

Iㅁ므ㄹㅡㅡ븐

India's Best Institute for IES, GATE \& PSUs

GATE 2017

Mechanical Engineering

 (Afternoon Session : 04-02-2017)
Click here for Detailed Solutions

- MADE EASY has taken due care in making solutions. If you find any discrepency/typo/ technical error, kindly share/post your views.
- If you want to contest the answer key given by MADE EASY, kindly post your suggested answer with detailed explanations at MADE EASY Facebook ++.
- Students are requested to share their expected marks in GATE 2017.
www.madeeasy.in
Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 011-45124612, 9958995830

Delhi | Hyderabad | Noida | Bhopal \| Jaipur | Lucknow | Indore | Pune \| Bhubaneswar | Kolkata | Patna

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination Mechanical Engineering | Session-2

SESSION 2

Q. 1 Two coins are tossed simultaneously. The probability (upto two decimal points accuracy) of getting at least one head is \qquad —.

Ans. (3/4)
Q. 2 The emissive power of a blackbody is P. If its absolute temperature is doubled, the emissive power becomes
(a) $2 P$
(b) 4 P
(c) 8 P
(d) 16 P

Ans. (d)

$$
\begin{aligned}
& E_{b} \propto T^{4} \text { (Stefan Boltzmann Law of Radiation) } \\
& \frac{E_{b_{2}}}{E_{b_{1}}}=\left(\frac{2 T}{T}\right)^{4} \Rightarrow E_{b_{2}}=16 P
\end{aligned}
$$

Q. 3 If a mass of moist air contained in a closed metallic vessel is heated, then its
(a) relative humidity decreases
(b) relative humidity increases
(c) specific humidity increases
(d) specific humidity decreases

Ans. (a)

Q. 4 A mass m of a perfect gas at pressure p_{1} and volume V_{1} undergoes an isothermal process. The final pressure is p_{2} and volume is V_{2}. The work done on the system is considered positive. If R is the gas constant and T is the temperature, then the work done in the process is
(a) $p_{1} V_{1} \ln \frac{V_{2}}{V_{1}}$
(b) $-p_{1} V_{1} \ln \frac{p_{1}}{p_{2}}$
(c) $R T \ln \frac{V_{2}}{V_{1}}$
(d) $-m R T \ln \frac{p_{2}}{p_{1}}$

For more Previous Solved Papers visit: www.ErForum.Net

Ans. (b)
Work done on the system is considered as positive, so
$\delta W=-p d V \quad$ (-ve sign is taken as $d V$ is - ve during compression)

$$
\begin{aligned}
W & =-\int_{1}^{2} p d V=-\int_{1}^{2} m R T \frac{d V}{V}=-m R T \int_{1}^{2} \frac{d V}{V} \\
& =-m R T \ln \frac{V_{2}}{V_{1}}=-m R T \ln \frac{p_{1}}{p_{2}}=-p_{1} V_{1} \ln \frac{p_{1}}{p_{2}}
\end{aligned}
$$

Q. 5 For a loaded cantilever beam of uniform cross-section, the bending moment (in Nmm) along the length is $M(x)=5 x^{2}+10 x$, where x is the distance (in mm) measured from the free end of the beam. The magnitude of shear force (in N) in the crosssection at $x=10 \mathrm{~mm}$ is \qquad -.

Ans. (110 N)

$$
\begin{aligned}
& (\mathrm{BM})_{x-x}=M_{X-x}=5 x^{2}+10 x \\
& (\mathrm{~S} . \mathrm{F})_{x-x}=F_{X-x}=?
\end{aligned}
$$

We know that at section $X-X$,

$$
\begin{aligned}
F_{X-X} & =\frac{d}{d x}\left[5 x^{2}+10 x\right] \\
F_{X-X} & =10 x+10 \\
\left(F_{X-X}\right)_{x}=10 \mathrm{~mm} & =10(10)+10=110 \mathrm{~N}
\end{aligned}
$$

Q. 6 A cantilever beam of length L and flexural modulus El is subjected to a point load P at the free end. The elastic strain energy stored in the beam due to bending (neglecting transverse shear) is
(a) $\frac{P^{2} L^{3}}{6 E I}$
(b) $\frac{P^{2} L^{3}}{3 E I}$
(c) $\frac{P L^{3}}{3 E I}$
(d) $\frac{P L^{3}}{6 E I}$

Ans. (a)
Let U is the S.E. in the beam due to B.M. (M)

$$
\begin{aligned}
& U=\int_{0}^{L} \frac{\left(M_{x-x}\right)^{2} d x}{2(E I)_{x-x}}=\int_{0}^{L} \frac{(P x)^{2} d x}{2 E I_{N A}} \\
& U=\frac{P^{2}}{2 E I_{N . A}} \int_{0}^{L} x^{2}(d x)=\frac{P^{2}}{2 E I}\left(\frac{L^{3}}{3}\right) \\
& U=\frac{P^{2} L^{3}}{6 E I_{N . A .}}
\end{aligned}
$$

For more Previous Solved Papers visit: www.ErForum.Net

Regular and Weckend Classroom Gourses

66 Classroom Course is designed for comprehensive preparation of ESE, GATE and PSUs. The main feature of the course is that all the subjects are taught from basic level to advance level. There is due emphasis on solving objective and numerical questions in the class. High quality study material is provided during the classroom course with sufficient theory and practice test papers for objective and conventional questions alongwith regular assignments for practice. Classes are taken by highly experienced professors and ESE qualified toppers. MADE EASY team has developed very effective methodology of teaching and advance techniques and shortcuts to solve objective questions in limited time." 9

Features of Classroom Courses :

- Experienced faculty
- Updated study material
- All India ESE offline test series
- Timely completion of syllabus
- Doubt clearing sessions
- Periodic Classroom Tests
- GATE counseling session
- Interview Guidance Program
- Motivational sessions

Book \& Reading

 References:- Technical Subjects Theory Book
- Technical Subjects Workbook
- Engineering Mathematics
- Reasoning \& Aptitude
- Previous Years GATE Solved Papers
- General English
- Previous Years IES Solved Papers (Objective \& Conventional)

Syllabus Covered:

- All Technical Subjects alongwith 10 subjects of paper-I (as per revised syllabus of ESE 2017)
- Engineering Mathematics
- Reasoning \& aptitude

New batches starting at all MADE EASY centres

Admission
open

Delhi	Hyderabad	Noida	Jaipur	Bhopal	Lucknow
$011-45124612$	$040-66774612$	$0120-6524612$	$0141-4024612$	$0755-4004612$	09919111168

Indore	Bhubaneswar	Pune	Kolkata	Patna
0731-4029612	0674-6999888,	020-26058612	$033-68888880$	$0612-2356615$

www.madeeasy.in

For more Previous Solved Papers visit: www.ErForum.Net

Q. 7 Which one of the following statements is TRUE for the ultrasonic machining (USM) process?
(a) In USM, the tool vibrates at subsonic frequency.
(b) USM does not employ magnetostrictive transducer.
(c) USM is an excellent process for machining ductile materials.
(d) USM often uses a slurry comprising abrasive-particles and water.

