
Chapter 1

Measurable Sets

1.1 Introduction

This chapter begins the development of Lebesgue integration, which constitutes Part
I of the text. The theory may be seen as arising from the need to overcome some of the
shortcomings of the Riemann integral, which is restrictive in both the kind of function that
may be integrated and the space over which the integration takes place. These shortcomings
make the Riemann integral unsuitable for certain applications, for example those involving
random parameters. A further complication with the Riemann theory concerns the integration
of a pointwise limit of a sequence of Riemann integrable functions, such limits sometimes
failing to be Riemann integrable. The removal of these limitations may be seen as a reason
for the wide applicability of the Lebesgue theory.

Nevertheless, the Riemann integral still occupies an important position in analysis. Indeed,
as we shall see, the set of Lebesgue integrable functions on [a, b] is the completion in a precise
sense of the set of Riemann integrable functions, much as the real number system is the
completion of the rational number system.

It is illuminating to compare the construction of the two integrals in terms of how the
domain [a, b] of an integrand f is partitioned. In the case of the Riemann integral, [a, b] is
partitioned into subintervals [xi−1, xi] and a point x∗i is chosen in each. A suitable limit of
the corresponding Riemann sums

∑
i f(x∗i )∆xi then produces the Riemann integral of f .

By contrast, in the Lebesgue theory it is the range of the function that is partitioned into
subintervals, these inducing, via preimages under f , a partition of [a, b]. This partition will in
general not consist of intervals. However, the Lebesgue theory provides a way of “measuring”
the members of the partition. The Lebesgue integral is then constructed by multiplying
these measured values by (approximate) function values, summing, and taking limits.

The preceding discussion suggests (correctly) that a fundamental feature of the Lebesgue
theory is the notion of “measure” of a set. Such measures are constructed by starting with
a collection A of elementary sets, such as intervals in R or rectangles in R2, and a set
function that assigns a natural “size” to each member of A, for example length in the case
of intervals and area in the case of rectangles. The collection A is then enlarged to a richer
class of sets that can still be “measured,” the so-called σ-field of measurable sets. Unlike A,
this collection is closed under standard set-theoretic operations, including countable unions
and intersections, a feature eventually resulting in limit theorems of a sort unavailable in
Riemann integration, these theorems underlying much of modern analysis. The first step
then in the construction of the Lebesgue integral is to develop the notion of measurable set
and measure, which is the goal of this chapter.
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1.2 Measurable Spaces

For a robust theory of integration that admits the standard combinatorial and limit
operations, one requires that the collections of measurable sets on which the integration is
based be closed under the usual set-theoretic operations. In this section we discuss the most
common of such collections.

Fields and Sigma Fields

Let X be a nonempty set. A field on X is a family F of subsets of X satisfying (a)–(c)
of the following. If F also satisfies (d), then F is called a σ-field:

(a) X ∈ F. (b) A ∈ F⇒ Ac ∈ F.

(c) A, B ∈ F⇒ A ∪B ∈ F. (d) A1, A2, · · · ∈ F⇒
⋃∞

n=1
An ∈ F.

Note that (a) and (b) imply that ∅ ∈ F. An induction argument using (c) shows that a field
F is closed under finite unions, that is,

A1, . . . , An ∈ F⇒ A1 ∪ · · · ∪An ∈ F.

Of course, every field with only finitely many members is a σ-field, since in this case countable
unions reduce to finite unions. De Morgan’s law

A1 ∩A2 ∩ · · · ∩An =
(
Ac1 ∪Ac2 ∪ · · · ∪Acn

)c

together with (b) shows that a field is closed under finite intersections and thus, for example,
under the operation of symmetric difference defined by

A4B := (A ∪B) \ (A ∩B) = (A \B) ∪ (B \A).

Furthermore, every finite union of members of a field may be expressed as a disjoint union
of members of the field via the construction

n⋃

k=1

Ak = A1 ∪ (A2 ∩Ac1) ∪ · · · ∪ (An ∩Ac1 ∩ · · · ∩Acn−1). (1.1)

Similar remarks apply to σ-fields: Part (d) of the above definition asserts that a σ-field is
closed under countable unions, and an application of De Morgan’s law shows that a σ-field
is closed under countable intersections as well. As a consequence, a σ-field F is closed under
the operations of limit infimum and limit supremum defined, respectively, by

lim
n
An :=

∞⋃

n=1

∞⋂

k=n

Ak and lim
n
An :=

∞⋂

n=1

∞⋃

k=n

Ak.

Moreover, every countable union of members of F may be expressed as a countable disjoint
union of members of F in the manner of (1.1):

∞⋃

n=1

An = A1 ∪ (A2 ∩Ac1) ∪ · · · ∪ (An ∩Ac1 ∩ · · · ∩Acn−1) ∪ · · · . (1.2)

Members of a σ-field F on X are called F-measurable sets. The qualifier F is usually
dropped if the σ-field is understood and there is no possibility of confusion. The pair (X,F)
is called a measurable space. A finite or countably infinite sequence of disjoint measurable
sets with union A is called a measurable partition of A.
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1.2.1 Examples.

(a) The power set P(X) is obviously a σ-field, as is the collection {∅, X}. A field clearly
cannot have exactly three members. All fields with exactly four members are of the form
{∅, X,A,Ac}.
(b) A subset A of X is said to be cofinite if Ac is finite. The collection F of all sets that
are either finite or cofinite is a field. If X is infinite, then F is not a σ-field (Ex. 1.9).

(c) A subset A of X is said to be cocountable if Ac is countable. The collection F of all
sets that are either countable or cocountable is a σ-field. For example, to see that F is closed
under countable unions A =

⋃∞
n=1An, note that if each An is countable, then A is countable

and if some An is cocountable then A is cocountable. In either case, A ∈ F.

(d) If F is a field (σ-field) on X, then the trace

F ∩ E = {A ∩ E : A ∈ F}
is a field (σ-field) on E. For example, if A, B ∈ F, then the relations

(A ∪B) ∩ E = (A ∩ E) ∪ (B ∩ E) and (A \B) ∩ E = (A ∩ E) \ (B ∩ E)

show that A∪B, A \B ∈ F. Note that F∩E ⊆ F iff E ∈ F, in which case F∩E is simply
the collection of all sets A ∈ F with A ⊆ E. ♦

Generated Sigma Fields

The intersection of a nonempty family of σ-fields on a nonempty set X is easily seen to
be a σ-field. In particular, if A is an arbitrary nonempty collection of subsets of X, then the
intersection σ(A) of all σ-fields on X containing A is a σ-field, called σ-field generated
by A. Note that there is at least one σ-field containing A, namely, P(X), hence σ(A) is
well-defined. Generated σ-fields have the important minimality property:

F a σ-field and A ⊆ F⇒ σ(A) ⊆ F.

The field generated by A, denoted by ϕ(A), is defined in a similar manner and enjoys
the analogous minimality property.

1.2.2 Example. Let A = {A1, A2, . . .} be a countable partition of X. Then σ(A) consists
of all unions

⋃
n∈S An, where S ⊆ N. (If S = ∅, then the union is defined to be ∅.)

To see this, note first that the collection F of all such unions is a σ-field. Indeed, F is
obviously closed under countable unions, and by disjointness

(⋃
n∈S

An

)c
=
⋃

n∈Sc
An,

hence F is closed under complements as well. Since A ⊆ F ⊆ σ(A), the minimality property
implies that σ(A) = F. The analogous assertions hold for finite partitions of X. ♦

Borel Sets

Let X be a topological space. The σ-field generated by the collection of all open subsets
of X is called the Borel σ-field on X and is denoted by B(X). A member of B(X) is
called a Borel set. The minimality property of B(X) takes the following form:

If a σ-field F contains all open sets, then it contains all Borel sets.

Borel σ-fields provide a bridge between topology and measure theory, allowing, for example,
the entry of continuous functions into integration theory.

Since closed sets are complements of open sets, B(X) is also generated by the collection
of closed sets. For Euclidean space Rd, more can be said:
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1.2.3 Proposition. The σ-field B(Rd) is generated by the collection

(a) OI of all bounded, open d-dimensional intervals (a1, b1)× · · · × (ad, bd).

(b) CI of all bounded, closed d-dimensional intervals [a1, b1]× · · · × [ad, bd].

(c) HI of all bounded, left-open d-dimensional intervals (a1, b1]× · · · × (ad, bd].

Proof. For ease of notation we prove the proposition for d = 1; the proof for the general
case is entirely similar.

(a) Let O denote the collection of all open sets in R. Since OI ⊆ O, by minimality we have
σ(OI) ⊆ σ(O) = B(R). On the other hand, every member of O is a countable union of sets
in OI , hence O ⊆ σ(OI) and so B(R) ⊆ σ(OI).

(b) Let C denote the collection of all closed sets in R. As in part (a), σ(CI) ⊆ σ(C) = B(R).
Moreover, every bounded open interval (a, b) may be expressed as

⋃
n[a + 1/n, b − 1/n],

hence OI ⊆ σ(CI). By part (a) and minimality, B(R) = σ(OI) ⊆ σ(CI).

(c) From the representations (a, b) =
⋃
n(a, b− 1/n] and (c, d] =

⋂
n(c, d+ 1/n), we see

that OI ⊆ σ(HI) and HI ⊆ σ(OI). By minimality, σ(OI) ⊆ σ(HI) and σ(HI) ⊆ σ(OI).
An application of (a) completes the argument.

The collection HI will figure prominently in the development of the Lebesgue integral on
Euclidean space Rd.

Extended Borel Sets

To deal with functions that take values in R, we need to augment B(R) with the sets

B ∪ {−∞}, B ∪ {∞}, B ∪ {−∞,∞}, B ∈ B(R).

The collection of all such sets, together with the Borel subsets of Rd, is called the extended
Borel σ-field and is denoted by B(R). One easily checks that B(R) is indeed a σ-field with
trace B(R) on R. It may be shown that R has a natural topology whose open sets generate
B(R) (Exercise 2.30).

Product Sigma Fields

Let X1, . . . , Xd be nonempty sets and set X := X1 × · · · ×Xd. For arbitrary nonempty
collections Aj ⊆ P(Xj) define

A1 × · · · ×Ad = {A1 × · · · ×Ad : Aj ∈ Aj , j = 1, . . . , d}.

If Fj is a σ-field on Xj , then the σ-field on X generated by F1 × · · · × Fd is called the
product σ-field and is denoted by F1 ⊗ · · · ⊗Fd. Thus

F1 ⊗ · · · ⊗Fd := σ(F1 × · · · ×Fd).

Members of F1 × · · · ×Fd are called measurable rectangles.

1.2.4 Theorem. If Aj ⊆ P(Xj), then

σ(A1)⊗ · · · ⊗ σ(Ad) = σ(A1 × · · · ×Ad). (1.3)

Proof. The inclusion ⊇ follows from σ(A1)⊗ · · · ⊗ σ(Ad) ⊇ A1 × · · · ×Ad and minimality.
For the reverse inclusion, let Aj ∈ Aj , j = 2, . . . , d. Then

σ(A1)× {A2} × · · · × {Ad} ⊆ σ (A1 × · · · ×Ad) . (†)
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Indeed, the collection F1 of all B1 ∈ σ(A1) for which B1×A2×· · ·×Ad ∈ σ (A1 × · · · ×Ad)
is easily seen to be a σ-field containing A1 and so by minimality F1 = σ(A1).

Next, let B1 ∈ σ(A1) and Aj ∈ Aj , j = 3, . . . , d. By (†)

{B1} ×A2 × {A3} × · · · × {Ad} ⊆ σ(A1 × · · · ×Ad).

Arguing as before, this time on the second coordinate, we see that

{B1} × σ(A2)× {A3} · · · × {Ad} ⊆ σ(A1 × · · · ×Ad).

