L}}$ [least]
42. For an $n \times n$ matrix consisting of all ones, which of the following is true?
(A) the distinct Eigen values are 0 and 1
(B) the distinct Eigen values are 1 and n
(C) the distinct Eigen values are 1, 2,, n
(D) the distinct Eigen values are 0 and n
42. Ans: (D)

Sol: \quad Let $A=\left[\begin{array}{cccc}1 & 1 & \ldots \ldots . . & 1 \\ 1 & 1 & \ldots & 1 \\ \ldots & \ldots . & \ldots \ldots . . & \ldots \\ 1 & 1 & \ldots & 1\end{array}\right]_{n \times n} \quad$ Since 1995
$|\mathrm{A}-\lambda \mathrm{I}|=0$
$\left|\begin{array}{cccc}1-\lambda & 1 & \ldots \ldots \ldots & 1 \\ 1 & 1-\lambda & \ldots \ldots \ldots & 1 \\ \ldots & \ldots . . & \ldots \ldots . & \ldots \\ 1 & 1 & \ldots \ldots \ldots . & 1-\lambda\end{array}\right|=0$
$\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\ldots \ldots \ldots \ldots \ldots \ldots . . . \mathrm{C}_{\mathrm{n}}$

Engineering Academy

$$
\begin{gathered}
\left|\begin{array}{cccc}
\mathrm{n}-\lambda & 1 & \ldots \ldots . . & 1 \\
\mathrm{n}-\lambda & 1-\lambda & \ldots \ldots . . & 1 \\
\ldots & \ldots . . & \ldots \ldots . . & \ldots \\
\mathrm{n}-\lambda & 1 & \ldots \ldots . . & 1-\lambda
\end{array}\right|=0 \\
\mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{3}-\mathrm{R}_{1}, \ldots \ldots \ldots, \mathrm{R}_{\mathrm{n}}-\mathrm{R}_{1} \\
\left|\begin{array}{cccc}
\mathrm{n}-\lambda & 1 & \ldots \ldots . . & 1 \\
0 & -\lambda & \ldots \ldots . . & 0 \\
\ldots & \ldots . & \ldots \ldots . . & \ldots \\
0 & 0 & \ldots \ldots \ldots & -\lambda
\end{array}\right|=0 \\
\Rightarrow \lambda=\mathrm{n}, 0,0, \ldots \ldots \ldots ., 0
\end{gathered}[(\mathrm{n}-1) \text { zeros }] \quad .
$$

\therefore The distinct Eigen values are 0 and n
43. In a bituminous concrete the following observations are made. The theoretical specific gravity of mix and absolute specific gravity of the aggregate respectively (round upto two decimal places), are

Ingredients	Weights (g)	Specific gravity (G)
C.A	1200	2.63
F.A	836	2.78
Filler	650 ince	2.96
Bitumen	550	1.02

(A) $3.6 \& 2.75$
(B) $2.13 \& 3.6$
(C) $2.13 \& 2.75$
(D) $2.75 \& 2.14$
43. Ans: (C)

Sol:

Percentage	
Weights	
$\mathrm{W}_{\mathrm{CA}}=37.08$	$\mathrm{~W}_{\mathrm{FA}}=25.83$
$\mathrm{~W}_{\mathrm{Fill}}=20.08$	$\mathrm{~W}_{\mathrm{bit}}=16.99$

Theoretical specific gravity of mix
$\frac{100}{G_{t}}=\frac{W_{C A}}{G_{C A}}+\frac{W_{F A}}{G_{\text {FA }}}+\frac{W_{\text {Filler }}}{G_{\text {Filler }}}+\frac{W_{\text {bit }}}{G_{\text {bit }}}$
$\frac{100}{G_{t}}=\frac{37.08}{2.63}+\frac{25.83}{2.78}+\frac{20.08}{2.96}+\frac{16.99}{1.02}$
$\mathrm{G}_{\mathrm{t}}=2.14$
Absolute specific gravity of

$$
\frac{37.08+25.83+20.08}{\mathrm{G}_{\text {agg }}}=\frac{37.08}{2.63}+\frac{25.83}{2.78}+\frac{20.08}{2.96}
$$

$\mathrm{G}_{\text {agg }}=2.75$
44. The solution of the initial value problem $\frac{d y}{d x}=\left(y+y^{2}\right) \cot x, y\left(\frac{\pi}{2}\right)=1$, is
(A) $y \cos x-(1-y) \sin x=0$
(B) $y=\sin x$
(C) $y=\sin x+\cos x$
(D) $2 y-(1+y) \sin x=0$
44. Ans: (D)

Sol: Given

$$
\frac{d y}{d x}=\left(y+y^{2}\right) \cot x
$$

$$
\frac{d y}{y+y^{2}}=\cot x d x
$$

$$
\frac{d y}{y(1+y)}=\cot x d x
$$

$$
\left(\frac{1}{y}-\frac{1}{1+y}\right) d y=\cot x d x
$$

Integrating both sides, we get

$$
\begin{aligned}
& \ln y-\ln (1+y)=\ln \sin x+\ln C \\
& \ln \left(\frac{y}{1+y}\right)=\ln (C \sin x) \\
& \frac{y}{1+y}=C \sin x
\end{aligned}
$$