Ans. (d)
Ultrasonic Machining uses an abrasive slurry which transfers the impact load provided by the vibrating tool to the work piece.
Q. 8 Consider a laminar flow at zero incidence over a flat plate. The shear stress at the wall is denoted by τ_{w}. The axial position x_{1} and x_{2} on the plate are measured from the leading edge in the direction of flow. If $x_{2}>x_{1}$, then
(a) $\left.\tau_{w}\right|_{x_{1}}=\left.\tau_{w}\right|_{x_{2}}=0$
(b) $\left.\tau_{w}\right|_{x_{1}}=\left.\tau_{w}\right|_{x_{2}} \neq 0$
(c) $\left.\tau_{w}\right|_{x_{1}}>\left.\tau_{w}\right|_{x_{2}}$
(d) $\left.\tau_{w}\right|_{x_{1}}<\left.\tau_{w}\right|_{x_{2}}$

Ans. (c)
Laminar flow over plate
As per Blasius

$$
\begin{aligned}
C_{f x} & =\frac{0.664}{\sqrt{R_{\mathrm{ex}}}} \\
\text { and } & C_{f x}
\end{aligned}=\frac{\tau_{\omega}}{\frac{1}{2} \rho u_{\infty}^{2}}
$$

Q. 9 For the stability of a floating body the
(a) centre of buoyancy must coincide with the centre of gravity
(b) centre of buoyancy must be above the centre of gravity
(c) centre of gravity must be above the centre of buoyancy
(d) metacentre must be above the centre of gravity

Ans. (d)

For more Previous Solved Papers visit: www.ErForum.Net

Q. 10 The Laplace transform of $t e^{t}$ is
(a) $\frac{s}{(s+1)^{2}}$
(b) $\frac{1}{(s-1)^{2}}$
(c) $\frac{1}{(s+1)^{2}}$
(d) $\frac{s}{s-1}$

Ans. (b)

$$
\begin{aligned}
& f(t)=t e^{t} \\
& L(t)=\frac{1}{s^{2}}
\end{aligned}
$$

By first shifting rule

$$
L\left(t e^{t}\right)=\frac{1}{(s-1)^{2}}
$$

Q. 11 The heat loss from a fin is 6 W . The effectiveness and efficiency of the fin are 3 and 0.75 respectively. The heat loss (in W) from the fin, keeping the entire fin surface at base temperature is \qquad -

Ans. (8)

$$
\begin{aligned}
q_{\text {actual }} \text { from fin } & =6 \text { watt } \\
\eta_{\text {fin }} & =\frac{q_{\text {actual }}}{q_{\text {max. possible }}} \text { i.e. when entire fin at base temperature }
\end{aligned}
$$

$\therefore q$ from fin if entire fin at base temp

$$
=\frac{q_{\text {act. }}}{0.75}=\frac{6}{0.75}=8 \mathrm{watt}
$$

Q. 12 The standard deviation of linear dimensions P and Q are $3 \mu \mathrm{~m}$ and $4 \mu \mathrm{~m}$, respectively. When assembled, the standard deviation (in $\mu \mathrm{m}$) of the resulting linear dimension $(P+Q)$ is \qquad _.

Ans. (5)
According to Root Sum Square or RSS model

$$
\sigma_{a}=\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}
$$

where,

$$
\begin{aligned}
\sigma_{a} & =\text { assembly tolerance standard deviation } \\
\sigma_{i} & =i^{\text {th }} \text { component tolerance standard deviation }
\end{aligned}
$$

Here

$$
\begin{aligned}
& \sigma_{P}=3 \mu \mathrm{~m} \text { and } \sigma_{Q}=4 \mu \mathrm{~m} \\
& \sigma_{a}=\sqrt{\sigma_{P}^{2}+\sigma_{Q}^{2}}=\sqrt{3^{2}+4^{2}}=5 \mu \mathrm{~m}
\end{aligned}
$$

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
Mechanical Engineering | Session-2
Q. 13 A steel bar is held by two fixed supports as show in the figure and is subjected to an increase of temperature $\Delta T=100^{\circ} \mathrm{C}$. If the coefficient of thermal expansion and Young's modulus of elasticity of steel are $11 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and 200 GPa , respectively, the magnitude of thermal stress (in MPa) induced in the bar is \qquad _.

Ans. (220)
We know that for completely restricted expansion, thermal stress developed in bar is given by

$$
\begin{aligned}
\sigma_{\mathrm{th}} & =\alpha(\Delta T) E=11 \times 10^{-6} \times 100 \times 200 \times 10^{3} \\
& =220 \mathrm{MPa} \text { (comp. in native) }
\end{aligned}
$$

Q. 14 For a single server with Poisson arrival and exponential service time, the arrival rate is 12 per hour. Which one of the following service rates will provide a steady state finite queue length?
(a) 6 per hour
(b) 10 per hour
(c) 12 per hour
(d) 24 per hour

Ans. (d)

```
For steady state, }\quad\mu>
as }\lambda=12\mathrm{ cust/hr, we should go with option (d) 24/hr
```

Q. 15 A sample of 15 data is as follows: 17, 18, $1717,13,18,5,5,6,7,8,9,20,17$, 3. The mode of the data is
(a) 4
(b) 13
(c) 17
(d) 20

Ans. (c)
Mode means highest number of observations or occurrence of data most of the time as data 17, occurs four times, i.e., highest time. So mode is 17.
Q. 16 A mass m is attached to two identical springs having constant k as shown in the figure. The natural frequency ω of this single degree of freedom system is

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
Mechanical Engineering | Session-2
(a) $\sqrt{\frac{2 k}{m}}$
(b) $\sqrt{\frac{k}{m}}$
(c) $\sqrt{\frac{k}{2 m}}$
(d) $\sqrt{\frac{4 k}{m}}$

Ans. (a)
Equivalent stiffness $k_{\text {eq }}=k+k=2 k$
Natural frequency is

$$
\omega_{n}=\sqrt{\frac{k_{e q}}{m}}=\sqrt{\frac{2 k}{m}}
$$

Q. 17 The state of stress at a point is $\sigma_{x}=\sigma_{y}=\sigma_{z}=\tau_{x z}=\tau_{z x}=\tau_{y z}=\tau_{z y}=0$ and $\tau_{x y}=\tau_{y x}=50 \mathrm{MPa}$. The maximum normal stress (in MPa) at that point is \qquad -

Ans. (50)
Given state of stress condition indicates pure shear state of stress.
For pure shear state of stress,
Max. tensile stress = Max. comp. stress
$=$ Max. Shear stress $=\tau_{X Y}=50 \mathrm{MPa}$
Hence, Max. normal stress $=50 \mathrm{MPa}$
Q. 18 The divergence of the vector $-y i+x j$ is \qquad -

Ans. (0)

$$
\begin{aligned}
\bar{F} & =-y \bar{i}+x \bar{j} \\
\nabla \cdot \bar{F} & =\frac{\partial}{\partial x}(-y)+\frac{\partial}{\partial y}(x) \\
& =0+0=0
\end{aligned}
$$

Q. 19 The determinant of a 2×2 matrix is 50 . If one eigenvalue of the matrix is 10 , the other eigen value is \qquad _.

Ans. (5)
The product of eigen value of always equal to the determinant value of the matrix.

$$
\begin{aligned}
\lambda_{1} & =10 \quad \lambda_{2}=\text { unknown } \quad|A|=50 \\
\lambda_{1} \cdot \lambda_{2} & =50 \\
10\left(\lambda_{2}\right) & =50
\end{aligned}
$$

$$
\therefore \quad \lambda_{2}=5
$$

For more Previous Solved Papers visit: www.ErForum

Batches starting from 15th Feb, 2017

Admission Open

Candidates may opt for Mains Classroom Program with Mains Test Series or only Mains Test Series

Key Features:

- $\mathbf{3 0 0}$ Hrs. of classes with comprehensive \&in-depth discussion on conventional questions.
- Classes to be taken by the group of senior teachers only.
- Well designed comprehensive Mains Exclusive workbooks for every subject which contain 2 sections i.e. unsolved and solved (for self practice).
- Special sessions on improving motivation, writing skills, time management \& presentation skills by B. Singh Sir.
- Dynamic test series on every Sunday having test of 3 hours in synchronisation with syllabus taught in the classes exactly on the UPSC pattern and environment.
- Test Series contains Repeat Topics and New Topics to maintain continuity in study.
- Facility to cross check the evaluated answer sheet \& access to see the answer sheet of top scorer of every test to compare your performance.
- Provision to interact with teachers, write your missed tests \& discuss doubts via online mode using "Facebook++" (A social learning platform of MADE EASY).
- Provision of reward for top rankers in test series.

