COPYRIGHT RESERVED

Code: 011722

B. Tech 7th Semester Examination, 2016

Foundation Engineering

Time: 3 hours

Full Marks: 70

Instructions:

- (i) There are Nine Questions in this Paper.
- (ii) Attempt Five questions in all.
- (iii) Question No. 1 is Compulsory.
- (iv) The marks are indicated in the right-hand margin.
- 1. Answer any seven question from the following: $2 \times 7 = 14$
 - (a) The main advantage of percussion drilling is:
 - (i) It can be used in all types of soil/rock.
 - (ii) There is minimum disturbance to the soil
 - (iii) It is economical for bore holes of diameter less than 100 mm.
 - (iv) All of these
 - (b) The area ratio of a good soil sampler should be less than:
 - (i) 20% for stiff soils, 10% for soft clays
 - (ii) 10% for stiff soils, 20% for soft clays
 - (iii) 10% for both stiff soils and soft clays
 - (iv) 20% for both stiff soils and soft clays

1.T.O:

- (c) In a standard penetration test (SPT). 54 blows were required to drive 15 cm beyond seating drive, the N value of she soil is:
 - (i) 25
 - (ii) 27
 - (iii) 54
 - (iv) Refusal
- (d) The increasing order of magnitude of swelling in expensive soils due to various clay minerals:
 - (i) Kaolinite < Halloysite < illite < Ca montmorillonite < Na montmorillonite
 - (ii) Kaolinite < Halloysite < illite < Na montmorillonite < montmorillonite
 - (iii) Halloysite < Kaolinite < illite < Na montmorillonite < Ca montmorillonite
 - (iv) Kaolinite < illite < Halloysite < Ca montmorillonite < Na montmorillonite.
- (e) In a free-swell test, the soil occupied a volume of 20 cm³ in distilled water and 12 cm³ in kerosene. The free-swell index of the soil sample is:
 - i) 1.2%
 - (ii) 60%
 - (iii) 66.7%

Code: 011722

2

- (iv) 166.7%
- (f) When representing the vibrations of the machine foundation by simple harmonic motion, the displacements are proportional to
 - (i) wt
 - (ii) cos wt
 - (iii) sin wt
 - (iv) tan wt
- (g) The two criteria for the the determination of allowable bearing capacity of a foundation are:
 - (i) Tensile failure and compression failure
 - (ii) Bond failure and shear failure
 - (iii) Tensile failure and settlement
 - (iv) Shear failure and settlement
- (h) The width and depth of footing are 2.0 and 1.0 m respectively. The water table at the site is at a depth of 3 m below the ground level. The water table correction factor for the calculation of the bearing capacity of soil is:
 - (i) 1.000
 - (ii) 0.875
 - (iii) 0.750
 - (iv) 0.500

Code: 011722

3

P.T.O.

- (i) In dynamic cone penetration test, the weight of hammer used for driving the cone is:
 - (i) 63.5 kgf
 - (ii) 65.0 kgf
 - (iii) 68.5 kgf
 - (iv) 75.0 kgf
- (j) The minimum grade of concrete for well crub in a well foundation is:
 - (i) M15
 - (ii) M20
 - (iii) M25
 - (iv) M30
- 2. (a) What are the steps involved in the planning and execution of soil exploration? Discuss in detail.
 - Indicate different types of samplers. Describe the split spoon sampler with the help of a neat sketch.

7 + 7

3. (a) Discuss the effect of water table, size and depth of foundation on bearing capacity. Also differentiate between Terzaghi's and Mayerhof's bearing capacity theories.

Code: 011722

4

- (b) A square footing has to carry a load of 1000 kN. Find the size of the footing for a factor of safety of 2.50. The depth of the foundation is 1.5 m the soil has the following properties: G=2.60, s=0.50. φ=30° and C=10 kN/m². What will be the safe bearing capacity and size of footing if the water table rises to ground level. For φ=30°, N=30.0, N=18.4, N=22.4.
- (a) Explain the method of determination of the natural frequency of machine foundation-soil system.
 - (b) A machine weighing 2.0 kN undergoes a damped vibration due to a periodic force of magnitude 100 N. The machine is uniformly supported by 4 springs, each having a stiffness of 12 kN/m. The damping coefficient of the system is estimated as 800 N-s/m. determine the resonant frequency and resonant amplitude of the system.
- 5 (a) What is an expansive soil? Briefly describe the major problems caused by them.
 - (b) Sketch and list out the component of well foundation and discuss their functions.
- 6. (a) Discuss the detail the classification of pile foundations.

Code: 011722

P.T.O

- A group of 12 short piles, each having a diameter of 500 mm and an embedded length of 8 m, supports the platform. The piles are arranged in 3 identical rows and are spaced at 1.75 m from each other. The subsoil has the following properties:
 - $\gamma_{\rm sat} = 21.0 \, \rm N/m^3$, $\Phi = 0^{\circ}$, $C = 37.5 \, \rm kPa$ and $\alpha = 0.72$ Determine the safe axial load carrying capacity of the pile group.
- 7. (a) Explain with a neat sketch how dynamic cone penetration test is carried out in the field.
 - (b) The following data was obtained from a plate load test carried out on a 60 cm square test plate at a depth of 2.0 m below ground surface on a sandy soil which extends up to a large depth. Determine the settlement of a foundation 3.0 m × 3.0 m carrying a load of 110 t and located at depth of 3 m below ground surface.

Load test data:

Load intensity, t/m ² _	5	10	15	20	25.	30	35	40
Settlement, mm	2.0	4.0	7.5	11.0	16.3	23.5	34.0	45.0

Water table is located at a large depth from the ground surface.

Code: 011722

6

- What is a coffer dam? What are the different types of offer dam? What are their relative merits and demerits?
- 9. (a) State the modified Hiley's formula for axial load carrying capacity of a pile. Explain all the notations used there in.
 - (b) The field N value in a deposit of fully submerged fine sand was 40 at depth of 6 m. The average saturated unit weight of the soil is 19 kN/m³. Calculate the corrected N value as per IS 2131-1981.