$\therefore y=C(1+y) \sin x$ \qquad (1) is the general solution.

$$
\begin{aligned}
\mathrm{y}\left(\frac{\pi}{2}\right)=1,(1) & \Rightarrow 1=\mathrm{C}(1+1) \sin \left(\frac{\pi}{2}\right) \\
& \Rightarrow 1=2 \mathrm{C} \\
& \Rightarrow \mathrm{C}=\frac{1}{2}
\end{aligned}
$$

$\therefore \mathrm{y}=\frac{1}{2}(1+\mathrm{y}) \sin \mathrm{x}$

$$
2 y=(1+y) \sin x
$$

$2 y-(1+y) \sin x=0$
Hence, option (D) is correct.
45. A siphon spillway has the dimensions of cross section $1.5 \mathrm{~m} \times 6 \mathrm{~m}$ wide. RL of MFL on U/S is 120.00 m and on D/S 110.00. The surplus discharge to be disposed off is 300 cumec. Number of siphons to be provided in parallel is [$\left.\mathrm{C}_{\mathrm{d}}=0.6\right]$
(A) 2
(B) 3
(C) 4
(D) 5
45. Ans: (C)

Sol: Capacity of each siphon $=C_{d} A \sqrt{2 g H}$

$$
\begin{gathered}
=0.6(1.5 \times 6) \sqrt{2(9.81)(10)}=75.6 \\
\text { No. of siphons }=\frac{\text { TotalQ } \operatorname{Since}}{\text { Capacity of each Siphon }}=\frac{300}{75.6}=3.97 \simeq 4 \text { siphons }
\end{gathered}
$$

46. A project consists of eight activities with the following details

Activity	A	B	\mathbf{C}	\mathbf{D}	\mathbf{E}	F	G	H
Predecessor	-	-	-	A, B	B, C	B	D, F	D, E, F
Duration (days)	3	5	4	6	3	2	3	5

The total float on 'A' and free float on 'E' respectively are \qquad .
(A) 0 and 3
(B) 2 and 0
(C) 0 and 0
(D) 2 and 3
46. Ans: (D)

Sol:

TF for $\mathrm{A}=5-0-3=2$
TF for $\mathrm{E}=11-5-3=3$
FF for $\mathrm{E}=\mathrm{TF}-$ Slack @ head event

$$
\begin{aligned}
& =3-(11-11) \\
& =3
\end{aligned}
$$

Distracter Logic:

(B) TF for $\mathrm{A}=5-0-3=2$

TF for $\mathrm{E}=11-8-3=0$
FF for $\mathrm{E}=0$
(A) TF for $\mathrm{A}=5-5=0$

TF for $\mathrm{E}=8-5=3$
FF for $\mathrm{E}=3-(11-11)=3$

TF for $\mathrm{E}=11-11=0$
FF for $\mathrm{E}=0$

(D) Correct answer
47. A transition curve is required to be introduced between a straight and a circular curve of radius 320 m and the maximum superelevation is restricted to 0.1 m for a gauge of 1.0 metre. If the superelevation of 4 cm is provided on the distance covered by the vehicle in one second, the length of transition curve is \qquad
(A) 44.30 cm
(B) 4.43 m
(C) 44.30 m
(D) 4.43 cm
47. Ans: (C)

Sol: $\mathrm{h}=\frac{\mathrm{G} v^{2}}{\mathrm{Rg}} \Rightarrow 0.1=\frac{1 \times v^{2}}{320 \times 9.81}$
$\therefore v=17.72 \mathrm{~m} / \mathrm{sec}$

$$
\mathrm{L}=\frac{\mathrm{vh}}{\mathrm{x}}=\frac{17.72 \times 0.1}{0.04}=44.30 \mathrm{~m}
$$

Distractor Logic

(A) May be confused with units instead of unit of $x=0.04 \mathrm{~m} / \mathrm{sec}$ it may be taken as $x=4 \mathrm{~cm} / \mathrm{sec}$
(B) May be calculation mistake
(C) Correct
(D) May be units confusion
48. Which of the following statements are true?
P. Warping stresses are tensile on the bottom face of edge (or) interior during day time.
Q. CBR is a relative strength parameter of subgrade soil.
R. Classification of bitumen as per IRC is based on viscosity and VG30 is commonly used bitumen for Indian condition.
(A) P and Q
(B) Q and R
(C) P and R
(D) P, Q, R
48. Ans: (D)

Sol: Distractor Logic

(A) During day time pavement warps up and it is prevented by self weight causing tension on bottom of edge \& interior region.
(B) CBR is a bearing strength parameter which gives relative strength of soil compared to crushed aggregate.