Mains Test Series is being conducted at all MADE EASY Centres across India

8 Subjectwise Tests +4 Full Syllabus Tests $=12$ Total Tests

Write Mains Test Series from your home through Facebook ++ (A social learning platform of MADE EASY). Visit : www.madeeasy.in

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
Mechanical Engineering | Session-2
Q. 20 Given the atomic weight of Fe is 56 and that of C is 12 , the weight percentage of carbon in cementite $\left(\mathrm{Fe}_{3} \mathrm{C}\right)$ is \qquad —.

Ans. (6.67)

$$
\frac{12}{56 \times 3+12 \times 1} \times 100 \%=6.67 \%
$$

Q. 21 It is desired to make a product having T-shaped cross-section from a rectangular aluminium block. Which one of the following processes is expected to provide the highest strength of the product?
(a) Welding
(b) Casting
(c) Metal forming
(d) Machining

Ans. (c)
In metal forming there will be increased mechanical properties due to change in grain size and work hardening.
Q. 22 A machine component made of a ductile material is subjected to a variable loading with $\sigma_{\min }=-50 \mathrm{MPa}$ and $\sigma_{\max }=50 \mathrm{MPa}$. If the corrected endurance limit and the yield strength for the material are $\sigma_{\mathrm{e}}{ }^{\prime}=100 \mathrm{MPa}$ and $\sigma_{y}=300 \mathrm{MPa}$, respectively, the factor of safety is \qquad -

Ans. (2)
Given variable loading is a completely reversed fatigue or variable loading because

$$
\sigma_{\max }=-\sigma_{\min }
$$

Hence, $\sigma_{\text {mean }}=\sigma_{m}=0 ; \sigma_{\text {variable }}=\sigma_{v}=\sigma_{\text {max }}$
For completely reversed fatigue loading Soderberg, Goodman, Gerber and strength criterion will give same results.
As per strength criterion,

$$
\begin{aligned}
\sigma_{\max } & \leq \sigma_{\text {per }} \text { or } \frac{\text { failure stress }}{\text { F.O.S. }} \\
\sigma_{\max } & =\frac{\text { Endurance limit }}{N} \\
N & =\frac{\text { Endurance limit }}{\text { Max. stress }}=\frac{100}{50}=2
\end{aligned}
$$

Q. 23 The crystal structure of aluminium is
(a) body-centred cubic
(b) face-centred cubic
(c) close-packed hexagonal
(d) body-centred tetragonal

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination

Ans. (b)
Crystal Structure of materials

- FCC: Ni, Cu, Ag, Pt, Au, Pb, Al (soft)
- BCC: V, Mo, Ta, W (hard material)
- HCP: Mg, Zn
- Cobalt $\mathrm{HCP}<420^{\circ} \mathrm{C}, \mathrm{FCC}>420^{\circ} \mathrm{C}$
- Chromium $\mathrm{HCP}<20^{\circ} \mathrm{C}, \mathrm{BCC}>20^{\circ} \mathrm{C}$
- Glass: Amorphous
- BCC: Ferrite or α-iron δ-ferrite or δ-iron
- FCC: Austenite or γ-iron
Q. 24 Which one of the following statements is TRUE?
(a) Both Pelton and Francis turbines are impulse turbines.
(b) Francis turbine is a reaction turbine but Kaplan turbine is an impulse turbine.
(c) Francis turbine is an axial-flow reaction turbine.
(d) Kaplan turbine is an axial-flow reaction turbine.

Ans. (d)
Q. 25 In a slider-crank mechanism, the lengths of the crank and the connecting rod are 100 mm and 160 mm , respectively. The crank is rotating with an angular velocity of 10 radian/s counter clockwise. The magnitude of linear velocity (in m / s) of the piston at the instant corresponding to the configuration shown in the figure is \qquad -.

Ans. ($1 \mathrm{~m} / \mathrm{s}$)

After plotting I-centres
Here, I_{23} and I_{24} will come at same point

$\therefore \quad \omega_{2}\left(I_{24} I_{12}\right)=V_{4}=V_{B}$
$V_{B}=\omega_{2}\left(I_{24} I_{12}\right)=10 \times 0.1 \quad\left(I_{24} I_{12}=100 \mathrm{~mm}=0.1 \mathrm{~m}=A B\right)$
$V_{B}=1 \mathrm{~m} / \mathrm{s}$

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
Mechanical Engineering | Session-2
Q. 26 A strip of 120 mm width and 8 mm thickness is rolled between two 300 mm diameter rolls to get a strip of 120 mm width and 7.2 mm thickness. The speed of the strip at the exit is $30 \mathrm{~m} / \mathrm{min}$. There is no front or back tension. Assuming uniform roll pressure of 200 MPa in the roll bite and 100% mechanical efficiency, the minimum total power (in kW) required to drive the two rolls is \qquad .

Ans. (*)
This question is wrong. For proper calculation we need velocity of neutral plane or velocity of roller. But in this question velocity of exit is given. From velocity of exit we may assume the velocity of neutral plane but can't calculate correctly.
After IITs' answer we will challenge and confirm the answer. I have given best answer for this question.
Method-I:

Projected length, $\quad L_{p}=R \sin \alpha \approx \sqrt{R \Delta h}=\sqrt{150 \times(8-7.2)}=10.954 \mathrm{~mm}$
Projected Area, $\quad A_{p}=L_{p} \times b=10.954 \times 120=1314.48 \mathrm{~mm}^{2}$
Roll Separating Force, $F=\sigma_{o} \times L_{p} \times b \mathrm{~N}=200 \times 1314.48 \mathrm{~N}=262.9 \mathrm{kN}$

$$
\left[\sigma_{o} \text { in } N / \mathrm{mm}^{2} \text { i.e. } \mathrm{MPa}\right]
$$

Arm length $(a$ in mm$)=0.5 L_{p}$ for hot rolling $=0.5 \times 10.954 \mathrm{~mm}=5.477 \mathrm{~mm}$ $=0.45 L_{p}$ for cold rolling

Torque per roller, $\quad T=F \times \frac{a}{1000} \mathrm{Nm}=262.9 \mathrm{kN} \times 5.477 \mathrm{~mm}=1439.9 \mathrm{Nm}$
Total power for two roller,

$$
P=2 T \omega \text { in } W=2 T \times \frac{2 \pi N}{60}
$$

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
Mechanical Engineering | Session-2

For the calculation of N we need velocity of neutral plane
Continuity equation

$$
\begin{aligned}
h_{o} b_{o} v_{o} & =h_{f} b_{f} v_{f} \\
8 \times 120 \times v_{o} & =7.2 \times 120 \times 30 \\
v_{o} & =27 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

or
Assuming velocity of neutral plane
average velocity,

$$
V=\frac{V_{0}+V_{f}}{2}=\frac{27+30}{2}=28.5 \mathrm{~m} / \mathrm{min}
$$

$$
\begin{aligned}
V & =\pi D N \\
28.5 & =\pi \times 0.300 \times N \\
N & =30.24 \mathrm{rpm}
\end{aligned}
$$

Now,
or
or
\therefore Total power for two roller,

$$
\begin{aligned}
P & =2 T \times \frac{2 \pi N}{60}=2 \times 1439.9 \times \frac{2 \times \pi \times 30.24}{60} \mathrm{~W} \\
& =9.1195 \mathrm{~kW} \approx 9.12 \mathrm{~kW}
\end{aligned}
$$

Method-II :

Velocity at the neutral plane $=$?

$$
\begin{aligned}
H_{n} V_{n} & =H_{2} V_{2} \quad \text { (Applying continuity) } \\
H_{n} & =H_{2}+0.25 \Delta H \text { (Standard relation) } \\
& =7.2+0.25 \times 0.8=7.4 \mathrm{~mm} \\
V_{n} & =\frac{H_{2} V_{2}}{H_{n}}=29.19 \mathrm{~m} / \mathrm{min} \\
N & =\frac{29.19 \times 1000}{\pi \times 300}=30.98 \mathrm{rpm} \\
\text { total power } & =2 T \omega=2 \times 1439.9 \times 2 \pi \frac{30.98}{60}=9.34 \mathrm{~kW}
\end{aligned}
$$

Q. 27 The rod PQ of length $L=\sqrt{2} \mathrm{~m}$ and uniformly distributed mass of $M=10 \mathrm{~kg}$, is released from rest at the position shown in the figure. The ends slide along the frictionless faces OP and OQ. Assume acceleration due to gravity, $g=10 \mathrm{~m} / \mathrm{s}^{2}$. The mass moment of inertia of the rod about its centre of mass and an axis perpendicular to the plane of the figure is $\left(\mathrm{ML}^{2} / 12\right)$. At this instant, the magnitude of angular acceleration (in radian $/ \mathrm{s}^{2}$) of the rod is \qquad .