We have now shown that

σ(A1)× σ(A2)×A3 · · · ×Ad ⊆ σ(A1 × · · · ×Ad).

Continuing in this manner we eventually obtain the inclusion ⊆ in (1.3).

1.2.5 Corollary. Let d = d1 + · · ·+ dk, where dj ∈ N. Then

B(Rd) = B(Rd1)⊗ · · · ⊗B(Rdk). (1.4)

In particular,
B(Rd) = B(R)⊗ · · · ⊗B(R) (d factors).

Proof. By definition, B(Rdj ) = σ(Oj) and B(Rd) = σ(O), where Oj is the collection of all
open subsets of Rdj and O is the collection of all open subsets of Rd. By the theorem,

σ(O1 × · · · ×Ok) = σ(O1)× · · · × σ(Ok) = B(Rd1)⊗ · · · ⊗B(Rdk).

It therefore suffices to show that

O1 × · · · ×Ok ⊆ O ⊆ B(Rd1)⊗ · · · ⊗B(Rdk); (†)

the desired equality (1.4) will then follow by minimality. The first inclusion in (†) follows
from the definition of the product topology of Rd1 × · · · × Rdk (the latter identified with
Rd). For the second inclusion, recall that each U ∈ O is a countable union of open intervals
I = (a1, b1) × · · · × (ad, bd). Since each such interval may be written as Id1 × · · · × Idk ,
where Idj is a dj-dimensional open interval, U ∈ B(Rd1)⊗ · · · ⊗B(Rdk). Therefore, (†) holds,
completing the proof.

Pi-Systems and Lambda-Systems

A collection P of subsets a set X is called a π-system if it is closed under finite
intersections. Clearly, every field is a π-system, as is the collection of all open (or closed)
intervals of R.

A collection L of subsets a set X is called λ-system if it has the following properties:

(a) X ∈ L.

(b) A, B ∈ L and A ⊆ B ⇒ B \A ∈ L.

(c) An ∈ L and An ↑ A⇒ A ∈ L.

(1.5)

Note that (a) and (b) imply that a λ-system is closed under complements and contains
the empty set. The importance of λ-systems is that they provide an indirect method for
establishing various properties of certain collections of sets. (See, for example, 1.6.8.) The
method is based on Dynkin’s π-λ theorem, which makes a connection between π-systems,
λ-systems, and σ-fields.
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1.2.6 Theorem (Dynkin). Let L be a λ-system and P ⊆ L a π-system. Then σ(P) ⊆ L.

Proof. Let `(P) denote the intersection of all λ-systems containing P. Then `(P) is a λ-
system, as is easily verified, and `(P) ⊆ σ(P). If we show that `(P) is a σ-field, it will then
follow by minimality that σ(P) = `(P) ⊆ L, establishing the theorem.

To show that `(P) is closed under finite intersections, let A ∈ `(P) and define

LA := {B ∈ `(P) : A ∩B ∈ `(P)}.

One easily checks that LA is a λ-system. Furthermore, if A ∈ P, then P ⊆ LA, so by
minimality `(P) ⊆ LA. Thus A ∩B ∈ `(P) for all A ∈ P and B ∈ `(P). Fixing such a B we
have P ⊆ LB , hence by minimality `(P) ⊆ LB . Thus A, B ∈ `(P)⇒ A ∩B ∈ `(P).

Now let (En) be a sequence in `(P). By the preceding result and induction,

An :=
n⋃

k=1

Ek =

( n⋂

k=1

Eck

)c
∈ `(P).

By (c) of (1.5),
⋃∞
k=1Ek =

⋃∞
n=1An ∈ `(P). Therefore, `(P) is a σ-field, completing the

proof.

Exercises

1.1 Let A, B, C, An, Bn ⊆ X. Verify the following:

(a) 1A∆B = |1A − 1B |.
(b)

(
A4B

)c
= Ac4B = A4Bc.

(c) Ac4Bc = A4B.

(d)
(
A4B

)
∩ C = (A ∩ C)4 (B ∩ C).

(e)

( ∞⋃
n=1

An

)
4
( ∞⋃
n=1

Bn

)
⊆
∞⋃
n=1

An4Bn.

1.2 Let An, Bn ⊆ X. Verify the following:

(a) x ∈ limnAn iff x ∈ An for all sufficiently large n.

(b) x ∈ limnAn iff x ∈ An for infinitely many n.

(c) limnAn ⊆ limnAn.

(d)
(

limnAn
)c

= limnA
c
n.

(e)
(

limnAn
)c

= limnA
c
n.

(f) limn(An ∩Bn) ⊆ limnAn ∩ limnBn.

(g) limn(An ∪Bn) = limnAn ∪ limnBn.

(h) limn(An ∩Bn) = limnAn ∩ limnBn.

(i) limn(An ∪Bn) ⊇ limnAn ∪ limnBn.

Show that the inclusions in (c), (f), and (i) may be strict.

1.3 For An ⊆ X, write An → A if limnAn = limnAn = A. Let An → A and Bn → B. Show that

(a) An ∪Bn → A ∪B. (b) An ∩Bn → A ∩B. (c) Acn → Ac. (d) An4Bn → A4B.

1.4 Let An, A ⊆ X and set B = limnAn and C = limnAn. Prove that

(a) 1B = limn 1An . (b) 1C = limn 1An (c) An → A iff 1An → 1A.
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1.5 Let {an} be a sequence in R and set An = (−∞, an) and Bn = (an,∞). Prove:

(a) x ∈ limnAn ⇒ x ≤ limn an. (b) x < limn an ⇒ x ∈ limnAn.

(c) x ∈ limnAn ⇒ x ≤ limn an. (d) x < limn an ⇒ x ∈ limnAn.

(e) x ∈ limnBn ⇒ limn an ≤ x.

1.6 Determine all sets in the field on X = {1, 2, 3, 4, 5, 6} generated by the sets

(a) {1, 2}, {2, 3}, {3, 4}, {4, 5}. (b) {1, 2, 3}, {2, 3, 4}, {3, 4, 5}.
(c) {1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6}.

1.7 Let F be a σ-field on X and E ⊆ X. Show that σ
(
F ∪ {E}

)
consists of all sets of the form

(A ∩ E) ∪ (B ∩ Ec), A, B ∈ F.

1.8 Let F ⊆ P(X) such that X ∈ F and A \B ∈ F whenever A, B ∈ F. Show that F is a field.

1.9 Show that if X is infinite, then the field consisting of all finite or cofinite sets is not a σ-field.

1.10 Let F1, F2, . . . be a sequence of σ-fields on X such that F1 ⊆ F2 ⊆ · · · . Show that F :=
⋃∞
n=1 Fn

is a field. Show by example that F need not be a σ-field.

1.11 Find examples of fields F and G on X = {1, 2, 3} such that F ∪ G is not a field.

1.12 Describe the σ-field F on (0, 1) generated by all singletons {x}, x ∈ (0, 1). Show that F is
contained in B(0, 1) and contains no proper open subinterval of (0, 1).

1.13 Let F be the collection of all finite disjoint unions of intervals [a, b) ⊆ [0, 1). Show that F is a
field on [0, 1) but not a σ-field.

1.14 Let A ⊆ P(X). Show that σ
(
ϕ(A)

)
= σ(A).

1.15 Let Ff denote the field consisting of the subsets of X that are either finite or cofinite. Show
that σ(Ff ) is the σ-field Fc consisting of the countable or cocountable subsets of X.

1.16 Show that B(Rd) is generated by the collection

(a) K of all compact sets. (b) Ir of all intervals (a1,∞)× · · · × (ad,∞), aj ∈ Q.

1.17 Let F be a field. Prove that the following are equivalent:

(a) F is a σ-field.

(b)
⋃∞
n=1 An ∈ F for every sequence of disjoint sets An ∈ F.

(c)
⋃∞
n=1 Bn ∈ F for every increasing sequence of sets Bn ∈ F.

1.18 Let A ⊆ P(X) and E ⊆ X. Prove that σ(A ∩ E) = σ(A) ∩ E.

1.19 Let X be a topological space and let E ⊆ X have the relative topology. Prove that B(X)∩E =
B(E).

1.20 [↓ 2.30] Let a, b ∈ R and let [a, b] and (a, b) have the relative topology from R. Show that
B([a, b]) consists of the sets B, B ∪ {a}, B ∪ {b}, and B ∪ {a, b} where B ∈ B

(
(a, b)

)
.

1.21 For j = 1, . . . , d, let Aj ⊆ P(Xj) and Ej ∈ P(Xj). Set E := E1 × · · · × Ed. Show that
σ(A1 ∩ E1)⊗ · · · ⊗ σ(Ad ∩ Ed) = σ(A1 × · · · ×Ad) ∩ E.

1.22 Let B ∈ B(Rd), x ∈ Rd, and r ∈ R. Prove that B+x := {b+x : b ∈ B} and rB := {rb : b ∈ B}
are Borel sets.

1.23 Let A ⊆ P(X) and let F be the union of all σ-fields σ(C), where C is a countable subfamily of
A. Prove that F = σ(A).



50 Principles of Analysis

1.24 Let F = {B1, . . . , Bm} be a finite field on X. Show that there exists a finite partition A of X
by sets in F such that every member of F is a union of members of A. JConsider C1 ∩ · · · ∩Cm,
where Cj = Bj or Bcj . K

1.25 Show that every infinite σ-field F has an infinite sequence of disjoint nonempty sets. Conclude
that F has cardinality at least that of the continuum. Conclude that no σ-field can have
cardinality ℵ0. Find a field that has cardinality ℵ0.

1.26 A nonempty collection M of subsets of X is a monotone class if for any sequence {An} in
M, An ↑ A or An ↓ A⇒ A ∈M. Carry out steps (a)–(f) below to prove the monotone class
theorem, due to Halmos: If F is a field, M is a monotone class, and F ⊆M, then σ(F) ⊆M.

(a) Show that a monotone class that is closed under finite unions (intersections) is closed under
countable unions (intersections).

(b) Let m(F) denote the intersection of all monotone classes containing F. Show that m(F) is a
monotone class.

(c) Show that A := {A ∈ m(F) : Ac ∈ m(F)} is monotone and m(F) = A. Conclude that m(F)
is closed under complements.

(d) Let B = {B ∈ m(F) : A ∪B ∈ m(F) for all A ∈ F}. Show that B is a monotone class and
B = m(F). Conclude that A ∪B ∈ m(F) for all B ∈ m(F) and all A ∈ F.

(e) Let C = {C ∈ m(F) : C ∪ B ∈ m(F) for all B ∈ m(F)}. Show that C is monotone and
C = m(F). Conclude that m(F) is closed under finite unions.

(f) Show that m(F) is closed under countable unions. Conclude that σ(F) ⊆ m(F) ⊆M.

1.3 Measures

Set Functions

Let X be a nonempty set. A collection of subsets of X containing the empty set is
called a paving of X. A function µ on a paving A of X that takes values in R is called a
set function on A. Until Chapter 5, we consider only nonnegative set functions, that
is, those taking values in [0,∞]. An important example is the function that assigns the
length b− a to intervals [a, b]. This set function and its d-dimensional generalization will be
examined in detail in §1.7.

Let µ be a nonnegative set function on a paving A and let A1, A2, . . . ∈ A. Then µ is
said to be

• monotone if A1 ⊆ A2 implies µ(A1) ≤ µ(A2).

• finitely additive if A :=
⋃n
k=1Ak disjoint and A ∈ A implies µ(A) =

∑n
k=1 µ(Ak).

• finitely subadditive if A :=
⋃n
k=1Ak ∈ A implies µ(A) ≤∑n

k=1 µ(Ak).

• countably additive if A :=
⋃∞
n=1An disjoint and A ∈ A implies µ(A) =

∑∞
n=1 µ(An).

• countably subadditive if A :=
⋃∞
n=1An ∈ A implies µ(A) ≤∑∞n=1 µ(An).