[^0](C) Present IRC grading of bitumen is based on Viscosity test. Previously it was based on penetration test.
(D) All the given options are true.
49. A concrete pile 45 cm diameter is driven through a system of layered cohesive soil. The length of pile is 16 m . Water table is close to ground surface.
Top Layer 1: Thickness $=8 \mathrm{~m}$

Taking a factor of safety of 2.5 , the allowable load on pile (in kN) is \qquad .
49. Ans: 369.56 kN

Range : 366 to 374

Sol: Q_{u} (ultimate load carried by pile) $=\mathrm{CN}_{\mathrm{c}}$ (at base) $\mathrm{A}_{\mathrm{b}}+\mathrm{P} \sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha_{\mathrm{i}} \mathrm{C}_{\mathrm{i}} \mathrm{L}_{\mathrm{i}}$
$\mathrm{P}=$ Perimeter of the pile
$\mathrm{A}_{\mathrm{b}}=$ Area of base
$\alpha_{i}=$ Adhesion factor of $\mathrm{i}^{\text {th }}$ layer
$\mathrm{C}_{\mathrm{i}}=$ average cohesion in $\mathrm{i}^{\text {th }}$ layer
$L_{i}=$ Length of pile in $i^{\text {th }}$ layer
$\mathrm{n}=$ no. of layers
Take $\mathrm{N}_{\mathrm{c}}=9$
$\mathrm{Q}_{\mathrm{u}}=9 \times 104 \times \frac{\pi}{4} \times 0.45^{2}+\pi \times 0.45[0.9 \times 30 \times 8+0.76 \times 50 \times 6+0.5 \times 104 \times 2]$
$=148.92+775.03=923.95$
$\mathrm{Q}_{\mathrm{a}}=\frac{923.95}{2.5}=369.56 \mathrm{kN}$

ACE

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER
COURSE
BATCH TYPE
DATE

CHENNAI	GATE+PSUs - 2020 \& 21	Weekend Batch	$19^{\text {th }}$ Jan 2019
CHENNAI	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019
BANGALORE	GATE+PSUs - 2020 \& 21	Weekend Batch	19 ${ }^{\text {th }}$ Jan 2019
BANGALORE	GATE+PSUs - 2020	Regular Batch	$17^{\text {th }}$ June 2019
BANGALORE	KPSC-AE (CE) - PAPER 1 \& PAPER 2	Regular Batch	$19^{\text {th }}$ Jan 2019
LUCKNOW	ESE+GATE+PSUs - 2020 \& 21	Evening Batch	06 ${ }^{\text {th }}$ Feb 2019
LUCKNOW	GATE+PSUs - 2020	Regular Batch	Mid - May 2019
PATNA	GATE+PSUs - 2020	Weekend Batch	19 ${ }^{\text {th }}$ Jan 2019
TIRUPATHI	GATE+PSUs - 2020 \& 21	Weekend Batch	19 ${ }^{\text {th }}$ Jan 2019
KOLKATA	GATE+PSUs - 2020	Weekend Batch	$19^{\text {th }}$ Jan 2019
KOLKATA	ESE+GATE+PSUs - 2021	Regular Batch	$19^{\text {th }}$ Jan 2019
AHMEDABAD	ESE+GATE+PSUs - 2020\&21	Weekend Batch	19 ${ }^{\text {th }}$ Jan 2019
AHMEDABAD	GATE+PSUs - 2020	Regular Batch	O2nd Week of June 2019

ACE Launches

For B.Tech - CSE Students

ACE

.
PloceMnent Training

In Level - 1 Companies

 Short Term \& Long Term Batches50. The diameter of the smallest particle of specific gravity 2.65 removed from sedimentation tank of plan area $100 \mathrm{~m}^{2}$ treating 8.64 MLD of water with coefficient of dynamic viscosity 1 centipoise is
\qquad $\times 10^{-5} \mathrm{~m}$. Assume the flow is laminar. [Rounded upto two decimals]
51. Ans: 3.34

Range: $\mathbf{3 . 3 0}$ to 3.40
Sol: $\mathrm{Q}=8.64$ MLD
$\mathrm{A}_{\mathrm{s}}=100 \mathrm{~m}^{2}, \mathrm{~S}=2.65$
$\rho_{\mathrm{p}}=\mathrm{S} \times \rho_{\mathrm{w}}=2650 \mathrm{~kg} / \mathrm{m}^{3}$
$\mu=1 \mathrm{cp}=10^{-3} \mathrm{~kg} / \mathrm{m}-\mathrm{sec}$
$v_{o}=\frac{Q}{A_{s}}=\frac{\frac{8.64 \times 10^{6}}{10^{3} \times 24 \times 60 \times 60}}{100}=0.001 \mathrm{~m} / \mathrm{sec}$
For 100\% removal
$v_{\mathrm{s}}=\mathrm{v}_{\mathrm{o}}=0.001 \mathrm{~m} / \mathrm{sec}$
$v_{\mathrm{s}}=\frac{\mathrm{g}\left(\rho_{\mathrm{p}}-\rho_{\mathrm{w}}\right) \mathrm{d}^{2}}{18 \mu}$
$0.001=\frac{9.81(2650-1000) \mathrm{d}^{2}}{18 \times 10^{-3}} \Rightarrow \mathrm{~d}=3.335 \times 10^{-5} \mathrm{~m}=3.34 \times 10^{-5} \mathrm{~m}$
51. A 150 mm diameter circular hollow section is welded to a rigid support using fillet weld. It is subjected to vertical eccentric load P and twisting moment T. The vertical shear in weld and stress in weld due to twisting moment are 30 MPa and 40 MPa respectively. The maximum stress in fillet weld due to eccentricity of load is 150 MPa . The fillet welded section should be designed for a stress of \qquad MPa.
51. Ans: 173.2 MPa