For more Previous Solved Paperp: visity symieris TOp in EsE-211i MRDE ERS노 84\% Selections in ESE 2016
 India's Best Institute for IES, GATE \& PSUs

4 Streams, 4 Toppers all MADE EASY Students

H) Selections in Top 10	MADE EASY Selections 18 Out of 29.4 Vacancies	MADE EASY Percentage
15 Selections in Top 10	MADE EASY Selections 149 Out of 179 Vacancies	MADE EASY Percentage 19
5 Selections in Top 10	MADE EASY Selections 15 Out of 11 Vacancies	MADE EASY Percentage
C. Selections in Top 10	MADE EASY Selections 71 Out of 1	MADE EASY Percentage 80%

662 out of every 3 selected students, are from CLASSROOM COURSE "
Detailed results are available at : www.madeeasy.in

For more Previous Solved Papers visit: www.ErForum.Net

Ans. (7.5)

$$
\begin{aligned}
L & =\sqrt{2} \mathrm{~m} \\
M & =10 \mathrm{~kg} \\
g & =10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Both the surfaces are smooth

$$
\begin{align*}
& \ddot{\theta}=\alpha=\frac{3 g}{2 L} \sin \theta \\
& \alpha=\frac{3 \times 10}{2 \times \sqrt{2}} \sin 45^{\circ} \\
& a=\frac{3 \times 10}{2 \times \sqrt{2}} \times \frac{1}{\sqrt{2}}=\frac{30}{4}=7.5 \mathrm{rad} / \mathrm{s}^{2}
\end{align*}
$$

Q. 28 For the laminar flow of water over a sphere, the drag coefficient C_{F} is defined as $C_{F}=F /\left(\rho U^{2} D^{2}\right)$, where F is the drag force, ρ is the fluid density, U is the fluid velocity and D is the diameter of the sphere. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. When the diameter of the sphere is 100 mm and the fluid velocity is $2 \mathrm{~m} / \mathrm{s}$, the drag coefficient is 0.5 . If water now flows over another sphere of diameter 200 mm under dynamically similar conditions, the drag force (in N) on this sphere is \qquad
Ans. (80)
For sphere-I, $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, D_{1}=100 \mathrm{~mm}=0.1 \mathrm{~m}, U_{1}=2 \mathrm{~m} / \mathrm{s}, C_{F 1}=0.5$
For sphere-II, $D_{2}=200 \mathrm{~mm}=0.2 \mathrm{~m}$
Since, Dynamically similar conditions,
Drag force,

$$
C_{F 1}=C_{F 2}=0.5 ; \quad U_{1}=U_{2}=2 \mathrm{~m} / \mathrm{s}
$$

N

$$
\begin{aligned}
& \frac{F_{1}}{F_{2}}=\frac{C_{F 1}\left(\rho U_{1}^{2} D_{1}^{2}\right)}{C_{F 2}\left(\rho U_{2}^{2} D_{2}^{2}\right)} \\
& \frac{20}{F_{2}}=\frac{D_{1}^{2}}{D_{2}^{2}}=\frac{0.01}{0.04} \\
& F_{2}=80 \mathrm{~N}
\end{aligned}
$$

Q. 29 A rod of length 20 mm is stretched to make a rod of length 40 mm . Subsequently, it is compressed to make a rod of final length 10 mm . Consider the longitudinal tensile strain as positive and compressive strain as negative. The total true longitudinal strain in the rod is
(a) -0.5
(b) -0.69
(c) -0.75
(d) -1.0

For more Previous Solved Papers visit: www.ErForum.Net

Ans. (b)

$$
\begin{aligned}
& \varepsilon_{E}=\frac{L_{4}-L_{0}}{L_{0}}=\frac{10-20}{20}=-0.5 \\
& \varepsilon_{T}=\ln \left[1+\varepsilon_{E}\right]=\ln [1-0.5]=-0.693
\end{aligned}
$$

Q. 30 Block 2 slides outward on link 1 at a uniform velocity of $6 \mathrm{~m} / \mathrm{s}$ as shown in the figure. Link 1 is rotating at a constant angular velocity of 20 radian/s counterclockwise. The magnitude of the total acceleration (in $\mathrm{m} / \mathrm{s}^{2}$) of point P of the block with respect to fixed point O is \qquad —.

Ans. (243.310)

$$
\begin{aligned}
V & =6 \mathrm{~m} / \mathrm{s} \\
\omega & =20 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Here the centripital and corialis acceleration will be there

Total Acceleration:

$$
a_{p}=\sqrt{(40)^{2}+(240)^{2}}=243.310 \mathrm{~m} / \mathrm{s}^{2}
$$

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination

Mechanical Engineering | Session-2
Q. 31 A calorically perfect gas (specific heat at constant pressure $1000 \mathrm{~J} / \mathrm{kgK}$) enters and leaves a gas turbine with the same velocity. The temperature of the gas at turbine entry and exit are 1100 K and 400 K , respectively. The power produced is 4.6 MW and heat escapes at the rate of $300 \mathrm{~kJ} / \mathrm{s}$ through the turbine casing. The mass flow rate of the gas (in kg / s) through the turbine is
(a) 6.14
(b) 7.00
(c) 7.50
(d) 8.00

Ans. (b)

$$
\begin{aligned}
c_{p} & =1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\
V_{i} & =V_{e} \text { (Inlet and exit velocity same) } \\
\dot{W}_{C . V} & =4.6 \mathrm{MW}=4.6 \times 10^{3} \mathrm{~kW} \\
\dot{Q} & =300 \mathrm{~kW}
\end{aligned}
$$

Applying SFEE,

$$
\begin{aligned}
& \quad \dot{m}\left(h_{i}+\frac{1}{2} V_{i}^{2}+g z_{i}\right)+\dot{Q}=\dot{m}\left(h_{e}+\frac{1}{2} V_{e}^{2}+g z_{e}\right)+\dot{W}_{C . V .} . \\
& \dot{m}\left[c_{p}\left(T_{i}-T_{e}\right)\right]+\dot{Q}=\dot{W}_{C . V} . \\
& \dot{m}[1 \times(1100-400)]+(-300)=4.6 \times 10^{3} \\
& \Rightarrow \quad \dot{m}=7 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Q. 32 A helical compression spring made of a wire of circular cross-section is subjected to a compressive load. The maximum shear stress induced in the cross-section of the wire is 24 MPa . For the same compressive load, if both the wire diameter and the mean coil diameter are doubled, the maximum shear stress (in MPa) induced in the cross-section of the wire is \qquad —.