• finite if µ(A) <∞ for every A ∈ A.

• σ-finite if there exist pairwise disjoint X1, X2, . . . ∈ A with union X and µ(Xn) <∞.

• a measure on A if µ is countably additive and µ(∅) = 0.
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If µ is a measure on a σ-field F, then the triple (X,F, µ) is called a measure space. A
member E of F that is a countable union of sets of finite measure is called a σ-finite set. If
µ(X) = 1, then µ is said to be a probability measure. Note that a measure on a field is
finitely additive: simply apply countable additivity to the sequence A1, . . . , An, ∅, ∅, . . . .
Notation. In the sequel, if µ is a set function defined on intervals we write µ(a, b) for
µ((a, b)), µ[a, b] for µ([a, b]), etc. No confusion should arise from these abbreviations, as
context will make clear the intended meaning.

Properties and Examples of Measures

1.3.1 Proposition. A measure µ on a σ-field F is monotone and countably subadditive.
Moreover, for An ∈ F the following hold:

(a) (Continuity at A from below). An ↑ A implies µ(An) ↑ µ(A).

(b) (Continuity at A from above). An ↓ A and µ(A1) <∞ implies µ(An) ↓ µ(A).

Proof. If A1 ⊆ A2 then µ(A2) = µ(A2 \ A1) + µ(A1) ≥ µ(A1), hence µ is monotone. For
subadditivity use (1.2), countable additivity, and monotonicity:

µ

( ∞⋃

k=1

Ak

)
= µ(A1) + µ(A2 ∩Ac1) + µ(A3 ∩Ac1 ∩Ac2) + · · · ≤

∞∑

k=1

µ(Ak).

Part (a) is clear if some Ak has infinite measure, so assume µ(Ak) < ∞ for all k. Set
A0 = ∅ and Ek = Ak \Ak−1. Then A is the disjoint union

⋃∞
k=1Ek, hence

µ(A) =

∞∑

k=1

µ(Ek) = lim
n

n∑

k=1

[
µ(Ak)− µ(Ak−1)

]
= lim

n
µ(An).

For (b), note that A1 \An ↑ A1 \A, hence, by (a),

µ(A1)− µ(A) = µ(A1 \A) = lim
n
µ(A1 \An) = µ(A1)− lim

n
µ(An).

The preceding proposition has a converse:

1.3.2 Proposition. Let µ be a finitely additive, nonnegative set function on a field F.

(a) If µ is continuous from below, then µ is a measure.

(b) If µ(X) <∞ and µ is continuous at ∅ from above, then µ is a measure.

Proof. For (a), let {An} be a sequence of disjoint sets in F with union A ∈ F and set
Bn :=

⋃n
k=1Ak. Then Bn ∈ F and Bn ↑ A. By finite additivity and continuity from below,

∞∑

k=1

µ(Ak) = lim
n

n∑

k=1

µ(Ak) = lim
n
µ(Bn) = µ(A).

The proof of (b) is left as an exercise (1.39).

1.3.3 Examples.

(a) Set µ(∅) = 0 and µ(A) =∞ if A 6= ∅. Then µ is a measure on P(X).

(b) Let X be an infinite set and define µ(A) = 0 if A is countable and µ(A) =∞ otherwise.
Then µ is a measure on P(X).
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(c) Let X be uncountable and F the σ-field of countable or cocountable subsets of X (see
1.2.1(c)). Define µ(A) = 0 if A is countable and µ(A) = 1 if A is cocountable. Then µ is a
probability measure on F.

(d) Dirac measure. Let (X,F) be a measurable space. For x ∈ X and A ∈ F define
δx(A) = 1A(x). Then δx is a probability measure on F.

(e) If µj are measures on a σ-field F and aj ≥ 0, then
∑n
j=1 ajµj is a measure on F. In

particular, a nonnegative linear combination of Dirac measures is a measure.

(f) If (X,F, µ) is a measure space and E ∈ F, then µE(A) := µ(A ∩ E) defines a measure
on F. Note that µE agrees with µ on the trace F ∩ E.

(g) Counting measure. Let X be a nonempty set. For A ⊆ X let µ(A) be the number of
elements in A if A is finite and µ(A) =∞ otherwise. Then µ is clearly finitely additive on
P(X). To show that µ is a measure, let An ↑ A. If there exists an m such that Am = A,
then An = A for all n ≥ m and so, trivially, µ(An) ↑ µ(A). On the other hand, if no such
m exists, then A must be infinite and Ank−1

$ Ank for some sequence of indices. Since
µ(Ank) ≥ µ(Ank−1

) + 1,

lim
n
µ(An) = lim

k
µ(Ank) =∞ = µ(A).

By 1.3.2, µ measure on P(X).

(h) Infinite series measure. For an arbitrary sequence (pn) in [0,∞), define

µ(E) =
∑

k∈E
pk, E ⊆ N,

where the sum may be infinite. (By convention, the sum over the empty set is zero.) The
rearrangement theorem for nonnegative series implies that µ is well-defined and finitely
additive. Let An ↑ A. If A is finite, then eventually An = A, so obviously µ(An) ↑ µ(A). If A
is infinite, then µ(A) may be written as an infinite series µ(A) =

∑∞
k=1 pnk . Let r < µ(A),

choose k such that
∑k
i=1 pni > r, and choose m so that Am contains the indices n1, . . . , nk.

Then µ(An) ≥ µ(Am) > r for all n ≥ m. Since r was arbitrary, µ(An)→ µ(A). By 1.3.2, µ
is a measure on P(N). Note that if pk ≡ 1, then µ is simply counting measure on N. ♦

Exercises

1.27 Let A ⊆ P(X) and ∅ ∈ A. Show that if µ is a countably additive, finite set function on A, then
µ(∅) = 0.

1.28 Verify that the set functions defined in 1.3.3 (c) and (d) are measures.

1.29 Give an example of a measure µ on a σ-field F and a sequence of sets An ∈ F decreasing to A
such that limn µ(An) 6= µ(A).

1.30 [↑ 1.2.1] Let F be the field of finite or cofinite subsets of X and define µ(A) = 0 if A is finite and
µ(A) = 1 if A is cofinite. (a) Show that µ is finitely additive but in general is not countably
additive. (b) Show that µ is countably additive if X is uncountable.

1.31 Let µ be a finitely additive, nonnegative set function on a field F. Prove that if µ(A) and µ(B)
are finite, then |µ(A)− µ(B)| ≤ µ(A4B).

1.32 (Inclusion-exclusion I). Let µ be a finitely additive nonnegative set function on a field F. Prove
that µ(A) + µ(B) = µ(A ∪B) + µ(A ∩B).
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1.33 Let µ be a finitely additive, nonnegative set function on a field F and let A, B ∈ F with
µ(B) = 0. Show that µ(A ∪B) = µ(A \B) = µ(A).

1.34 (Inclusion-exclusion II). Let µ be a finitely additive, nonnegative set function on a field F and
let A1, . . . , An ∈ F with union A such that µ(A) <∞. Prove that for n ≥ 2

µ(A) =
n∑
i=1

µ(Ai)−
n∑

1≤i<j≤n

µ(Ai ∩Aj) +
n∑

1≤i<j<k≤n

µ(Ai ∩Aj ∩Ak)− · · ·+ (−1)n−1µ(A1 ∩ · · · ∩An).

1.35 (Inclusion-exclusion III). Let µ be a finitely additive, nonnegative set function on a field F with
µ(X) <∞ and let B1, . . . , Bn ∈ F with intersection B. Prove that for n ≥ 2,

µ(B) =
n∑
i=1

µ(Bi)−
n∑

1≤i<j≤n

µ(Bi ∪Bj) +
n∑

1≤i<j<k≤n

µ(Bi ∪Bj ∪Bk)− · · ·+ (−1)n−1µ(B1 ∪ · · · ∪Bn).

1.36 Let (X,F, µ) be a measure space and let An ∈ F such that µ(Am ∩An) = 0 for m 6= n. Prove
that µ

(⋃∞
n=1 An

)
=
∑∞
n=1 µ(An).

1.37 [↓ 5.3.2] Let (X,F, µ) be a measure space and An ∈ F. Prove:

(a) µ
(

limnAn
)
≤ limn µ(An).

(b) µ
(

limnAn
)
≥ limn µ(An) if µ

(⋃
nAn

)
<∞.

(c) µ
(

limnAn
)

= 0 if
∑
n µ(An) <∞.

1.38 Let (X,F) be a measurable space and let x1, x2 ∈ X. For A ∈ P(X), define µ(A) = 1 if
{x1, x2} ⊆ A and µ(A) = 0 otherwise. Prove that µ is continuous from below. Is µ a measure?

1.39 Prove 1.3.2(b).

1.40 [↓Ex. 3.3] Let µn be a sequence of measures on a σ-field F on X such that µn(A) ≤ µn+1(A)
for all A ∈ F. Define the set function µ on F by µ(A) = limn µn(A). Prove that µ is a measure.

1.41 Let µn be a sequence of measures on a σ-field F on X and define µ on F by µ(A) =
∑
n µn(A).

Prove that µ is a measure.

1.42 Let (X,F, µ) be a finite measure space. Show that there can be at most countably many pairwise
disjoint sets of positive measure.

1.43 Let (X,F, µ) be a σ-finite measure space and E a collection of pairwise disjoint members of F.
Show that for any A ∈ F, µ(A ∩ E) > 0 for at most countably many members of E.

1.44 Let (X,F, µ) be a measure space and for A ∈ F define

µ0(A) = sup{µ(B) : B ∈ F, B ⊆ A and µ(B) <∞}.

Show that µ0 is a measure on F. Show also that µ0 = µ iff the following condition holds:
For each A ∈ F with µ(A) =∞ there exists B ∈ F such that B ⊆ A and 0 < µ(B) <∞.

1.45 Let (X,F, µ) be a measure space and {Ek} be a sequence in F. For fixed m ∈ N, let A denote
the set of all x such that x ∈ Ek for exactly m values of k; B the set of all x such that x ∈ Ek
for finitely many and at least m values of k; and C the set of all x such that x ∈ Ek for at most
m values of k. Prove that A, B, C ∈ F. If s(D) :=

∑∞
k=1 µ(D ∩ Ek), prove that

(a) µ(A) = s(A)/m. (b) µ(B) ≥ s(B)/m. (c) µ(C) ≤ s(C)/m.
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1.4 Complete Measure Spaces

A measure space (X,F, µ) is said to be complete if

M ∈ F, µ(M) = 0, and N ⊆M ⇒ N ∈ F.

Examples (a)–(c), (g), and (h) of 1.3.3 are complete measure spaces. In this section we
show that any measure space (X,F, µ) may be enlarged in a minimal way to produce a
complete measure space. The following simple example illustrates the basic idea behind the
construction.

1.4.1 Example. Let X = {1, 2, 3} and F =
{
∅, {1}, {2, 3}, X

}
. The measure µ defined by

µ{1} = 1 and µ{2, 3} = 0 is not complete. However, by enlarging F to include {2}, {3} and
defining a new measure µ on the augmented σ-field so that µ{1} = 1 and µ{2} = µ{3} = 0,
we obtain an extension of (X,F, µ) that is complete. ♦

Completion Theorem

Here is the general technique for completing a measure space. Part (a) of the theorem
gives the construction and part (b) describes a minimality property of a completion.

1.4.2 Theorem. Let (X,F, µ) be a measure space. Define

Fµ :=
{
A ∪N : A ∈ F, N ⊆M ∈ F, µ(M) = 0

}
and µ(A ∪N) := µ(A). (1.6)

(a) Fµ is a σ-field containing F and µ is a measure on Fµ that extends µ such that
(X,Fµ, µ) is complete.

(b) If (X,G, ν) is a complete measure space such that F ⊆ G and ν is an extension of µ,
then Fµ ⊆ G and the restriction of ν to Fµ is µ.