Range: $\mathbf{1 7 3}$ to $\mathbf{1 7 4} \mathbf{~ M P a}$
Sol: Vertical shear stress in weld, $\mathrm{q}_{\mathrm{v}}=30 \mathrm{MPa}$
Shear stress in weld due to twisting moment, $\mathrm{q}_{\mathrm{t}}=40 \mathrm{MPa}$
Resultant shear stress in weld, $\mathrm{q}=\sqrt{\mathrm{q}_{\mathrm{v}}^{2}+\mathrm{q}_{\mathrm{t}}^{2}}=\sqrt{30^{2}+40^{2}}=50 \mathrm{MPa}$
Maximum bending stress in weld due to eccentricity, $\mathrm{f}=150 \mathrm{MPa}$
Design equivalent stress in weld, $\mathrm{f}_{\mathrm{e}}=\sqrt{3 \mathrm{q}^{2}+\mathrm{f}^{2}}=\sqrt{3 \times 50^{2}+150^{2}}=173.2 \mathrm{MPa}$
52. A district road has a design speed of 50 kmph . The road is single lane two way traffic. Reaction time of driver is 2.5 sec . Coefficient of longitudinal friction and lateral frictions are 0.37 and 0.15 respectively.
The safe stopping sight distance is \qquad m.
52. Ans: 122.48

Range : 121 to 123
Sol: $v=13.88 \mathrm{~m} / \mathrm{s}$
For single lane two way traffic

$$
\begin{aligned}
& \text { Safe } \mathrm{SSD}=2(\mathrm{SSD})=2\left[v t+\frac{\mathrm{v}^{2}}{2 \mathrm{gf}}\right] \\
& =2\left[13.88 \times 2.5+\frac{13.88^{2} N}{2 \times 9.81 \times 0.37}\right] \\
& =122.48 \mathrm{~m}
\end{aligned}
$$

53. The mass curve of an isolated storm in a 500 ha watershed is as follows:

Time from start (hr)	0	2	4	6	8	10	12	14	16	18
Cumulative Rainfall (cm)	0	1.0	2.6	2.8	4.1	7.3	10.8	11.8	12.4	12.6

The direct runoff produced by the storm is measured at the outlet of the watershed as $0.340 \mathrm{Mm}^{3}$. The estimated ϕ-index of the storm would be \qquad $\mathrm{cm} /$ hour (upto 2 decimal places)
53. Ans: 0.40

Range: $\mathbf{0 . 4 0}$ to $\mathbf{0 . 4 2}$
Sol:

Time from start (hr)	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$	$12-14$	$14-16$	$16-18$
Rainfall (P cm)	1.0	1.6	0.2	1.3	3.2	3.5	1.0	0.6	0.2
$\mathbf{i}=\mathbf{P} / \mathbf{t}, \mathbf{c m} / \mathbf{h r}$	0.5	0.8	0.1	0.65	1.6	1.75	0.5	0.3	0.1

$\mathrm{R}=\frac{\text { Runoff volume }}{\text { C.A }}=\frac{0.340 \times 10^{6}}{500 \times 10^{4}}=0.068 \mathrm{~m}=6.8 \mathrm{~cm}$
$1^{\text {st }}$ Trial

$$
\begin{aligned}
& \text { Assume } \mathrm{t}_{\mathrm{e}}=18 \mathrm{hr} \quad \phi-\text { index }=\frac{\mathrm{P}_{\mathrm{e}}-\mathrm{R}}{\mathrm{t}_{\mathrm{e}}} \\
& \mathrm{P}_{\mathrm{e}}=1.0+1.6+0.3+1.3+3.2+3.5+1.0+0.6+0.2=12.7 \mathrm{~cm} \\
& \phi \text {-index }=\frac{12.7-6.8}{18}=0.327 \mathrm{~cm} / \mathrm{hr}
\end{aligned}
$$

$2^{\text {nd }}$ Trial

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{e}}=12.7-[0.2+0.6+0.2]=11.7 \mathrm{~cm} \\
& \phi-\text { index }=\frac{11.7-6.8}{12}=0.408 \mathrm{~cm} / \mathrm{hr}
\end{aligned}
$$

54. A 2.0 m wide rectangular channel has a flow with a velocity of $2.0 \mathrm{~m} / \mathrm{s}$ and depth of 1.3 m . The rate of inflow at the upstream end is suddenly increased to an extent that the depth is doubled in magnitude. The absolute velocity of the resulting surge is \qquad m / s (rounded to two decimals) Assume $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$).
55. Ans: 8.19