Ans. (6)
Max. shear stress induced in spring wire of a helical compression spring is given by,

$$
\begin{array}{ll}
\tau_{\max }=\frac{8 W D}{\pi d^{2}} k_{W} \text { or } \frac{8 W C}{\pi d^{2}} k_{w} \\
\tau_{\max } \propto \frac{1}{d^{2}} & {\left[\because W_{1}=W_{2}=W ; C_{1}=C_{2}\left(\text { i.e., } C=\frac{D}{d}\right)\right.} \\
& \left.\left(k_{w}\right)_{1}=\left(k_{w}\right)_{2}=k_{w}\right] \\
\frac{\tau_{2}}{\tau_{1}}=\left(\frac{d_{1}}{d_{2}}\right)^{2} & \\
\frac{\tau_{2}}{24}=\left(\frac{d}{2 d}\right)^{2} \Rightarrow \tau_{2}=6 \mathrm{MPa}
\end{array}
$$

For more Previous Solved Papers visit: www.ErForum.Net

India's Best Institute for IES, GATE \& PSUs
GATE 2017 : Examination
Mechanical Engineering | Session-2
Q. 33 Three masses are connected to a rotating shaft supported on bearing A and B as shown in the figure. The system is in a space where the gravitational effect is absent. Neglect the mass of shaft and rods connecting the masses. For $m_{1}=10$ $\mathrm{kg}, m_{2}=5 \mathrm{~kg}$ and $m_{3}=2.5 \mathrm{~kg}$ and for a shaft angular speed of 1000 radian $/ \mathrm{s}$, the magnitude of the bearing reaction (in N) at location B is \qquad -

Ans. (0)

It means all three masses are in same plane
let us calculates the net force

$$
\begin{aligned}
\Sigma F_{x}= & \Sigma m r \omega^{2} \cos \theta=\left(10 \times 0.1 \times \omega^{2}\right)-\left(5 \times 0.2 \times \omega^{2} \cos 60^{\circ}\right) \\
& -\left(2.5 \times 0.4 \times \omega^{2} \cos 60^{\circ}\right) \\
= & {\left[1-\left(5 \times 0.2 \times \frac{1}{2}\right)-\left(2.5 \times 0.4 \times \frac{1}{2}\right)\right] \omega^{2}=0 } \\
\Sigma F_{y}= & \Sigma \mathrm{mr} \omega^{2} \sin \theta=\left(5 \times 0.2 \times \omega^{2} \sin 60^{\circ}\right)-\left(2.5 \times 0.4 \times \omega^{2} \sin 60^{\circ}\right) \\
= & {\left[\left(1 \times \frac{\sqrt{3}}{2}\right)-\left(1 \times \frac{\sqrt{3}}{2}\right)\right] \omega^{2}=\left[\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)\right] \omega^{2}=0 }
\end{aligned}
$$

Net force

$$
F=\sqrt{\Sigma F_{x}^{2}+\Sigma F_{y}^{2}}=0
$$

Therefore reaction at B is zero.

$$
R_{B}=0
$$

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
Mechanical Engineering | Session-2
Q. 34 In an orthogonal machining with a tool of 9° orthogonal rake angle, the uncut chip thickness is 0.2 mm . The chip thickness fluctuates between 0.25 mm and 0.4 mm . The ratio of the maximum shear angle to the minimum shear angle during machining is \qquad _.

Ans. (1.494)
Given

$$
\begin{aligned}
\alpha & =9^{\circ} \\
t & =0.2 \mathrm{~mm} \\
t_{c \max } & =0.4 \mathrm{~mm} \\
t_{c \min } & =0.25 \mathrm{~mm} \\
\tan \phi_{\max } & =\frac{r_{\max } \cos \alpha}{1-r_{\max } \sin \alpha}=\frac{\frac{0.2}{0.25} \cos 9^{\circ}}{1-\frac{0.2}{0.25} \sin 9^{\circ}}
\end{aligned}
$$

or

$$
\phi_{\max }=42.09^{\circ}
$$

$$
\tan \phi_{\min }=\frac{r_{\min } \cos \alpha}{1-r_{\min } \sin \alpha}=\frac{\frac{0.2}{0.4} \cos 9^{\circ}}{1-\frac{0.2}{0.4} \sin 9^{\circ}}
$$

or

$$
\begin{aligned}
\phi_{\min } & =28.18^{\circ} \\
\text { Ratio } & =\frac{\phi_{\max }}{\phi_{\min }}=\frac{42.09}{28.18}=1.494
\end{aligned}
$$

Q. 35 Consider the differential equation $3 y^{\prime \prime}(x)+27 y(x)=0$ with initial conditions $y(0)=0$ and $y^{\prime}(0)=2000$. The value of y at $x=1$ is \qquad -.

Ans. (94.08)
The direction is $3 y^{\prime \prime}(x)+27 y(x)=0$
The auxillary equation is

$$
\begin{aligned}
3 m^{2}+27 & =0 \\
m^{2}+9 & =0 \\
m & = \pm 3 i
\end{aligned}
$$

Solution is $y=c_{1} \cos 3 x+c_{2} \sin 3 x$

$$
\begin{aligned}
& \text { given that } \\
& y(0)=0 \\
& \therefore \quad 0=c_{1} \\
& y^{\prime}=-3 c_{1} \sin 3 x+3 c_{2} \cos 3 x \\
& y^{\prime}(0)=2000 \\
& 2000=0+3 c_{2} \\
& c_{2}=\frac{2000}{3} \\
& \therefore \quad \text { Solution is } y=\frac{2000}{3} \sin 3 x \\
& \text { when } x=1 \\
& y=\frac{2000}{3} \sin 3=94.08
\end{aligned}
$$

For more Previous Solved Papers visitithwawe ErForum ПEXT |RS BIG LEARNINGS MADE EASY

Launches

G.S. Exclusive Batches for Civil Services (Pre) 2017

Under the guidance of Mr. B. Singh; CMD, MADE EASY Group

Batches starting from $20^{\text {th }}$ Feb, 2017 (5:30 PM to 9:30 PM)

A Admission
 Open

Syllabus Covered: Geography, History, Art \& Culture, Environment \& Bio-diversity, Indian Polity, Indian Economy, Science \& Technology, Life Science, G.K. \& Current Affairs

Key Features:

+ 90 Days course with 3 to 4 hrs classes per day
+ Classes to be taken by very renowned faculty group of 6 to 7 experts
+ Concise in duration but comprehensive in discussion
+ Targeted, focused and current based approach
+ Affordable fee and focus on individual support
+ Provision of regular interaction with faculty, through MADE EASY Online social learning platform

Regular assessment of performance through well designed class tests

Fee: Rs. 31,500/-
Special Discount of Rs. 5000/- for MADE EASY Students

Admission Office: 44-A/1, Kalu Sarai, New Delhi-110016
8800338066

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
Mechanical Engineering | Session-2
Q. 36 The volume and temperature of air (assumed to be an ideal gas) in a closed vessel is $2.87 \mathrm{~m}^{3}$ and 300 K , respectively. The gauge pressure indicated by a manometer fitted to the wall of the vessel is 0.5 bar. If the gas constant of air is $R=287 \mathrm{~J} / \mathrm{kgK}$ and the atmospheric pressure is 1 bar, the mass of air (in kg) in the vessel is
(a) 1.67
(b) 3.33
(c) 5.00
(d) 6.66

Ans. (c)

$$
P_{g}=5 \mathrm{bar}=50 \mathrm{kPa} ; \mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}=0.287 \mathrm{~kJ} / \mathrm{kgK}
$$

Ideas gas equation:

$$
P V=m R T
$$

Here P is absolute pressure:

$$
\begin{aligned}
P & =P_{\text {abs }}=P_{\text {gauge }}+P_{\mathrm{atm}}=50+101.325 \\
& =151.325 \mathrm{kPa} \\
m & =\frac{P V}{R T}=\frac{151.325 \times 2.87}{0.287 \times 300}=5.04 \mathrm{~kg}
\end{aligned}
$$

Q. 37 A metal ball of diameter 60 mm is initially at $220^{\circ} \mathrm{C}$. The ball is suddenly cooled by an air jet of $20^{\circ} \mathrm{C}$. The heat transfer coefficient is $200 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. The specific heat, thermal conductivity and density of the metal ball are $400 \mathrm{~J} / \mathrm{kgK}, 400 \mathrm{~W} / \mathrm{mK}$ and $9000 \mathrm{~kg} / \mathrm{m}^{3}$, respectively. The ball temperature (in ${ }^{\circ} \mathrm{C}$) after 90 seconds will be approximately
(a) 141
(b) 163
(c) 189
(d) 210