Proof. (a) To see that µ is well-defined, let A1∪N1 = A2∪N2, where Nj ⊆Mj , Aj , Mj ∈ F

and µ(Mj) = 0. Then A1 ⊆ A2 ∪M2 and A2 ⊆ A1 ∪M1, hence µ(A2) = µ(A1).
Clearly, F ⊆ Fµ. To see that Fµ is closed under complements note that in the notation

of (1.6)

(A ∪N)c = (Ac ∩M c) ∪ (Ac ∩N c ∩M), Ac ∩M c ∈ F and Ac ∩N c ∩M ⊆M.

For closure under countable unions, let Bn := An ∪ Nn ∈ Fµ and B :=
⋃
nBn, where

Nn ⊆Mn, An, Mn ∈ F, and µ(Mn) = 0. Then

B = A ∪N, where A :=

∞⋃

n=1

An and N :=

∞⋃

n=1

Nn ⊆M :=

∞⋃

n=1

Mn.

Since µ(M) = 0, B ∈ Fµ. Moreover, if the sets Bn are disjoint, then

µ(B) = µ(A) =
∑

n

µ(An) =
∑

n

µ(Bn).

Therefore, Fµ is a σ-field and µ is a measure on Fµ. Clearly, (X,Fµ, µ) is complete.

(b) Let A, N and M be as in (1.6). Then ν(M) = µ(M) = 0, hence, since (X,G, ν) is
complete, N ∈ G. Therefore, A ∪N ∈ G and µ(A ∪N) = µ(A) = ν(A) = ν(A ∪N), so ν is
an extension of µ.

Note that the completion theorem produces nothing new if (X,F, µ) is already complete,
since then the sets N in the above construction are already in F.
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Null Sets

The sets N in the completion theorem, namely the subsets of F-measurable sets M
with measure zero, are called µ-null sets. Such sets appear throughout measure theory,
frequently in the following context:

A property P (x) of points x ∈ X is said to hold µ-almost everywhere, abbreviated
µ-a.e., if the set of all x for which P (x) is false is a µ-null set, that is,

µ {x ∈ X : P (x) is false} = 0.

In this case we also say that the property P (x) holds for µ-almost all x, abbreviated µ-a.a.
x. If the measure is clear from context we drop the qualifier µ and simply write a.e. or a.a.
For example, if a function f in 1.4.1 is defined by f(j) = j, then f = 1 a.e. For an example
with far reaching implications, consider functions fn, f : X → C. The notation fn → f a.e.
then means that

µ{x ∈ X : lim
n
fn(x) 6= f(x)} = 0.

This type of convergence will be examined in Chapter 2.

Exercises

1.46 [↑ 1.3.3(d).] Let (X,F) be a measurable space, E a finite subset of X, and µ :=
∑
x∈E δx.

Describe the completion of (X,F, µ).

1.47 Show that if G ⊆ F are sigma fields, µ is a measure on F, and ν = µ
∣∣
G

, then Gν ⊆ Fµ and

ν = µ
∣∣
Gν

.

1.48 [↑ 1.44] Prove that µ0 = µ 0.

1.49 Let {Fi : i ∈ I} be a collection of σ-fields on X and µ a measure on G := σ
(⋃

i F
i
)
. For each i

let µi denote the restriction of µ to Fi. Show that Gµ = Hµ, where H := σ
(⋃

i F
i
µi

)
.

1.50 Let ν and η be measures on a σ-field F and set µ := ν + η. Show that Fµ ⊆ Fν ∩ Fη and
µ := ν + η on Fµ.

1.51 [↑ 1.3.3(f)] Let E ∈ F. Prove that FµE ∩ E = Fµ ∩ E and µE = µE on FµE .

1.52 Let (X,F, µ) be a finite measure space. For E ⊆ X define

µ∗(E) = sup{µ(A) : A ∈ F, A ⊆ E} and µ∗(E) = inf{µ(B) : B ∈ F, B ⊇ E}.

Show that Fµ = {E ⊆ X : µ∗(E) = µ∗(E)}.

1.5 Outer Measure and Measurability

As mentioned in the introduction to the chapter, the construction of a measure generally
begins with a collection A of “elementary” subsets of X and a set function µ on A, and
culminates with an extension of µ to a measure on a σ-field containing A. Of course, there
may be several σ fields containing A, P(X) being an obvious one. However, in many cases
it is impossible to extend µ to P(X). For example, in §1.7 it is shown that the length
set-function on the collection bounded intervals of R cannot be extended to a measure on
P(R). In general, the best one can hope for is an extension of µ to the completion of the
σ-field generated by A. This is accomplished by first constructing a related set function
on P(X), called outer measure, and then restricting this function to the class of so-called
measurable sets. The details follow.
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Construction of an Outer Measure

An outer measure on a nonempty set X is a nonnegative, monotone, countably sub-
additive set function µ∗ on P(X) such that µ∗(∅) = 0. Clearly, every measure on P(X) is
an outer measure. In particular, the set function that assigns 0 to the empty set and ∞ to
every nonempty set is an outer measure. By contrast, the set function that assigns 0 to the
empty set and 1 to every nonempty set is an outer measure that is not a measure.

The following proposition describes a general class of outer measures which are typically
not measures. The outer measure µ∗ defined in (1.7) is said to be generated by the pair
(A, µ). The sequences (An) in (1.7) are said to cover E.

1.5.1 Proposition. Let A be a paving of X and let µ be a nonnegative set function on A

such that µ(∅) = 0. Define a set function µ∗ on P(X) by

µ∗(E) = inf

{ ∞∑

n=1

µ(An) : An ∈ A and E ⊆
∞⋃

n=1

An

}
, (1.7)

where inf ∅ :=∞. Then µ∗ is an outer measure.

Proof. That µ∗(∅) = 0 can be seen by taking as a cover the sequence A1 = A2 = · · · = ∅.
Monotonicity of µ∗ follows from the observation that if A ⊆ B, then every cover of B is a
cover of A. For countable subadditivity, let En ∈ P(X) and E :=

⋃∞
n=1En. We may assume

that
∑∞
n=1 µ

∗(En) < ∞. Given ε > 0, for each n choose a cover {An,j}j of En in A such
that ∞∑

j=1

µ(An,j) < µ∗(En) + ε/2n.

Since {An,j}n,j is a cover of E,

µ∗(E) ≤
∑

n,j

µ(An,j) <
∑

n

µ∗(En) + ε.

Thus µ∗(E) ≤∑n µ
∗(En), as required.

Carathéodory’s Theorem

Let µ∗ be any outer measure on X. A subset E of X is said to be µ∗-measurable if

µ∗(C) = µ∗(C ∩ E) + µ∗(C ∩ Ec) for all C ⊆ X. (1.8)

The definition asserts that E “splits” the outer measure of each subset C of X, a property
that may be seen as a precursor to finite additivity. Note that by subadditivity the inequality
≤ in (1.8) always holds. Thus the measurability criterion singles out precisely those sets E
for which the inequality ≥ in (1.8) is satisfied. The collection of all µ∗-measurable subsets of
X is denoted by M(µ∗). Here is the main result regarding outer measure.

1.5.2 Theorem (Carathéodory). Let µ∗ be an outer measure on X. Then M := M(µ∗) is
a σ-field and the restriction µ := µ∗

∣∣
M

is a complete measure.

Proof. Clearly, ∅, X ∈M, and since E and Ec appear symmetrically in (1.8), Ec ∈M iff
E ∈M. Furthermore, if µ∗(E) = 0, then, by monotonicity,

µ∗(C ∩ E) + µ∗(C ∩ Ec) ≤ µ∗(E) + µ∗(C ∩ Ec) = µ∗(C ∩ Ec) ≤ µ∗(C),

hence E ∈M. Thus M contains all sets of outer measure zero.
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It remains to show that for any sequence (En) in M,

(a)
∞⋃

n=1

En ∈M and (b) µ∗
( ∞⋃

n=1

En

)
=
∞∑

n=1

µ∗(En) if the union is disjoint.

The verifications of (a) and (b) are carried out in the following steps. For convenience, call a
set C for which the equality in (1.8) holds a test set for E.

(1) M closed under finite unions and hence is a field.

JLet E, F ∈M. Take any set C as a test set for E and take C ∩ Ec as a test set for
F . This gives

µ∗(C) = µ∗(C ∩ E) + µ∗(C ∩ Ec) and

µ∗(C ∩ Ec) = µ∗(C ∩ Ec ∩ F ) + µ∗(C ∩ Ec ∩ F c).

Combining these we have

µ∗(C) = µ∗(C ∩ E) + µ∗(C ∩ Ec ∩ F ) + µ∗(C ∩ Ec ∩ F c)
≥ µ∗

[
(C ∩ E) ∪ (C ∩ Ec ∩ F )

]
+ µ∗(C ∩ Ec ∩ F c) (by subadditivity)

= µ∗
[
C ∩ (E ∪ F )

]
+ µ∗

[
C ∩ (E ∪ F )c

]
.

Therefore, E ∪ F ∈M.K

(2) C ⊆ X, E, F ∈M and E ∩ F = ∅ ⇒ µ∗
(
C ∩ (E ∪ F )

)
= µ∗(C ∩ E) + µ∗(C ∩ F ).

JUsing C ∩ (E ∪ F ) as a test set for E we have

µ∗
[
C ∩ (E ∪ F )

]
= µ∗

[
C ∩ (E ∪ F ) ∩ E

]
+ µ∗

[
C ∩ (E ∪ F ) ∩ Ec

]

= µ∗(C ∩ E) + µ∗(C ∩ F ).K

(3) If the sets En are disjoint, then F :=
⋃∞
n=1En ∈M and µ(F ) =

∑∞
n=1 µ(En).

JLet Fn :=
⋃n
k=1Ek and C ⊆ X. By steps (1) and (2) and induction, Fn ∈M and

µ∗(C ∩ Fn) =
∑n
k=1 µ

∗(C ∩ Ek). Therefore, by monotonicity,

µ∗(C) = µ∗(C ∩ Fn) + µ∗(C ∩ F cn) ≥
n∑

k=1

µ∗(C ∩ Ek) + µ∗(C ∩ F c)

for all n and so

µ∗(C) ≥
∞∑

k=1

µ∗(C ∩ Ek) + µ∗(C ∩ F c) ≥ µ∗(C ∩ F ) + µ∗(C ∩ F c) ≥ µ∗(C).

This shows that F ∈M. Taking C = F verifies countable additivity.K

(4) If En ∈M, then
⋃
nEn ∈M.

JUse (1), (3) and (1.2).K
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Exercises

1.53 Define an outer measure µ∗ on P(X) by µ∗(∅) = 0 and µ∗(E) = 1 if E 6= ∅. Find M(µ∗).

1.54 Let OI denote the collection of all bounded open subintervals of R and let µ := δ0 be the Dirac
measure at 0 on OI . Show that the outer measure µ∗ generated by (OI , µ) is the Dirac measure
at 0 on P(R). Find M(µ∗).

1.55 Let X be an uncountable set and define µ∗(E) = 0 if E = ∅ and µ∗(E) = 1 otherwise. Show
that µ∗(E) = 0 or 1 according as E is countable or uncountable. Show also that M(µ∗) is the
σ-field of sets that are countable or cocountable.

1.56 [↑ 1.3.3(f)] Let µ be a monotone set function on a field F. For E ∈ F, let µE denote the set
function on F defined by µE(A) = µ(E ∩A) and let (µE)∗ be the outer measure generated by
(F, µE). Prove that (µ∗)E = (µE)∗.

1.57 [↓ 1.8.1.] Let A and B be pavings of X such that each contains sequence with union X. Let
µ be a measure on A ∪B and let µ∗a and µ∗b be the outer measures generated by (A, µ) and
(B, µ), respectively. Suppose that

µ∗a(E) = µ∗b(E) = µ(E) ∀ E ∈ A ∪B. (†)

Prove that µ∗a = µ∗b . Show that assertion fails if the condition in (†) is not assumed.