(i) Calculation of surge velocity moving d / s :

By the surge equation obtained from a combination of momentum and continuity equations.

$$
\mathrm{V}_{\mathrm{w}}-\mathrm{V}_{1}=\sqrt{\frac{\mathrm{gy}_{2}}{2 \mathrm{y}_{1}}\left(\mathrm{y}_{2}+\mathrm{y}_{1}\right)}
$$

Solving $\mathrm{V}_{\mathrm{w}}=8.1853 \mathrm{~m} / \mathrm{s} \simeq 8.19 \mathrm{~m} / \mathrm{s}$

OUR GATE - 2018 TOP RANKERS

E

HEAD OFFICE

HYDERABAD

Sree Sindhi Guru Sangat Sabha Association,
\# 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.
Address - II: \# 204, Rahman Plaza, Abids, Hyderabad - 500001.
Contact No: 040-23234418/19/20, 040-24750437
E-Mail : hyderabad@aceenggacademy.com

DELHI

Address I : Plot No. 3, Kh.No. 264, Near Saket Metro Station, Saidulajab, New Delhi-110030.
Address II: \# 63, FNS House, Beside Oriental Bank of Commerce,
Near Hauz Khas Metro Station,Kalu Sarai,New Delhi-110016.
Contact No : 9205282121, 9205282123, 7838971777, 9205282120.

BHOPAL

\# G - 1, Plot no : 207, Zone II, M.P Nagar, M. P - 462013.
Contact No: 0755-2554512, 0755-2554612, 0755-4280242

PUNE

\# 302, Vekatesh Villa, Upstairs JANATHA Sahakari Bank, Shivaji Nagar,
Pune, Maharashtra-411005. Contact No : 020-25535950, 09343499966

BHUBANESWAR

\# Plot No: 625/A, 3rd Floor, Janpath, Saheed Nagar, Bhubaneswar.
Contact No: 0674-2540340, 9861566244, 09379099966

LUCKNOW

\# A-7, Sector-J, Aliganj, Lucknow, Uttar Pradesh - 226024
Contact No. : 9342199966,80819999 66, 05224046966

PATNA

\# 1st Floor, N. P. Tower, Kankarbagh, PATNA - 800020
Contact No. : 08252194512, 9308699966,9212188818

DILSUKH NAGAR

Gaddiannaram,Dilsukhnagar, Hyderabad.
Contact No : 040-40209345, 040-40044451

KUKATPALLY

2nd floor, BSR Bellezza, Opp : JNTUH Campus, KPHB,
Kukatpally, Hyderabad-500072.
Contact No: 040-6597 4465, 040-40199966, 9347699966

BENGALURU

\# 223, G R Arcade, 2nd floor, Malleswaram, Bangalore - 560003. Contact No: 080-23466699,41526699, 09341299966.

CHENNAI

\# 39, North Usman Road, T Nagar, Chennai - 600017.
Contact No : 044-42123289,9343799966

VISHAKAPATNAM

\# Door No. 48-14-91/6, 3rd Floor, Sri Nagar, Visakhapatnam - 530001. Contact No : 0891-6616001, 08374808999

VIJAYAWADA

\# Opp Stella College, Near Benz Circle, Vijayawada - 520008 Contact No. : 0866-2490001, 9676076001

TIRUPATI

\# Plot No:10, AIR Bypass Road, Tirupathi - 517502
Contact No: 0877-2244388, 9618155166, 09341499966

KOLKATA

\# 3rd Floor, 369/4, EM Bypass, Avishar Shopping Mall, Kolkata-700078. Contact No: 8297899966,8886899966

AHMEDABAD

Shop.No 231, 2nd Floor, Sunrise Mall, Near Mansi Circle,
Vasthrapur-Gujarat-380015. Contact No : 0794890 2228, 9160499966
55. A RC slab is to be provided over a room $3 \mathrm{~m} \times 5 \mathrm{~m}$ (centre to center) with corners not held down. The ratio of maximum moments at mid span in the shorter span direction to longer span direction (rounded to two decimal places) is \qquad
55. Ans: 2.78