Ans. (a)

Time $(\tau)=90 \mathrm{sec}$
Since K being high and size of ball being small, lumped heat analysis is valid.

$$
\Rightarrow \quad e^{\left(\frac{h A}{\rho v c_{p}}\right) \tau}=\frac{T_{i}-T_{\infty}}{T-T_{\infty}} \Rightarrow\left(\frac{h_{A}}{\rho \vee c_{p}}\right) \tau=\ln \left(\frac{T_{i}-T_{\infty}}{T-T_{\infty}}\right)
$$

Put

$$
\begin{aligned}
\frac{A}{V} & =\frac{3}{R}=\frac{3}{\left(\frac{30}{1000}\right)} \\
\left(\frac{h A}{\rho v c_{p}}\right) \tau & =\left(200 \times \frac{3}{0.03} \times \frac{1}{9000} \times \frac{1}{400}\right) \times 90=0.5 \\
\frac{220-20}{T-20} & =e^{0.5}=1.6487 \\
T & =141.3^{\circ} \mathrm{C}
\end{aligned}
$$

For more Previous Solved Papers visit: www.ErForum.Net

India's Best Institute for IES, GATE \& PSUs
GATE 2017 : Examination
Mechanical Engineering | Session-2
Q. 38 A cylindrical pin of $25_{+0.010}^{+0.020} \mathrm{~mm}$ diameter is electroplated, plating thickness is $2.0^{ \pm 0.005} \mathrm{~mm}$. Neglecting the gauge tolerance, the diameter (in mm, up to 3 decimal points accuracy) of the GO ring gauge to inspect the plated pin is \qquad —.

Ans. (29.030)
GO ring gauge will inspect maximum metal conditions i.e. UL of shaft i.e. Largest size after platting.

UL after platting $=25.02+2.005+2.005 \mathrm{~mm}=29.030 \mathrm{~mm}$
Q. 39 In a counter-flow heat exchanger, water is heated at the rate of $1.5 \mathrm{~kg} / \mathrm{s}$ from $40^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ by an oil entering at $120^{\circ} \mathrm{C}$ and leaving at $60^{\circ} \mathrm{C}$. The specific heats of water and oil are $4.2 \mathrm{~kJ} / \mathrm{kgK}$ and $2 \mathrm{~kJ} / \mathrm{kgK}$, respectively. The overall heat transfer coefficient is $400 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. The required heat transfer surface area (in m^{2}) is
(a) 0.104
(b) 0.022
(c) 10.4
(d) 21.84

Ans. (d)

$$
\begin{aligned}
& H_{E}=\text { Counterflow type } \\
& \Delta T_{i}=120-80=40^{\circ} \mathrm{C} \\
& \Delta T_{e}=120^{\circ} \mathrm{C} \\
&=60-40=20^{\circ} \mathrm{C} \\
& \text { (LMTD) Counterflow }=\frac{\Delta T_{i}-\Delta T_{e}}{\ln \frac{\Delta T_{i}}{\Delta T_{e}}}=\frac{40-20}{\ln \frac{40}{20}} \\
&=28.86^{\circ} \mathrm{C} \\
& Q=\dot{m}_{C} C_{p_{c}}\left(T_{c e}-T_{c i}\right) \\
&=1.5 \times 4.2 \times 10^{3}(80-40) \mathrm{watt} \\
& \text { also } \quad=252000 \mathrm{Watt} \\
& Q=U A \Delta T_{m} \\
& A=\frac{Q}{U \Delta T_{m}}=\frac{1.5 \times 4.2 \times 10^{3} \times 40}{400 \times 28.86}=21.83 \mathrm{~m}^{2}
\end{aligned}
$$

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
Mechanical Engineering | Session-2
Q. 40 In the Rankine cycle for a steam power plant the turbine entry and exit enthalpies are $2803 \mathrm{~kJ} / \mathrm{kg}$ and $1800 \mathrm{~kJ} / \mathrm{kg}$, respectively. The enthalpies of water at pump entry and exit are $121 \mathrm{~kJ} / \mathrm{kg}$ and $124 \mathrm{~kJ} / \mathrm{kg}$ respectively. The specific steam consumption (in $\mathrm{kg} / \mathrm{kWh}$) of the cycle is \qquad .

Ans. (3.6)
Given data

$$
\begin{aligned}
h_{1} & =2803 \mathrm{~kJ} / \mathrm{kg} \\
h_{2} & =1800 \mathrm{~kJ} / \mathrm{kg} \\
h_{3} & =121 \mathrm{~kJ} / \mathrm{kg} \\
h_{4} & =124 \mathrm{~kJ} / \mathrm{kg} \\
w_{T} & =h_{1}-h_{2} \\
& =2803-1800=1003 \mathrm{~kJ} / \mathrm{kg} \\
w_{P} & =h_{4}-h_{3} \\
& =124-121=3 \mathrm{~kJ} / \mathrm{kg} \\
w_{\text {net }} & =w_{T}-w_{P}=1003-3=1000 \mathrm{~kJ} / \mathrm{kg} \\
S S C & =\frac{3600}{w_{\text {net }}}=\frac{3600}{1000}=3.6 \mathrm{~kg} / \mathrm{kWh}
\end{aligned}
$$

Q. 41 The radius of gyration of a compound pendulum about the point of suspension is 100 mm . The distance between the point of suspension and the centre of mass is 250 mm . Considering the acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$, the natural frequency (in radian/s) of the compound pendulum is \qquad .

Ans. (15.660)
If we displace this by an angle θ clockwise:

Compound pendulum

$$
I \ddot{\theta}+m g \cdot a \sin \theta=0
$$

Taking θ very small:

$$
\begin{aligned}
\sin \theta & \approx \theta & (k=100 \mathrm{~mm}=0.1 \mathrm{~m}) \\
I \ddot{\theta}+m g \cdot a \cdot \theta & =0 & \\
\ddot{\theta}+\left(\frac{m g}{I} a\right) \theta & =0 &
\end{aligned}
$$

Here

$$
I=m k^{2}=m(0.1)^{2} \quad(I \text { is the } M I \text { about the point of Hinge })
$$

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
Mechanical Engineering | Session-2

$$
\begin{aligned}
I & =m(0.01) \mathrm{kg}-\mathrm{m}^{2} \\
a & =250 \mathrm{~mm}=0.250 \mathrm{~m} \\
g & =9.81 \mathrm{~m} / \mathrm{s}^{2} \\
\ddot{\theta}+\left(\frac{m \times 9.81 \times 0.250}{(0.01) \mathrm{m}}\right) \theta & =0 \\
\ddot{\theta}+(245.25) \theta & =0 \\
\omega_{n} & =\sqrt{245.25}=15.660 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Q. 42 If $f(z)=\left(x^{2}+a y^{2}\right)+i b x y$ is a complex analytic function of $z=x+i y$, where $i=$ $\sqrt{-1}$, then
(a) $a=-1, b=-1$
(b) $a=-1, b=2$
(c) $a=1, b=2$
(d) $a=2, b=2$

Ans. (b)
Given that the analytic function

$$
\begin{aligned}
f(2) & =\left(x^{2}+a y^{2}\right)+i b x y \\
u+i v & =\left(x^{2}+a y^{2}\right)+i(b x y) \\
u & =x^{2}+a y^{2} ; \quad v=b x y \\
u_{x} & =2 x ; \quad u_{y}=2 a y ; \quad v_{x}=b y ; \quad v_{y}=b x \\
u_{x} & =v_{y} ; \quad u_{y}=-v_{x} \\
2 x & =b x ; \quad 2 a y=-b y \\
b & =2 ; \quad 2 a=-b \quad \text { since } b=2 \\
2 a & =-2 \\
a & =-1
\end{aligned}
$$

Q. 43 Consider the matrix $A=\left[\begin{array}{ll}50 & 70 \\ 70 & 80\end{array}\right]$ whose eigenvectors corresponding to eigenvalues λ_{1} and λ_{2} are $x_{1}=\left[\begin{array}{c}70 \\ \lambda_{1}-50\end{array}\right]$ and $x_{2}=\left[\begin{array}{c}\lambda_{1}-80 \\ 70\end{array}\right]$, respectively. The value of $x_{1}^{T} x_{2}$ is
\qquad _.