1.58 Let µ∗ be an outer measure on X, E ⊆ X, and A ∈ M(µ∗) with E ∩ A = ∅. Show that
µ∗(E ∪A) = µ∗(E) + µ(A).

1.59 Let µ∗ be an outer measure on X, E ⊆ X, and A, B ∈ M(µ∗) with A ∩ B = ∅. Show that
µ∗
(
E ∩ (A∪B)

)
= µ∗(E ∩A) +µ(E ∩B). Show that the conclusion holds for countable disjoint

unions as well.

1.60 Let µ a nonnegative set function on a paving A of X with µ(∅) = 0, and let µ∗ be the outer
measure generated by (A, µ). Prove that E ∈M(µ∗) for any E ⊆ X satisfying

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec) for all A ∈ A.

1.6 Extension of a Measure

We have seen that a suitably defined pair (A, µ) generates an outer measure µ∗ and that
the restriction of µ∗ to the σ-field M(µ∗) of measurable sets is a complete measure. A more
intimate connection between µ and µ∗ is possible if certain additional conditions are imposed
on (A, µ). For this we need the following definitions.

A nonempty collection A of subsets X is called a

• semiring if A is a π-system and for any A, B ∈ A, there exist finitely many disjoint
members Cj of A with A \B =

⋃n
j=1 Cj .

• ring if and A, B ∈ A implies A ∪B, A \B ∈ A.

Every ring is a π system and hence a semiring, since A ∩B = A \ (A \B) The collection of
all bounded intervals on R is a semiring that is not a ring. A ring that contains X is closed
under complements and hence is a field. If (X,F, µ) is a measure space, then the collection
of all members of F with finite measure is a ring that obviously need not be a field.

In this section we show that a measure µ on a semiring A may be extended to a measure
on σ(A) and that under suitable conditions the extension is unique and possesses certain
approximation and completeness properties.
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The Measure Extension Theorem

Let A be a semiring on a set X, µ a measure on A, and µ∗ the outer measure generated
by (A, µ). The proof of the measure extension theorem is based on the following lemmas.

1.6.1 Lemma. The set Au of all finite disjoint unions of members of A is a ring.

Proof. Let A, B ∈ Au, say

A =
m⋃

j=1

Aj , Aj ∈ A, and B =
n⋃

k=1

Bk, Bk ∈ A (disjoint unions).

To see that A \B ∈ Au, for each j and k choose finitely many disjoint sets Cijk ∈ A such
that Aj \Bk =

⋃
i Cijk. Then Aj \Bk ∈ Au and

A \B =
m⋃

j=1

Aj ∩Bc =
m⋃

j=1

n⋂

k=1

Aj \Bk =
m⋃

j=1

n⋂

k=1

⋃

i

Cijk.

Since this is a disjoint union of members of A, A \B ∈ Au.
To show that A ∪B ∈ Au, write A ∪B as the disjoint union (A \B) ∪ (B \A) ∪ (A ∩B)

and note that A ∩B is the disjoint union
⋃
j, k Aj ∩Bk of members of A.

1.6.2 Lemma. Define a set function µu on Au by

µu

( m⋃

j=1

Aj

)
=

m∑

j=1

µ(Aj), Aj ∈ A (disjoint union).

Then µu is a well-defined measure on Au and µu

∣∣
A

= µ.

Proof. To show that µu is well-defined, let
⋃m
j=1Aj =

⋃n
k=1Bk be disjoint unions of members

of A. Then Aj =
⋃n
k=1Aj ∩Bk and Bk =

⋃m
j=1Aj ∩Bk, hence

µ(Aj) =
n∑

k=1

µ(Aj ∩Bk) and µ(Bk) =
m∑

j=1

µ(Aj ∩Bk).

Summing, we obtain

m∑

j=1

µ(Aj) =
m∑

j=1

n∑

k=1

µ(Aj ∩Bk) =
n∑

k=1

µ(Bk).

To show countable additivity, let E1, E2 . . . ∈ Au be disjoint with union E ∈ Au. Choose
disjoint sets A1, . . . , Am ∈ A such that E =

⋃m
i=1Ai, and for each k choose disjoint sets

Bk,1, . . . ,∈ Bk,mk ∈ A such that Ek =
⋃mk
j=1Bk,j . Then

Ek = E ∩ Ek =
m⋃

j=1

Ai ∩ Ek =
m⋃

i=1

mk⋃

j=1

Ai ∩Bk,j , (disjoint unions).

By definition of µu,

µu(E) =
m∑

i=1

µ(Ai) and µu(Ek) =
m∑

i=1

mk∑

j=1

µ(Ai ∩Bk,j). (α)
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Also, for each i,

Ai = Ai ∩ E =
∞⋃

k=1

Ai ∩ Ek =
∞⋃

k=1

mk⋃

j=1

Ai ∩Bk,j (disjoint unions),

hence, by the countable additivity of µ,

µ(Ai) =
∞∑

k=1

mk∑

j=1

µ(Ai ∩Bk,j). (β)

By (α) and (β) and a rearrangement,

µu(E) =
m∑

i=1

∞∑

k=1

mk∑

j=1

µ(Ai ∩Bk,j) =
∞∑

k=1

m∑

i=1

mk∑

j=1

µ(Ai ∩Bk,j) =
∞∑

k=1

µu(Ek).

1.6.3 Lemma. The outer measures generated by (A, µ) and (Au, µu) are the same.

Proof. Let E ⊆ X. Typical sums in the definitions of µ(E) and µu(E) are, respectively,

s =
∞∑

n=1

µ(An), An ∈ A, E ⊆
∞⋃

n=1

An, and t =
∞∑

n=1

µu(Bn), Bn ∈ Au, E ⊆
∞⋃

n=1

Bn.

Since A ⊆ Au, every sum s is also a sum t. On the other hand, since each Bn is a finite
disjoint union of members of A and µu is additive, every t may be decomposed and written
as an s. The infima over these sums are therefore the same.

We may now prove

1.6.4 Theorem. Let A be a semiring on a set X, µ a measure on A, µ∗ the outer measure
generated by (A, µ), and M = M(µ∗) the σ-field of µ∗-measurable sets. Then σ(A) ⊆M

and the measure µ∗
∣∣
M

is an extension of µ.1

Proof. By the last lemma, we may assume that A is a ring. To show that A ⊆M(µ∗), let
A ∈ A and C ⊆ X. We show that

µ∗(C ∩A) + µ∗(C ∩Ac) ≤ µ∗(C). (†)

Let Cn ∈ A such that C ⊆ ⋃∞n=1 Cn. Since A is a ring, Cn ∩ A, Cn ∩ Ac ∈ A. Moreover,
C ∩A ⊆ ⋃∞n=1(Cn ∩A) and C ∩Ac ⊆ ⋃∞n=1(Cn ∩Ac), so

µ∗(C ∩A) ≤
∞∑

n=1

µ(Cn ∩A) and µ∗(C ∩Ac) ≤
∞∑

n=1

µ(Cn ∩Ac).

Adding we have

µ∗(C ∩A) + µ∗(C ∩Ac) ≤
∞∑

n=1

µ(Cn ∩A) +
∞∑

n=1

µ(Cn ∩Ac) =
∞∑

n=1

µ(Cn).

Since the cover (Cn) of C was arbitrary, (†) holds.
To show that µ∗

∣∣
A

= µ, let A, An ∈ A with A ⊆ ⋃∞n=1An. Then

µ(A) ≤
∞∑

n=1

µ(A ∩An) ≤
∞∑

n=1

µ(An).

Taking infima over all such sequences {An} yields µ(A) ≤ µ∗(A). On the other hand, the
sequence A, ∅, ∅, . . . is a cover of A by members of A, hence µ∗(A) ≤ µ(A). Therefore,
µ∗
∣∣
A

= µ, completing the proof of the theorem.

1We frequently denote this extension also by µ, depending on context.
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Approximation Property of the Extension

1.6.5 Theorem. Let E ∈ σ(A) with µ(E) < ∞. Then for each ε > 0 there exist disjoint
sets A1, . . . , An ∈ A such that

µ
(
E4

⋃n

j=1
Aj

)
< ε.

Proof. Choose a cover {Bn} of E in A such that
∑
n µ(Bn) < µ(E) + ε/2. Define

E1 = B1 and En = Bn ∩Bc1 · · · ∩Bcn−1 = (Bn \B1) ∩ · · · ∩ (Bn \Bn−1), n ≥ 2.

The sets En are disjoint and cover E. Choose n so large that
∑∞
j=n+1 µ(Bj) < ε/2. From

the inclusion

E4
n⋃

j=1

Ej =

[( n⋃

j=1

Ej

)
\ E
]
∪
[
E \

n⋃

j=1

Ej

]
⊆
[
Ec ∩

∞⋃

j=1

Ej

]
∪

∞⋃

j=n+1

Ej

we have

µ

(
E4

n⋃

j=1

Ej

)
≤ µ

(
Ec ∩

∞⋃

j=1

Ej

)
+ µ

( ∞⋃

j=n+1

Ej

)
≤
∞∑

j=1

µ(Bj)− µ(E) +
∞∑

j=n+1

µ(Ej)

< ε/2 + ε/2 = ε.

Noting that each Ej is a disjoint union of members of A (because A is a semiring), we
obtain the desired approximation.

Completeness of the Extension

1.6.6 Theorem. If (A, µ) is σ-finite, then M(µ∗) is the completion of
(
σ(A), µ

)
.

Proof. Let F = σ(A). Since M(µ∗) is complete, by minimality Fµ ⊆M(µ∗). For the reverse
inclusion, assume first that µ(X) < ∞. Let E ∈M(µ∗) and for each n choose sequences
{An,j}∞j=1 and {Bn,j}∞j=1 in A such that

µ∗(Ec) ≤ µ(An) ≤
∞∑

j=1

µ(An,j) ≤ µ∗(Ec) + 1/n, where An :=
∞⋃

j=1

An,j ⊇ Ec, and

µ∗(E) ≤ µ(Bn) ≤
∞∑

j=1

µ(Bn,j) ≤ µ∗(E) + 1/n, where Bn :=
∞⋃

j=1

Bn,j ⊇ E.

Then Bn, A
c
n ∈ σ(A), Acn ⊆ E ⊆ Bn, and

µ(Bn)→ µ∗(E), µ(Acn) = µ(X)− µ(An)→ µ(X)− µ∗(Ec) = µ∗(E). (†)

Next, let

A =
∞⋃

n=1

Acn and B =
∞⋂

n=1

Bn.

Then Acn ⊆ A ⊆ E ⊆ B ⊆ Bn, hence from (†), µ(B \ A) = 0. Setting M = B \ A and
N = E \A we have E = A ∪N , N ⊆M , A, M ∈ F, and µ(M) = 0 and so E ∈ Fµ.

In the general case, let X =
⋃∞
n=1Xn, where Xn ∈ A and µ(Xn) <∞. Set An = A∩Xn

and µn = µ
∣∣
An

. Then An is a semiring on Xn (Ex. 1.62) and µn is a measure on An, so

the outer measure µ∗n generated by (An, µn) is a measure on Fn := σ(An) = F ∩Xn with
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completion M(µ∗n). By Ex. 1.62 again, M(µ∗n) = M(µ∗) ∩ Xn and µ∗n is the restriction
of µ∗ to M(µ∗n). Now let E ∈M(µ∗). By the preceding paragraph, for each n there exist
Mn, An ∈ Fn with µn(Mn) = 0 and Nn ⊆Mn such that E ∩Xn = An ∪Nn. Setting

A =
∞⋃

n=1

An, M =
∞⋃

n=1

Mn, and N =
∞⋃

n=1

Nn,

we have E = A ∪N , N ⊆M , M, A ∈ F and µ(M) = 0, hence E ∈ Fµ.