Sol: Aspect ratio, $\frac{\mathrm{L}_{\mathrm{y}}}{\mathrm{L}_{\mathrm{x}}}=\frac{5}{3}=1.6<2$
\therefore It is a two way slab
For the condition given in question corners not held down, hence the slab is designed by Rankine Grashoff method
Moment in the shorter span direction, $\mathrm{m}_{\mathrm{x}}=\frac{1}{8}\left[\frac{\left(\frac{\mathrm{~L}_{\mathrm{y}}}{\mathrm{L}_{\mathrm{x}}}\right)^{4}}{1+\left(\frac{\mathrm{L}_{\mathrm{y}}}{\mathrm{L}_{\mathrm{x}}}\right)^{4}}\right] \mathrm{wL}_{x}^{2}$
Moment in the longer span direction, $m_{y}=\frac{1}{8}\left[\frac{\left(\frac{L_{y}}{L_{x}}\right)^{2}}{1+\left(\frac{L_{y}}{L_{x}}\right)^{4}}\right] \mathrm{wL}_{x}^{2}$
$\frac{\mathrm{m}_{x}}{\mathrm{~m}_{\mathrm{y}}}=\left(\frac{\mathrm{L}_{\mathrm{y}}}{\mathrm{L}_{\mathrm{x}}}\right)^{2}=\left(\frac{5}{3}\right)^{2}=2.78$
56. The height to which a parcel of polluted air of temperature $40^{\circ} \mathrm{C}$ rises in vehicle atmosphere is $\ldots \quad(\mathrm{km})$. ELR is $0.5^{\circ} \mathrm{C} / 100 \mathrm{~m}$ and temperature of atmosphere at ground is $35^{\circ} \mathrm{C}$.
56. Ans: 1

Sol: $\operatorname{ELR}=-0.5^{\circ} \mathrm{C} / 100 \mathrm{~m} \quad$ ALR $=-1^{\circ} \mathrm{C} / 100 \mathrm{~m}$

$$
40+\left[-\frac{1}{100} \times z\right]=35+\left[\frac{-0.5}{100} \times z\right]
$$

$$
4000-z=3500-0.5 z
$$

$$
\mathrm{z}=\frac{4000-3500}{0.5}=1000 \mathrm{~m}=1 \mathrm{~km}
$$

Air parcel rises 1 km above ground.

Engineering Academy
57. A simply supported prestressed concrete beam subjected to a load of $15 \mathrm{kN} / \mathrm{m}$ has a span of 8 m . A parabolic cable is provided with zero eccentricity at ends and ' h ' at mid span. A prestressing force 1000 kN introduced to cable at ends. The eccentricity at 2 m from support when load counteract by prestressing cable is (neglecting self weight) \qquad (in mm)
57. Ans: 90

Sol: Dip of cable at mid span, $\mathrm{h}=\frac{\mathrm{w} \ell^{2}}{8 \mathrm{P}}=\frac{15 \times 8^{2}}{8 \times 1000}$

$$
=0.12 \mathrm{~m}=120 \mathrm{~mm}
$$

Equation of parabola, $\quad y=\frac{4 h}{\mathrm{~L}^{2}} x(L-x)=\frac{4 \times 0.12}{8^{2}} \times 2 \times(8-2)$

$$
=0.09 \mathrm{~m}
$$

Alternatively
At $\frac{\mathrm{L}}{4}, B \cdot M=\frac{\mathrm{wL}}{2} \times \frac{\mathrm{L}}{4}-\frac{\mathrm{wL}}{4} \frac{\mathrm{~L}}{8}=\frac{3}{32} \mathrm{wL}^{2}$
$\mathrm{h}_{1}=\frac{\mathrm{M}}{\mathrm{P}}=\frac{3}{32} \frac{\mathrm{wL}^{2}}{\mathrm{P}}=\frac{3}{32} \times \frac{15 \times 8^{2}}{1000}=0.09 \mathrm{~m}$
58. 900 kg of bleaching powder containing 35% of chlorine is consumed per month to treat 15 MLD water to have a chlorine residual of $0.2 \mathrm{mg} / l$. The Cl_{2} demand of water is \qquad mg / l.
58. Ans: 0.5

Sol: Bleaching powder required $/$ month $=900 \mathrm{~kg}$
Bleaching powder required $/$ day $=\frac{900}{30}=30 \mathrm{~kg}$
Total bleaching powder required $=\mathrm{Q} \times$ dose of bleaching powder

$$
30=15 \times \text { dose of bleaching powder }
$$

Dose of bleaching powder $=\frac{30}{15}=2 \mathrm{mg} / \mathrm{l}$
Cl_{2} dose $=$ Bleaching powder dose $\times \% \mathrm{Cl}_{2}$ in bleaching powder

$$
=2 \times \frac{35}{100}=0.7 \mathrm{mg} / l
$$

Cl_{2} demand $=\mathrm{Cl}_{2}$ dose - Residual $\mathrm{Cl}_{2}=0.7-0.2=0.5 \mathrm{mg} / l$
59. A strata of Normally consolidated clay of thickness 3 m drained on one side only.