Ans. (0)

$$
A=\left[\begin{array}{ll}
50 & 70 \\
70 & 80
\end{array}\right]
$$

Eigen values of A are λ_{1}, λ_{2}

$$
\begin{aligned}
\lambda_{1}+\lambda_{2} & =130 \\
\lambda_{1} \lambda_{2} & =-900
\end{aligned}
$$

Given that

$$
x_{1}=\left[\begin{array}{c}
70 \\
\lambda_{1}-50
\end{array}\right] \quad x_{2}=\left[\begin{array}{c}
\lambda_{2}-80 \\
70
\end{array}\right]
$$

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
MADE EASY
India's Best Institute for IES, GATE \& PSUs

$$
\begin{aligned}
X_{1}^{\top} X_{2} & =\left[\begin{array}{ll}
70 & \lambda_{1}-50
\end{array}\right]\left[\begin{array}{c}
\lambda_{2}-80 \\
70
\end{array}\right] \\
& =70 \lambda_{2}-5600+70 \lambda_{1}-3500 \\
& =70\left(\lambda_{1}+\lambda_{2}\right)-9100=70(130)-9100 \\
& =9100-9100=0
\end{aligned}
$$

Q. 44 The arrangement shown in the figure measures the velocity V of a gas of density $1 \mathrm{~kg} / \mathrm{m}^{3}$ flowing through a pipe. The acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$. If the manometric fluid is water (density $1000 \mathrm{~kg} / \mathrm{m}^{3}$) and the velocity V is $20 \mathrm{~m} / \mathrm{s}$, the differential head h (in mm) between the two arms of the manometer is \qquad —.

Ans. (20.38)
Method : (i)
Given data:

$$
\rho_{\mathrm{gas}}=1 \mathrm{~kg} / \mathrm{m}^{3} ; \quad g=9.81 \mathrm{~m} / \mathrm{s}^{2}, \rho_{m}=1000 \mathrm{~kg} / \mathrm{m}^{3}, \quad V=20 \mathrm{~m} / \mathrm{s}
$$

Dynamic pressure of gas $=(\rho g h)_{\text {water }}$

$$
\begin{aligned}
\frac{1}{2} \rho_{\text {gas }} V^{2} & =\rho_{m} \times 9.81 \times h \\
\frac{1}{2} \times 1 \times(20)^{2} & =1000 \times 9.81 \times h
\end{aligned}
$$

or

$$
h=0.02038 \mathrm{~m} \text { of water }
$$

$$
=20.38 \mathrm{~mm} \text { of water }
$$

Method : (ii)

$$
\begin{aligned}
\rho_{\mathrm{m}} & =1000 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{\mathrm{w}}=1 \mathrm{~kg} / \mathrm{m}^{3} \\
V & =20 \mathrm{~m} / \mathrm{s} \\
V & =\sqrt{2 g h\left(\frac{\rho_{m}}{\rho_{w}}-1\right)} \\
20 & =\sqrt{2 \times 9.81 \times h\left(\frac{1000}{1}-1\right)} \\
h & =20.40 \mathrm{~mm} \text { of water }
\end{aligned}
$$

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
MADE EASY
India's Best Institute for IES, GATE \& PSUs
Mechanical Engineering | Session-2
Q. 45 The surface integral $\iint_{S} F \cdot n d S$ over the surface S of the sphere $x^{2}+y^{2}+z^{2}=9$, where $F=(x+y) i+(x+z) j+(y+z) k$ and n is the unit outward surface normal, yields
\qquad $-$

Ans. (226.08)

$$
\begin{aligned}
F & =(x+y) i+(x+z) j+(y+z) k \\
\nabla \cdot F & =\frac{\partial}{\partial x}(x+y)+\frac{\partial}{\partial y}(x+z)+\frac{\partial}{\partial z}(y+z) \\
& =1+0+1=2
\end{aligned}
$$

By Gauss divergence theorem

$$
\begin{aligned}
\iint_{S} F \cdot \dot{n} d S & =\iint_{V} \nabla \cdot \bar{F} d V=\iint_{V} 2 d V \\
& =2 V \text { where } V \text { is volume of } x^{2}+y^{2}+z^{2} \\
& =2\left(\frac{4}{3} \pi(3)^{3}\right)=226.08
\end{aligned}
$$

Q. 46 A gear train shown in the figure consists of gears P, Q, R and S. Gear Q and gear R are mounted on the same shaft. All the gears are mounted on parallel shafts and the number of teeth of P, Q, R and S are 24, 45, 30 and 80 , respectively. Gear P is rotating at 400 rpm . The speed (in rpm) of the gear S is \qquad _.

Ans. (120)

$$
\begin{array}{ll}
T_{P}=24 & \\
T_{Q}=45 & N_{P}=400 \mathrm{rpm} \\
T_{R}=30 & N_{S}=? \\
T_{S}=80 &
\end{array}
$$

Here gear R is not mashing at all.

$$
\begin{align*}
& \frac{N_{P}}{N_{Q}}=\frac{T_{Q}}{T_{P}}=\frac{45}{24} \tag{1}\\
& \frac{N_{Q}}{N_{S}}=\frac{T_{S}}{T_{Q}}=\frac{80}{45} \tag{2}
\end{align*}
$$

For more Previous Solved Papers visit: www.ErForum

 브․
mRDE ERSU India's Best Institute for IES, GATE \& PSUs*

Exclusive Batches for
 G.S. \& Engineering Aptitude ESE 2018 Prelims : Paper - I

Syllabus Covered:

1. Current issues of national and international importance relating to social, economic and industrial development.
2. General Principles of Design, Drawing, Importance of Safety.
3. Standards and Quality practices in production, construction, maintenance and services.
4. Basics of Energy and Environment : Conservation, environmental pollution and degradation, Climate Change, Environmental impact assessment.
5. Basics of Project Management.
6. Basics of Material Science and Engineering.
7. Information and Communication Technologies (ICT) based tools and their applications in Engineering such as networking, e-governance and technology based education.
8. Ethics and values in Engineering profession.

Batches Starting at Delhi \& Noida Centres

Venue	Batch Type	Batch Commencement
Noida	Weekend	$25^{\text {th }} \mathrm{Feb}, 2017$
Delhi	Weekend	$25^{\text {th }} \mathrm{Feb}, 2017$
Delhi	Regular	$20^{\text {th }} \mathrm{Feb}, 2017$

Admission Open

For more Previous Solved Papers visit: www.ErForum.Net

By (1) $\times(2)$

$$
\begin{aligned}
\frac{N_{P}}{N_{S}} & =\frac{45}{24} \times \frac{80}{45} \\
N_{S} & =N_{P} \times \frac{24}{80}=\frac{400 \times 24}{80} \\
N_{S} & =120 \text { r.p.m }
\end{aligned}
$$

Q. 47 Maximize $Z=5 x_{1}+3 x_{2}$,
subject to
$x_{1}+2 x_{2} \leq 10$
$x_{1}-x_{2} \leq 8$
$x_{2}, x_{2} \geq 0$
In the starting simplex tableau, x_{1} and x_{2} are non-basic variables and the value of Z is zero. The value of Z in the next simplex tableau is \qquad -.