1.6.7 Remark. The σ-finite hypothesis in the completeness theorem cannot be removed.
For example, let A = {∅,R} with µ(∅) = 0 and µ(R) =∞. Then µ∗(C) =∞ for any C 6= ∅,
hence, trivially, µ(C) = µ(C ∩E) +µ(C ∩Ec) for all E ⊆ R, that is, M(µ∗) = P(R). On the
other hand, since the only set of measure zero is the empty set, the completion of σ(A) = A

is just A. ♦

Uniqueness of the Extension

Uniqueness is an immediate consequence of the following more general result:

1.6.8 Theorem. Let (Y,P) be a π-system and let µ1 and µ2 be measures on σ(P) that are
σ-finite on P. If µ1

∣∣
P

= µ2

∣∣
P

, then µ1 = µ2.

Proof. The proof uses Dynkin’s π-λ theorem. Suppose first that Y ∈ P and µ1(Y ) < ∞.
Let L = {E ∈ σ(P) : µ2(E) = µ1(E)}. We claim that L is a λ-system. Indeed, property
(a) of (1.5) holds by assumption and (c) holds by continuity from below. To verify (b), let
A, B ∈ L with A ⊆ B. Then

µ2(B \A) = µ2(B)− µ2(A) = µ1(B)− µ1(A) = µ1(B \A),

verifying the claim. Since P ⊆ L, by Dynkin’s theorem σ(P) ⊆ L. This proves the theorem
for the case µ1(Y ) <∞.

Now let (Yn) be a disjoint sequence in P with union Y and µ1(Yn) < ∞ for all n.
Applying the result of the first paragraph to the restriction of the measures to Yn, we see
that µ1(A ∩ Yn) = µ2(A ∩ Yn) for all A ∈ σ(P) and all n. Now use countable additivity to
complete the proof.

Applying Theorem 1.6.8 to the current setting we have

1.6.9 Theorem. If (A, µ) is σ-finite, then the extension of µ to σ(A) is unique.

1.6.10 Remarks. Without the σ-finite hypothesis the conclusion of 1.6.9 may fail. For
example, let A be the semiring of all bounded intervals and take µ to be the measure on
B(R) = σ(A) that assigns the value ∞ to every nonempty set in A (hence µ∗(E) =∞ for
every nonempty E ⊆ R). If ν is counting measure on B(R), then µ 6= ν, yet the measures
agree on A. Note also that µ (vacuously) has the approximation property, but ν does not.

The conclusion of 1.6.9 may also fail if A is not a semiring. For example, let A be the
collection of all intervals (a, b] with b− a = 1. If µ(A) is the number of integers in A ∈ B(R)
and λ is Lebesgue measure on B(R) (see §1.7), then µ = λ on A but not on B(R). ♦

The following consequence of 1.6.8 will be needed later.

1.6.11 Theorem. Let ν be any measure on σ(A) that is σ-finite on A. Then

ν(E) = inf

{ ∞∑

n=1

ν(An) : An ∈ A and E ⊆
∞⋃

n=1

An

}
, E ∈ σ(A).

Proof. Let ν∗ denote the outer measure generated by (ν|A,A). Then the measures ν∗|σ(A)

and ν agree on the π-system A and so are equal.
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Exercises

1.61 Let Ai be a semiring on Xi, i = 1, 2. Show that A1 ×A2 is a semiring.

1.62 Let µ be a measure on a semiring A ⊆ P(X) and E ∈ A

(a) Prove that A ∩ E is a semiring consisting of the members of A that are subsets of E.

(b) Let ν be the restriction of µ to A ∩ E and let µ∗ and ν∗ be the outer measures generated
by (X,A, µ) and (E,A ∩ E, ν). Show that ν∗ is the restriction of µ∗ to P(E).

(c) Prove that M(ν∗) = M(µ∗) ∩ E.

1.63 Let µ be as in 1.6.4 and let ν be a measure on σ(A) that equals µ on A.

(a) Show that ν(E) ≤ µ(E) for all E ∈ σ(A). (1.6.10 shows equality may not hold.)

(b) Show that ν(E) = µ(E) for all E ∈ σ(A) with µ(E) <∞. J Assume that A is a ring (how?).
Choose A ∈ A such that E ⊆ A and µ(A) < µ(E) + ε. Then ν(E) + ν(A \ E) < ν(E) + ε. K

1.64 Let µ be a measure on a semiring A ⊆ P(X) and let µ∗ be the outer measure generated by
(A, µ). Prove that for any E ⊆ X there exists A ∈ σ(A) such that E ⊆ A and µ∗(E) = µ(A).

1.65 [↑ 1.64] Let µ be a measure on a semiring A ⊆ P(X) and let µ∗ be the outer measure generated
by (A, µ). Prove the weak inclusion-exclusion principle

µ∗(E ∪ F ) + µ∗(E ∩ F ) ≤ µ∗(E) + µ∗(F ), E, F ⊆ X.

1.66 [↑ 1.64] Let µ and ν be measures on a semiring A ⊆ P(X) and let µ∗ and ν∗ be the outer
measures generated by (A, µ) and (A, ν), respectively. Prove that (µ + ν)∗ = µ∗ + ν∗ and
M(µ∗) ∩M(ν∗) ⊆M(µ∗ + ν∗). Show that the inclusion may be strict.

1.67 [↑ 1.64, 1.40] Let µ and µn be σ-finite measures on a semiring A ⊆ P(X) with µn ↑ µ on σ(A).
Let µ∗, µ∗n be the outer measures generated by (A, µ) and (A, µn) Prove that µ∗n ↑ µ∗ on P(X).

1.68 [↑ 1.66, 1.67] Let µn be measures on a semiring A on X and define µ(A) =
∑∞
n=1 µn(A) (A ∈ A).

Let µ∗ and µ∗n be the outer measures generated by (A, µ) and (A, µn), respectively. Prove that
µ∗ =

∑∞
n=1 µ

∗
n.

1.69 [↑ 1.64] Let µ be a measure on a semiring A ⊆ P(X) and let µ∗ be the outer measure generated
by (A, µ). Prove that µ∗ is continuous from below. Why doesn’t this imply that µ∗ is a measure
on P(X)?

1.70 [↑ 1.64] Let µ be a measure on a semiring A ⊆ P(X) and let µ∗ be the outer measure generated
by (A, µ). Suppose that µ∗(X) <∞. Show that E ∈M(µ∗) iff µ(X) = µ∗(E) + µ∗(Ec).

1.7 Lebesgue Measure

The Volume Set Function

Recall that HI denotes the semiring of bounded, left open d-dimensional intervals

(a, b] := (a1, b1]× · · · × (ad, bd], a := (a1, . . . , ad), b := (b1, . . . , bd),

where −∞ < aj ≤ bj <∞. Define the d-dimensional volume of (a, b] by

λ(a, b] = λ
d(a, b] :=

∏d

j=1
(bj − aj).

In this section we apply the results of §1.6 to the pair (HI , λ) to construct d-dimensional
Lebesgue measure. The following lemma is key to the construction.
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1.7.1 Lemma. Let H,H1, . . . ,Hm ∈HI .

(a) If H1, . . . ,Hm are disjoint and H =
⋃m
j=1Hj, then λ(H) =

∑m
j=1 λ(Hj).

(b) If H ⊆ ⋃mj=1Hj, then λ(H) ≤∑m
j=1 λ(Hj).

(c) If H1, . . . ,Hm are disjoint and H ⊇ ⋃mj=1Hj, then λ(H) ≥∑m
j=1 λ(Hj).

Proof. For ease of notation and exposition, we prove the lemma for d = 2, in which case the
intervals are rectangles. Let H = (a, b]× (c, d]. We may assume in (b) that H =

⋃m
j=1Hj ,

H1

H2

H3 H4

H5

H6H7

Ri,j

a x1 x2 bx3

c

y1

y2

y3

d

FIGURE 1.1: Pairwise disjoint interval grid of H.

otherwise replace Hj by Hj ∩H. Thus in each case the rectangles Hj are contained in H,
hence the coordinates of their vertices form partitions

{x0 := a < x1 < . . . < xp := b} and {y0 := c < y1 < . . . < yq := d}

of [a, b] and [c, d], respectively. These partitions generate a grid of disjoint subrectangles
Ri,j = (xi, xi+1]×(yj , yj+1] with union H such that each Hk is a union of such subrectangles.
The procedure for case (a) is illustrated in Figure 1.1. Since

b− a =

p−1∑

i=0

(xi+1 − xi) and d− c =

q−1∑

j=1

(yj+1 − yj),

we have, by the definition of λ,

λ(H) =

[ p−1∑

i=0

(xi+1 − xi)
][ q−1∑

j=0

(yj+1 − yj)
]

=

p−1∑

i=0

q−1∑

j=0

λ(Ri,j). (1.9)

Similarly,

λ(Hk) =
∑

(i,j):Ri,j⊆Hk
λ(Ri,j)

so that ∑

k

λ(Hk) =
∑

k

∑

(i,j):Ri,j⊆Hk
λ(Ri,j). (1.10)

Now compare (1.9) and (1.10). In (a), every Ri,j is contained in exactly one Hk, hence the
rectangles in (1.10) appear exactly once and so λ(H) =

∑m
k=1 λ(Hk). In (b), a rectangle Ri,j

could be contained in more than one Hk, so λ(H) ≤∑m
k=1 λ(Hk). Finally, in (c) not every

Ri,j is necessarily contained in an Hk, hence λ(H) ≥∑m
k=1 λ(Hk).
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1.7.2 Lemma. The volume set function λ is countably additivity on HI .

Proof. Part (a) of 1.7.1 gives finite additivity. Let {Hj} be a sequence of disjoint members
of HI such that H :=

⋃∞
j=1Hj ∈ HI . By 1.7.1(c), λ(H) ≥ ∑n

j=1 λ(Hj) for all n, hence

λ(H) ≥∑∞j=1 λ(Hj).
For the reverse inequality, let ε > 0, and for each j let Hε

j denote the member of HI

obtained by replacing each coordinate subinterval (c, d] of Hj by (c − δj , d + δj ], where
δj is chosen so that λ(Hε

j ) < λ(Hj) + ε/2j . Then the collection of intervals intHε
j is

an open covering of the compact set clH, so there exists an m ∈ N such that H ⊆
intHε

1 ∪ · · · ∪ intHε
m ⊆ Hε

1 ∪ · · · ∪Hε
m. By 1.7.1(b),

λ(H)− ε < λ(Hε) ≤ λ(Hε
1) + · · ·+ λ(Hε

m) ≤
∞∑

j=1

λ(Hj) + ε.

Letting ε→ 0 yields λ(H) ≤∑∞j=1 λ(Hj), establishing countable additivity.

Construction of the Measure

Since σ(HI) = B(Rd), we may invoke 1.6.4 using the outer measure

λ
∗(E) := inf

{ ∞∑

n=1

λ(An) : An ∈HI and E ⊆
∞⋃

n=1

An

}
, E ⊆ Rd,

to obtain

1.7.3 Theorem. The volume set function λ on HI has a unique extension to B(Rd).
Moreover, M(λ∗) is the completion of B(Rd).

The members of M(λ∗) are called Lebesgue measurable sets and λ := λ
∗∣∣

M(λ
∗
)

is

called Lebesgue measure on Rd.

Exercises

1.71 Let I ∈HI . Show that λ(I) = λ(int I) = λ(cl I). Also, in the definition

λ
∗(E) := inf

{ ∞∑
n=1

λ(An) : An ∈ A and E ⊆
∞⋃
n=1

An

}
, E ⊆ Rd,

where A = HI , show that the infimum is unchanged if A is taken to be OI , CI , O := the set of
open sets of Rd, or K := the set of compact subsets of Rd.