Coefficient of permeability, $\mathrm{k}=5 \times 10^{-8} \mathrm{~cm} / \mathrm{s}$
Coefficient of volume compressibility $\mathrm{m}_{\mathrm{v}}=125 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{kN}$
When an uniform surcharge of $250 \mathrm{kN} / \mathrm{m}^{2}$ was applied on top of ground level, the clay layer consolidated. A timer (with smallest unit hour) was started when soil is consolidated 20%.The reading on timer (round to nearest multiple of 50) when soil is 80% consolidated is
\qquad .
59. Ans: 3300

Sol: $\quad C_{v}=\frac{\mathrm{k}}{\gamma_{\mathrm{w}} \mathrm{m}_{\mathrm{v}}}=\frac{5 \times 10^{-8}}{9.81 \times 10^{-6} \times 125 \times 10^{-2}}=4.077 \times 10^{-3} \mathrm{~cm}^{2} / \mathrm{sec}$

$$
\mathrm{T}_{20}=\frac{\pi}{4}\left(\frac{\mathrm{U}}{100}\right)^{2}=\frac{\pi}{4}(0.2)^{2}=0.0314
$$

$$
\begin{aligned}
\mathrm{T}_{80} & =1.781-0.933 \log _{10}(100-\mathrm{U}) \\
& =1.781-0.933 \log _{10}(100-80) \\
& =0.567
\end{aligned}
$$

$\mathrm{d}=\mathrm{H}($ Single drainage $)=300 \mathrm{~cm}$
$\mathrm{t}_{20}($ time for 20% consolidation $)=\frac{\mathrm{d}^{2} \mathrm{~T}_{20}}{\mathrm{C}_{\mathrm{v}}}$

$$
=\frac{(300)^{2} \times 0.0314}{4.077 \times 10^{-3}} \mathrm{sec}=\frac{(300)^{2} \times 0.0314}{4.077 \times 10^{-3} \times 60 \times 60} \mathrm{hrs}
$$

$$
=192.54 \mathrm{hrs}
$$

$\mathrm{t}_{80}($ time for 80% consolidation $)=\frac{\mathrm{d}^{2} \mathrm{~T}_{80}}{\mathrm{C}_{\mathrm{v}}}=\frac{(300)^{2} \times 0.567}{4.077 \times 10^{-3} \times 60 \times 60} \mathrm{hrs}$

$$
=3476.82 \mathrm{hrs}
$$

Timer started after 20\% consolidation
Reading on timer on 80% consolidation

$$
\begin{aligned}
& =\mathrm{t}_{80}-\mathrm{t}_{20} \\
& =3476.82-192.54=3284.28 \mathrm{hrs}
\end{aligned}
$$

(Nearest multiple of 50 is 3300)
: 45 :
PRE-GATE_2019
60. For the earth retaining structure shown in figure, the total active thrust per unit length of wall is $501 \mathrm{kN} / \mathrm{m}$. The value of surcharge placed (in kPa , rounded to nearest integer) is \qquad

60. Ans: 14

Sol: $\gamma_{\mathrm{d}}=\frac{\mathrm{G} \gamma_{\mathrm{w}}}{1+\mathrm{e}}=15.76 \mathrm{kN} / \mathrm{m}^{3}$
$\gamma_{\text {sub }}=\frac{(\mathrm{G}-1) \gamma_{\mathrm{w}}}{1+\mathrm{e}}=9.81 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{K}_{\mathrm{a}}=\frac{1-\sin \phi}{1+\sin \phi}=\frac{1}{3}$
Total thrust $=501 \mathrm{kN} / \mathrm{m}$
Active pressure distribution

61. An activated sludge process treating waste water in an aeration tank of volume $10000 \mathrm{~m}^{3}$ is to have an MLSS of $3000 \mathrm{mg} / l$. If the sludge wasted at a rate of $300 \mathrm{~m}^{3} /$ day with a MLSS $10000 \mathrm{mg} / l$ then sludge age is \qquad days.
61. Ans: 10

Sol: Volume of an aeration tank, $V=10000 \mathrm{~m}^{3}$
MLSS, $\mathrm{X}=3000 \mathrm{mg} / l$
Waste sludge, $\mathrm{Q}_{\mathrm{w}}=300 \mathrm{~m}^{3} /$ day
MLSS in sludge, $\mathrm{X}_{\mathrm{u}}=10000 \mathrm{mg} / \mathrm{l}$
Sludge age, $\theta_{c}=\frac{V X}{Q_{w} X_{u}+\left(Q-Q_{w}\right) X_{e}}$
$\therefore \mathrm{X}_{\mathrm{e}}$ is not given $\therefore \mathrm{X}_{\mathrm{e}}=0$
Sludge age, $\frac{\mathrm{VX}}{\mathrm{Q}_{\mathrm{w}} \mathrm{X}_{\mathrm{u}}}=\frac{10000 \times 3000}{300 \times 10000}=10$ days
62. In an aerial photogrammetry, photographs are taken to cover an area of 600 sq . km, with format size of lens is $250 \times 250 \mathrm{~mm}$ and scale of the photograph is 1 in 10,000 . If the end lap and side laps are 60% and 30% respectively, the number of photographs required are \qquad . (Rounded to nearest integer)
62. Ans: 343

Sol: $\quad \mathrm{L}=\left(1-\mathrm{p}_{\ell}\right) \frac{\ell}{\mathrm{S}}=(1-0.6) \times\left[\frac{250 \times 10^{-3}}{\frac{1}{10,000}}\right] \times 10^{-3}=1 \mathrm{~km}$
$\mathrm{w}=\left(1-\mathrm{p}_{\mathrm{w}}\right) \frac{\mathrm{w}}{\mathrm{S}}=(1-0.3) \times\left[\frac{250 \times 10^{-3}}{\frac{1}{10,000}}\right] \times 10^{-3}=1.75 \mathrm{~km}$
$\mathrm{a}=\mathrm{L} \cdot \mathrm{W}=1 \times 1.75=1.75 \mathrm{~km}^{2}$
$\mathrm{N}=\frac{\mathrm{A}}{\mathrm{a}}=\frac{600}{1.75}=342.87 \simeq 343$
63. A cylindrical sample of soil having a cohesion of $80 \mathrm{kN} / \mathrm{m}^{2}$ is subjected to a cell pressure of 100 $\mathrm{kN} / \mathrm{m}^{2}$.