1.72 Let N ⊆ Rd with λ(N) = 0. Show that Nc is dense in R.

1.73 (Translation invariance of λ). Let E ⊆ Rd and x ∈ Rd. Show that

(a) λ
∗(x+ E) = λ

∗(E) (b) E ∈M(λ)⇒ x+ E ∈M(λ).

1.74 (Dilation property of λ). Let E ⊆ Rd and r ∈ R. Show that

(a) λ
∗(rE) = |r|dλ∗(E) (b) E ∈M(λ)⇒ rE ∈M(λ).

1.75 Show that for any ε > 0 there exists an open set U dense in Rd such that λ(U) < ε.

1.76 Let A, B ⊆ [0, 1], where B ∈M(λ) and λ(B) = 1. Show that λ
∗(A) = λ

∗(A ∩B).

1.77 Let E ⊆ R with 0 < λ(E) < ∞ and let 0 < r < 1. Show that there exists an interval [a, b]
such that λ

∗(E ∩ [a, b]) > r(b − a). JLet In be closed, bounded intervals that cover E with∑
n λ(In) < r−1

λ(E). K

1.78 Show that the graph G := {(x, f(x)) : x ∈ R} of a continuous function f is a Borel set with
two-dimensional Lebesgue measure zero.



66 Principles of Analysis

1.8 Lebesgue-Stieltjes Measures

A measure on B(Rd) that is finite on bounded, d-dimensional intervals is called a
Lebesgue-Stieltjes measure. For example, Lebesgue measure λ

d is a Lebesgue-Stieltjes
measure. Lebesgue-Stieltjes measures may be constructed from so-called distribution func-
tions, discussed below. Before we describe the construction, we discuss some approximation
properties possessed by these measures.

Regularity

The following theorem complements the approximation property 1.6.5.

1.8.1 Theorem. Let µ be a Lebesgue-Stieltjes measure on Rd and let E ∈ B(Rd). Then

(a) µ(E) = inf{µ(U) : U open and U ⊇ E}.
(b) µ(E) = sup{µ(K) : K compact and K ⊆ E}.

Proof. Assume first that E is bounded. Let ε > 0. By 1.6.11 (taking A = OI , say), there
exists a sequence of bounded, open, d-dimensional intervals Ij with union U ⊇ E such that
µ(U) ≤∑j µ(Ij) < µ(E) + ε, verifying (a).

To verify (b) in the bounded case, let J be a bounded open interval with cl(E) ⊆ J . Choose
a sequence of open intervals Vk with union V ⊇ J \E such that

∑∞
k=1 µ(Vk) < µ(J \E)+ε/2.

We may assume that Vk ⊆ J , otherwise replace Vk by Vk ∩ J . By subadditivity

µ(V ) ≤
∞∑

k=1

µ(Vk) ≤ µ(J \ E) + ε/2 = µ(J)− µ(E) + ε/2.

Set K = J \ V . Since K ⊆ E ⊆ cl(E) ⊆ J , K = cl(E) \ V . Therefore, K is compact and
µ(K) = µ(J)− µ(V ) ≥ µ(J)−

(
µ(J)− µ(E) + ε/2

)
= µ(E)− ε/2, verifying (b).

E
J

K

V (gray)

FIGURE 1.2: Construction of K.

Now suppose E is unbounded. Choose a sequence of bounded sets En ∈M(µ) such that
En ↑ E. Let ε > 0. For each n, use the first part of the proof to choose a compact set Kn

and an open set Un with finite measure such that

Kn ⊆ En ⊆ Un, µ(Un)− µ(En) < ε/2n and µ(En)− µ(Kn) < ε.

Set U :=
⋃∞
n=1 Un. Then U is open, E ⊆ U , and U \ E ⊆ ⋃n(Un \ En). If µ(E) <∞, then

µ(U)− µ(E) = µ(U \ E) ≤
∑

n

µ(Un \ En) < ε,

and for sufficiently large n,

µ(E)− µ(Kn) = µ(E \ En) + µ(En \Kn) < ε,

verifying (a) and (b) in this case. On the other hand, if µ(E) =∞, then (a) clearly holds
and (b) holds as well because then µ(En) ↑ ∞ and µ(Kn) > µ(En)− ε.
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One-Dimensional Distribution Functions

A nondecreasing, right continuous function F : R→ R is called a distribution function.
Such functions arise naturally in probability theory (see Chapter 18). The connection between
Lebesgue-Stieltjes measures and distribution functions is described in the following theorem,
the proof of which is given below.

1.8.2 Theorem. For every Lebesgue-Stieltjes measure µ on R, there exists a distribution
function F such that

µ(a, b] = F (b)− F (a) for all a < b. (1.11)

Any two distributions that satisfy (1.11) for the same µ differ by a constant. Conversely,
every distribution function F gives rise to a unique Lebesgue-Stieltjes measure µ on B(R)
satisfying (1.11).

Here are three common examples:

1.8.3 Examples.

(a) The Dirac measure δ0 on B(R) has distribution function F = 1[0,∞).

(b) Let (cn) and (pn) be sequences in R with pn > 0 and
∑
n pn <∞. Define

F (x) =
∑

n:cn≤x
pn,

where the sum is taken over all indices n for which cn ≤ x. (If there are no such indices,
the sum is defined to be 0.) Note that because the order of summation is irrelevant, F is
well-defined. The Lebesgue-Stieltjes measure corresponding to F is given by

µ(B) =
∑

n:cn∈B
pn for all Borel sets B.

The distribution in (a) is a special case, obtained by taking p1 = 1, pn = 0 for n ≥ 2, and
cn = 0 for all n.

(c) Let f be continuous and nonnegative on R. Define

F (x) = F (0) +

∫ x

0

f(t) dt,

where F (0) is arbitrary. The Lebesgue-Stieltjes measure corresponding to F is dµ = f dt.
(See Chapter 3.) ♦

Proof of Theorem 1.8.2. For the first part of the theorem, define F : R→ R as follows:
Let F (0) be arbitrary and set

F (x) :=

{
F (0) + µ(0, x] if x > 0,

F (0)− µ(x, 0] if x < 0.

By considering cases, we see that for a < b, F (b) − F (a) = µ(a, b]. Therefore, F is
nondecreasing and right continuous. If also G(b) − G(a) = µ(a, b] for all a < b, then
F (x)− F (0) = G(x)−G(0) for all x, hence F = G+ F (0)−G(0).

For the converse, let F : R→ R be a distribution function. To construct the Lebesgue-
Stieltjes measure defined by F , we apply the results of §1.6 to (HI , µ), where µ is the
set function on HI given by (1.11). Thus the proof of the theorem will be complete if we
show that µ is countably additive on HI . The following lemmas, analogous to those of §1.7,
establish this.
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1.8.4 Lemma. Let H,H1, . . . ,Hm ∈HI .

(a) If H1, . . . ,Hm are disjoint and H =
⋃m
j=1Hj, then µ(H) =

∑m
j=1 µ(Hj).

(b) If H ⊆ ⋃mj=1Hj, then µ(H) ≤∑m
j=1 µ(Hj).

(c) If H1, . . . ,Hm are disjoint and H ⊇ ⋃mj=1Hj, then µ(H) ≥∑m
j=1 µ(Hj).

Proof. Let H = (a, b] and Hj = (aj , bj ], where a1 < a2 < · · · < am. In (a) there can be no
“gaps” or “overlaps,” that is, a1 = a, bm = b, and bj = aj+1. Therefore,

m∑

j=1

µ(Hj) =
m−1∑

j=1

[F (aj+1)− F (aj)] + F (b)− F (am) = F (b)− F (a) = µ(H).

In (b), we may assume that H =
⋃m
j=1Hj , otherwise we could replace Hj by Hj ∩H. As

in (a), a1 = a, bm = b, and aj+1 ≤ bj . However, since the intervals are no longer disjoint
it may happen that aj+1 < bj for some j, as illustrated in Figure 1.3. Form intersections
of overlapping intervals, thus partitioning (a, b] into a collection {Ii} of disjoint half-open
intervals, as shown in the figure. Each Hj is a union of some of these intervals so by (a)

a1 = a a2 b1
a3 b3

a4 b4 = bb2

I1 I2 I3 I4 I6 I7I5

FIGURE 1.3: Construction of partition.

µ(H) =
∑

i

µ(Ii) and µ(Hj) =
∑

i:Ii⊆Hj
µ(Ii).

Since an Ii may be contained in more than one Hj

∑

i

µ(Ii) ≤
∑

j

∑

i:Ii⊆Hj
µ(Ii).

Therefore, µ(H) ≤∑j µ(Hj), proving (b). The proof of (c) is similar.

1.8.5 Lemma. The set function µ is countably additive on HI .

Proof. By 1.8.4(a), µ is finitely additive. Let Hj = (aj , bj ] be disjoint members of HI

and let H = (a, b] =
⋃∞
j=1Hj . By 1.8.4(c), µ(H) ≥ ∑m

j=1 µ(Hj) for all m, hence µ(H) ≥∑∞
j=1 µ(Hj). For the reverse inequality, let ε > 0 and by right continuity at a choose r ∈ (a, b)

so that F (r) ≤ F (a) + ε/2. Then

µ(r, b] = F (b)− F (r) ≥ F (b)− F (a)− ε/2 = µ(H)− ε/2. (†)
Similarly, for each j choose rj > bj such that F (rj) ≤ F (bj) + ε/2j , so

µ(aj , rj ] = F (rj)− F (aj) ≤ F (bj)− F (aj) + ε/2j = µ(Hj) + ε/2j . (‡)
The open intervals (aj , rj) cover [r, b], hence by compactness there exists an m ∈ N such
that (r, b] ⊆ ⋃mj=1(aj , rj ]. By (†), (‡), and 1.8.4(b),

µ(H) ≤ ε/2 + µ(r, b] ≤ ε/2 +
∞∑

j=1

µ(aj , rj ] ≤ ε+
∞∑

j=1

µ(Hj).

Letting ε→ 0 yields the desired inequality.
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∗Higher Dimensional Distribution Functions

As in the one-dimensional case, there is a close connection between Lebesgue-Stieltjes
measures on B(Rd) and certain real-valued functions on Rd. The technical details are more
intricate, however, and depend on the following construct:

The ith coordinate difference operator on functions F : Rd → R is defined by

4bi

ai
F (x1, . . . , xd) = F (x1, . . . , xi−1, bi, xi+1, . . . , xd)− F (x1, . . . , xi−1, ai, xi+1, . . . , xd).

For example, consider the function F (x1, x2, . . . , xd) = x1x2 . . . xd. For 1 ≤ i ≤ d and ai < bi,
the difference operators may be applied successively to obtain the following:

4b1

a1
· · ·4bd

ad
F (x1, x2, . . . , xd) =4b1

a1
· · ·4bd−1

ad−1
(x1 · · ·xd−1)(bd − ad)

=4b1

a1
· · ·4bd−2

ad−2
(x1 · · ·xd−2)(bd−1 − ad−1)(bd − ad)

...

= (b1 − a1) · · · (bd − ad).

Thus4b1

a1
· · ·4bd

ad
F (x1, x2, . . . , xd) is the Lebesgue measure of the d-dimensional interval

(a1, b1]× · · · × (ad, bd]. This sort of connection holds more generally and is described in the
theorem below. For the statement of the theorem we need the following definitions:

A function F : Rd → R is a distribution function if it is nondecreasing in the sense
that

4b1

a1
· · ·4bd

ad
F (x1, . . . , xd) ≥ 0, ai < bi, i = 1, . . . , d,

and right continuous in the sense that

xi,n ↓n xi, i = 1, . . . , d ⇒ F
(
xn,1, . . . , xn,d

)
→ F (x1, . . . , xd).

Here are some standard distribution functions:

1.8.6 Examples.

(a) Let Fi be a distribution function on R, i = 1, . . . , d. The function

F (x1, x2, . . . , xd) := F1(x1)F2(x2) · · ·Fd(xd)

is a distribution function on Rd such that

4b1

a1
· · ·4bd

ad
F (x1, . . . , xd) =

d∏

i=1

[Fi(bi)− Fi(ai)].