If deviatoric stress at failure was found to be $333 \mathrm{kN} / \mathrm{m}^{2}$, the angle made by failure plane with axis of the sample is \qquad (Rounded to nearest integer) considering soil sample as $\mathrm{C}-\phi$ soil .
63. Ans: 35°

Sol: $\quad \sigma_{3}=\sigma_{\mathrm{c}}=100 \mathrm{kN} / \mathrm{m}^{2}$
$\sigma_{1}-\sigma_{3}=333 \mathrm{kN} / \mathrm{m}^{2}$
$\sigma_{1}=433 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{C}=80 \mathrm{kN} / \mathrm{m}^{2}$
$\sigma_{1}=\sigma_{3} \mathrm{~N}_{\phi}+2 \mathrm{C} \sqrt{\mathrm{N}_{\phi}}$
$\mathrm{N}_{\phi}=\tan ^{2}\left(45+\frac{\phi}{2}\right)$

$$
=\tan ^{2} \alpha
$$

$433=100 \tan ^{2} \alpha+160 \tan \alpha$

Solving quadratic equation,
$\tan \alpha=1.43$

$$
\alpha=55^{\circ} \text { (with major principal plane which is horizontal in the present case) }
$$

$\theta=180^{\circ}-55^{\circ}-90^{\circ}$

$$
=35^{\circ}
$$

θ is angle with axis of sample, α is with major principal plane.
64. A pipe of 60 mm diameter is connected to the nozzle of 30 mm exit diameter which discharges water into atmosphere as shown in the figure. If the open ended mercury manometer shows deflection of 60 mm , the jet exit velocity (rounded to first decimal place) is \qquad m / s. (Assume $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, neglect all losses)

64. Ans: 4

Sol: Applying Bernoulli's equation between inlet (1) and exit of nozzle,

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=\frac{p_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{P}_{\text {atm }}}{2 \mathrm{~g}}+\mathrm{Z}_{2} \\
& \frac{\mathrm{P}_{1}-\mathrm{P}_{\text {atm }}}{\rho \mathrm{g}}=\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}\left(1-\frac{\mathrm{V}_{1}^{2}}{\mathrm{~V}_{2}^{2}}\right) \\
& \mathrm{h}\left(\frac{\mathrm{~S}_{\mathrm{m}}}{\mathrm{~S}}-1\right)=\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}\left(1-\left(\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}\right)^{4}\right) \\
& 0.060 \times\left(\frac{13.6}{1}-1\right)=\frac{\mathrm{V}_{2}^{2}}{2 \times 10}\left(1-0.5^{4}\right) \\
& \mathrm{V}_{2}=4.02 \mathrm{~m} / \mathrm{s} \\
& \quad=4.0 \mathrm{~m} / \mathrm{s} \text { (rounded to first decimal) }
\end{aligned}
$$

Now

@

AHMEDABAD

囚 9160499966

Q Shop.no 231, 2nd Floor, Sunrise mall,
Near Mansi Circle, Vasthrapur
Gujarat-380015.

ACE
Engineering Academy
PRE-GATE_2019
65. A steel beam of cross section $100 \mathrm{~mm} \times 200 \mathrm{~mm}$ is subjected to a differential temperature condition as shown in figure. The flexural stress developed on the bottom fibre of the beam (in MPa) is given by \qquad

65. Ans: 20

Sol: The temperature of axis $=\frac{30+50}{2}=40^{\circ} \mathrm{C}$
The difference of temperature of bottom fibre from axis of beam, $\Delta \mathrm{T}=50-40=10^{\circ} \mathrm{C}$.
The expansion of bottom fibre is completely prevented by the hinges.
\therefore Stress developed at the bottom fibre

$$
\begin{aligned}
\sigma_{\mathrm{t}} & =\alpha(\Delta \mathrm{T})(\mathrm{E}) \\
& =\left(10 \times 10^{-6}\right)(10)\left(200 \times 10^{3}\right) \\
& =20 \mathrm{MPa}(\text { compressive })
\end{aligned}
$$

[^0]: ACE Engineering Academy
 Hyderabad \mid Delhi \mid Bhopal \mid Pune \mid Bhubaneswar \mid Lucknow \mid Patna \mid Bengaluru \mid Chennai \mid Vijayawada \mid Vizag \mid Tirupati \mid Kukatpally \mid Kolkata \mid Ahmedabad