The function F (x1, x2, . . . , xd) = x1x2 · · ·xd discussed above is a special case.

(b) Let f be a nonnegative, continuous function on Rd. Then

F (x1, . . . , xd) :=

∫ x1

−∞
· · ·
∫ xd

−∞
f(t1, . . . , td) dtd · · · dt1

is a distribution function on Rd (provided the improper integral is finite) such that

4b1

a1
· · ·4bd

ad
F (x1, . . . , xd) =

∫ b1

a1

· · ·
∫ bd

ad

f(t1, . . . , td) dtd · · · dt1.
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(c) If µ is a finite measure on B(Rd), then

F (x1, . . . , xd) = µ((−∞, x1]× · · · × (−∞, xd])

defines a distribution function on Rd. ♦

The following theorem may be proved using a combination of ideas developed earlier in
the construction of Lebesgue measure and Lebesgue-Stieltjes measures. For a proof, the
reader is referred to [1] or [5].

1.8.7 Theorem. Let µ be a Lebesgue-Stieltjes measure on B(Rd). Then there exists a
function F : Rd → R such that for all ai < bi

µ
(
(a1, b1]× · · · × (ad, bd]

)
=4b1

a1
· · ·4bd

ad
F (x1, . . . , xd). (1.12)

Conversely, given a distribution function F : Rd → R, there exists a unique Lebesgue-Stieltjes
measure on B(Rd) such that (1.12) holds for all ai < bi (i = 1, . . . , d).

Exercises

1.79 Describe the Lebesgue-Stieltjes measure for each of the following distribution functions.

(a) F (x) = bxc, the greatest integer function.

(b) F (x) = x1[0,1) + 1[1,∞].

1.80 Show that the sum of finitely many distribution functions and the product of finitely many
nonnegative distribution functions are distribution functions.

1.81 Verify that the function in 1.8.3(b) is a distribution function. Prove also that F is left continuous
at a iff a 6= cn for every n.

1.82 For any monotone function F : R→ R and −∞ ≤ a < b ≤ ∞, define

F (a+) := lim
x→a+

F (x) and F (b−) := lim
x→b−

F (x)

and set
F (−∞) := F ((−∞)+) and F (∞) := F (∞−).

Let F be a distribution function and µ the associated Lebesgue-Stieltjes measure. Prove the
following, when defined:

(a) µ(a, b) = F (b−)− F (a).

(b) µ[a, b) = F (b−)− F (a−).

(c) µ[a, b] = F (b)− F (a−).

Prove also that µ{x} = 0 iff F is continuous at x.

1.83 Let µ be a finite Lebesgue-Stieltjes measure on B(R) such that µ
(
{x}
)

= 0 for all x. Show that
any distribution function F corresponding to µ is uniformly continuous on R.

1.84 Show that a monotone function f : R→ R has countably many discontinuities. Conclude that
if µ is a Lebesgue-Stieltjes measure, then there exist at most countably many x ∈ R such that
µ({x}) > 0. JFor each t ∈ R, define at = limx→t− f(x) and bt = limx→t+ f(x). Then at < bt iff
f is discontinuous at t.K

1.85 Let µ be a Lebesgue-Stieltjes measure on R with a continuous distribution function and let
A ∈ B(R) with µ(A) > 0. Prove that for each b ∈ (0, µ(A)) there exists a Borel set B ⊆ A such
that µ(B) = b. JUse the intermediate value theorem on G(x) = µ

(
A ∩ [−n, x]

)
for suitable nK.



Measurable Sets 71

*1.9 Some Special Sets

In this section we construct subsets of R that illustrate some of the finer points of Lebesgue
and Borel measurability.

An Uncountable Set with Lebesgue Measure Zero

The Cantor ternary set C is constructed as follows: Remove from I := [0, 1] = I0,1 the
“middle third” open interval (1/3, 2/3), leaving closed intervals I1,1 and I1,2 with union C1

and total length 2/3. Next, remove from each of the intervals I1,1 and I1,2 the middle third
open interval, leaving closed intervals I2,1, I2,2, I2,3, and I2,4 with union C2 and total length

4/9 = (2/3)2. By induction, one obtains a decreasing sequence of closed sets Ck =
⋃2k

j=1 Ik,j
such that λ(Ck) = (2/3)k. (See Figure 1.4.) Then C :=

⋂
k Ck is closed and λ(C) = 0.

I1,1 I1,2

I0,1

I2,1 I2,2 I2,3
.20... .22...

I3,1 I3,2 I3,3 I3,4 I3,5 I3,6 I3,7 I3,8

10

.0... .2...

.00... .02...

I2,4

.000... .002... .020... .022... .202... .220... .222....200...

FIGURE 1.4: Middle thirds construction.

To show that C is uncountable, consider the ternary representation of a number x ∈ [0, 1]:

x = .d1d2 . . . =
∞∑

k=1

dk3−k, where dk ∈ {0, 1, 2}. (1.13)

By induction, using the fact that x ∈ Ik−1,j ⇒ Ik,2j−1+dk/2, one shows that x ∈ C iff x has
an expansion with even digits (see Figure 1.4). Define ϕ : C → [0, 1] by

ϕ
(
.d1d2 . . . (ternary)

)
= .e1e2 . . . (binary), where dk ∈ {0, 2} and ek = dk/2.

The function ϕ is not one-to-one, but by removing from C the countable set of all numbers
with ternary representations ending in a sequence of zeros we obtain a set D on which ϕ is
one-to-one. Since ϕ(D) = (0, 1), C is uncountable.

Non-Lebesgue-Measurable Sets

We show the following:

Every Lebesgue measurable set A with λ(A) > 0
contains a set that is not Lebesgue measurable.

Since A =
⋃
n∈ZA ∩ [n, n+ 1], we may suppose that A is bounded. Define an equivalence

relation on A by x ∼ y iff x− y ∈ Q. Let B be the subset of A obtained by choosing exactly
one point from each distinct equivalence class. (The existence of B requires the axiom of
choice.) Now observe that the sets r+B, r ∈ Q, are disjoint. Indeed, if (r+B)∩ (s+B) 6= ∅,
then r + x = s + y for some x, y ∈ B, so x = y and r = s. Moreover, since A is bounded
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so is B + [0, 1]. Let (rn) be an enumeration of the rationals in [0, 1] and assume that B is
measurable. Then

∞ > λ

(⋃

n

(B + rn)

)
=
∑

n

λ(B + rn) =
∑

n

λ(B),

which implies that λ(B) = 0. But A ⊆ B + Q, hence

λ(A) ≤ λ

( ⋃

r∈Q
(B + r)

)
=
∑

r∈Q
λ(B + r) = 0,

contradicting that λ(A) > 0. Therefore, B cannot be Lebesgue measurable.

A Lebesgue Measurable, Non-Borel Set

For this example, we first construct the Cantor function f : I → I, where I = [0, 1].
The construction is based on the Cantor set C described earlier in the section. For each n,
denote by Jn,k, k = 1, . . . , 2n−1, the open intervals in increasing order that were removed
from I in the construction of C, that is, the intervals that form the complement of Cn in
[0, 1]. For example, J2,1 = (1/9, 2/9), J2,2 = (1/3, 2/3), and J2,3 = (7/9, 8/9), hence

[0, 1] = I2,1 ∪ J2,1 ∪ I2,2 ∪ J2,2 ∪ I2,3 ∪ J2,3 ∪ I2,4.

Define a continuous function fn : I → I so that

fn(0) = 0, fn(1) = 1, fn = k/2n on Jn,k,

and fn is linear on the complementary intervals In,j . Since |fn(x)− fn+1(x)| ≤ 1/2n+1, the

1
9

2
9

1
3

4
9

5
9

2
3

8
9

7
9 1

1

1
2

3
4

1
4

J21 J22 J23

FIGURE 1.5: The functions f2 and f3.

sequence {fn} is uniformly Cauchy and so converges to a continuous function f , the Cantor
function.

To construct the desired non-Borel set, note first that since fn(0) = 0, fn(1) = 1, and fn is
nondecreasing on [0, 1], f also has these properties. Thus, by the intermediate value theorem,
f(I) = I. Since the values of f on the intervals Jn,k are already assumed at the endpoints
and since these endpoints lie in C, f(Jn,k) contributes nothing additional to the range of f ,
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hence f(C) = I. Now set g(x) = (f(x)+x)/2, x ∈ I. Then g is continuous, strictly increasing,
g(0) = 0, and g(1) = 1, hence g(I) = I. It follows that g : I → I is a homeomorphism, hence
g(C) is closed. Thus g(I \ C) is a proper nonempty open subset of I and so has positive
Lebesgue measure. Moreover, g takes the interval Jn,k, on which f is constant, to an open
interval half its length, so by countable additivity λ

(
g(I \ C)

)
= λ(I \ C)/2 = 1/2 and

therefore λ(g(C)) = 1/2. Now let E be a subset of g(C) that is not Lebesgue measurable and
let A := g−1(E). Then A ⊆ C and so is Lebesgue measurable with λ(A) = 0. However, A
cannot be a Borel set since g maps Borel sets onto Borel sets. (This is proved in Chapter 2.)

1.9.1 Remark. While the intricate nature of the construction of A might lead one to
believe that such sets are rare, there are in fact many more Lebesgue measurable sets than
Borel sets. Indeed, since the Cantor set C is uncountable and every subset of C is Lebesgue
measurable, the collection of Lebesgue measurable sets has cardinality 2c, where c is the
cardinality of the continuum. On the other hand, it may be shown that B(R) has only
cardinality c. (See, for example, [38].) ♦

Exercises

1.86 Show that (R,B(R), λ) is not complete.

1.87 Carry out the steps below to prove following assertion: If A ⊆ R has positive Lebesgue measure
then the set A−A := {x− y : x, y ∈ A} contains an interval (−r, r) for some r > 0.

(a) Show that it suffices to consider the case A compact.

(b) Choose an open set U ⊇ A such that λ(U) < 2λ(A) (how?). Define a distance function
d : U → R by d(x) = inf{|x− y| : y ∈ Uc}. Show that d is continuous and positive. Conclude
that d has a minimum r > 0 on A.

(c) Show that |x| < r ⇒ x+A ⊆ U ⇒ (x+A) ∩A 6= ∅. Conclude that (−r, r) ⊆ A−A.

1.88 [↑ 1.87] Show that the only subgroup of (R,+) that has positive Lebesgue measure is R.

1.89 Let (an) be a sequence in (0, 1) and set bn := 1 − an. Mimic the construction of the Cantor
ternary set by removing the middle part of [0, 1] of length a1, leaving two intervals with union
E1, each of length b1/2, then removing the middle part of length a2b1/2 from these leaving four
intervals with union E2, each of length b1b2/4, and so forth. The intersection E :=

⋂
nEn is

a1

b1
2

b1
2

b1b2
4

b1b2
4

0 1

b1b2
4

b1b2
4b1a2

2
b1a2
2

FIGURE 1.6: Generalized middle thirds construction.

called a generalized Cantor set. Verify the following:

(a) E is closed and λ(E) =

∞∏
n=1

bn := lim
n

n∏
j=1

bj .

(b) The interior of E is nonempty.

(c) If r > 0 and eventually an ≥ r (as in the Cantor ternary set), then λ(E) = 0.

(d) For each a ∈ (0, 1), there exists a generalized Cantor set with Lebesgue measure a.
JConsider ln

(∏∞
n=1 bn

)
=
∑∞
n=1 ln bn. K

1.90 Let A be the set of all x ∈ [0, 1] having a decimal expansion .d1d2 . . . with no digit equal to 3.
Show that A is uncountable, A ∈ B(R), and λ(A) = 0.