Ans. (40)

$$
\begin{aligned}
\text { Max. } Z & =5 x_{1}+3 x_{2}+0 \times S_{1}+0 \times S_{2} \\
x_{1}+2 x_{1}+S_{1} & =10 \\
x_{1}-x_{2}+S_{2} & =8
\end{aligned}
$$

	x_{1}	x_{2}	S_{1}	S_{2}	b_{i}	$\theta_{i}=b_{i} / a_{i j}$	Key Row
${ }_{0}^{e}{ }_{0} S_{1}$	1	2	1	0	10	10	
$0 \mathrm{~S}_{2}$	(1)*	-1	0	1	8	8	
C_{j}	5	3	0	0			Objective function will increase by ₹ 5 per unit of x_{1} and
Z_{j}	0	0	0	0			
Δ_{j}	5	3	0	0			
Key column So, total in							ase $(18 \times 5=₹ 40)$

Q. 48 A steel plate, connected to a fixed channel using three identical bolts A, B and C, carries a load of 6 kN as shown in the figure. Considering the effect of direct load and moment, the magnitude of resultant shear force (in kN) on bolt C is

(a) 13
(b) 15
(c) 17
(d) 30

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
India's Best Institute for IES, GATE \& PSUs

Ans. (c)

$$
\begin{aligned}
\begin{aligned}
& P_{P}=\frac{P}{n}=\frac{P}{3}=2 \mathrm{kN} \\
& r_{A}=r_{C}=50 ;\left(P_{S}\right)_{A}=\left(P_{S}\right)_{C} \\
& r_{B}=0 \Rightarrow\left(P_{S}\right)_{B}=0 \\
& \frac{\left(P_{S}\right)_{C}}{r_{C}}\left[r_{C}^{2}+r_{B}^{2}+r_{A}^{2}\right]=P \times e \\
&\left(P_{S}\right)_{C} \times 2 \times r_{C}=P \times e \\
&\left(P_{S}\right)_{C}=\frac{6 \times 250}{2 \times 50}=15 \mathrm{kN} \\
& \theta_{A}=180^{\circ} ; \theta_{C}=0^{\circ} \\
& \text { Resultant shear force }\left(R_{C}\right)=P_{P}+\left(P_{S}\right)_{C} \\
& R_{C}=15+17 \mathrm{kN} \\
& R_{A}=\left(P_{S}\right) A-P_{P}=13 \mathrm{kN} \\
& R_{B}=P_{P}=2 \mathrm{kN}
\end{aligned} \quad\left[\because \theta_{C}=0^{\circ}\right]
\end{aligned}
$$

Q. 49 During the turning of a 20 mm diameter steel bar at a spindle speed of 400 rpm , a tool life of 20 minute is obtained. When the same bar is turned at 200 rpm, the tool life becomes 60 minute. Assume that Taylor's tool life equation is valid. When the bar is turned at 300 rpm , the tool life (in minute) is approximately
(a) 25
(b) 32
(c) 40
(d) 50

Ans. (b)

$$
\begin{array}{ll}
V_{1}=\pi D \times 400 \mathrm{~m} / \mathrm{min} ; & T_{1}=20 \mathrm{~min} \\
V_{2}=\pi D \times 200 \mathrm{~m} / \mathrm{min} ; & T_{2}=60 \mathrm{~min}
\end{array}
$$

Now using Taylor's equation

$$
\begin{array}{rlrl}
& V_{1} T_{1}^{n} & =V_{2} T_{2}{ }^{n} \\
& \text { or } & \pi D \times 400 \times(20)^{n} & =\pi D \times 200 \times 60^{n} \\
& \text { or } & n & =0.6309 \\
& \text { and } \quad V_{3} & =\pi D \times 300 \mathrm{~m} / \mathrm{min} ; \quad T_{3}=? \\
V_{1} T_{1}^{n} & =V_{2} T_{2}{ }^{n}=V_{3} T_{3}{ }^{n} \\
\pi D \times 400 \times(20)^{0.6309} & =\pi D \times 300 \times T_{3}^{0.6309} \\
& \therefore \quad T_{3} & =31.55 \mathrm{~min} \approx 32 \mathrm{~min}
\end{array}
$$

Q. 50 A 60 mm diameter water jet strikes a plate containing a hole of 40 mm diameter as shown in the figure. Part of the jet passes through the hole horizontally, and the remaining is deflected vertically. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. If velocities are as indicated in the figure, the magnitude of horizontal force (in N) required to hold the plate is \qquad _.

For more Previous Solved Papers visit: www.ErForum.Net

Ans. (628.32)

$$
\text { Force, } \begin{aligned}
& \rho=1000 \mathrm{~kg} / \mathrm{m}^{3} \\
& F=\text { momentum } \\
& \text { inlet }
\end{aligned}=(\dot{m} v)_{\text {in }}-(\dot{m} v)_{\text {out }} .
$$

Q. 51 The principal stresses at a point in a critical section of a machine component are $\sigma_{1}=60 \mathrm{MPa}, \sigma_{2}=5 \mathrm{MPa}$ and $\sigma_{3}=-40 \mathrm{MPa}$. For the material of the component, the tensile yield strength is $\sigma_{y}=200 \mathrm{MPa}$. According to the maximum shear stress theory, the factor of safety is
(a) 1.67
(b) 2.00
(c) 3.60
(d) 4.00

Ans. (b)
As per max. shear stress theory,
safe condition for design,

$$
\begin{aligned}
\text { Absolute } \tau_{\max } & =\frac{S_{Y S}}{N} \text { or } \frac{S_{Y t}}{2 N} \\
\text { Absolute } \tau_{\max } & =\text { larger of }\left[\left|\frac{\sigma_{1}-\sigma_{2}}{2}\right|,\left|\frac{\sigma_{2}-\sigma_{3}}{2}\right|,\left|\frac{\sigma_{3}-\sigma_{1}}{2}\right|\right] \\
& =\left|\frac{\sigma_{3}-\sigma_{1}}{2}\right| \quad\left[\because \sigma_{1} \text { and } \sigma_{3} \text { are unlike in nature }\right] \\
& =\left|\frac{-40-60}{2}\right|=50 \mathrm{MPa}
\end{aligned}
$$

Hence,

$$
50=\frac{200}{2(N)}
$$

$$
N=2
$$

For more Previous Solved Papers visit: www.ErForum.Net

Q. 52 A single-plate clutch has a friction disc with inner and outer radii of 20 mm and 40 mm , respectively. The friction lining in the disc is made in such a way that the coefficient of friction μ varies radially as $\mu=0.01 r$, where r is in mm . The clutch needs to transmit a friction torque of 18.85 kN mm . As per uniform pressure theory, the pressure (in MPa) on the disc is \qquad _.

Ans. (0.5)

$$
d_{A}=2 \pi r(d r)
$$

Normal load on elemental ring $(d W)=p 2 \pi r d r$
Frictional force on elemental ring $\left(d F_{f}\right)=\mu d W$
Frictional torque transmitted by elemental ring,

Hence,

$$
\begin{aligned}
& d T_{f}=\left(d F_{f}\right) r \\
& d T_{f}=\mu p 2 \pi r^{2} d r
\end{aligned}
$$

Total frictional torque transmitted by clutch plate $\left(T_{f}\right)=\int_{R_{i}}^{R_{0}} d T_{f}$

$$
T_{f}=\int_{R_{i}}^{R_{0}} \mu p 2 \pi r^{2} d r
$$

As per U.P.T.

$$
\begin{aligned}
& T_{f}=2 \pi p \int_{R_{i}}^{R_{0}} \mu r^{2} d r \\
& T_{f}=2 \pi p \int_{R_{i}}^{R_{0}}(0.01 r) r^{2} d r
\end{aligned}
$$

$$
\left(T_{f}\right)_{\text {U.P.T. }}=(2 \pi p)(0.01)\left[\frac{R_{0}^{4}-R_{i}^{4}}{4}\right]
$$

$$
18.85 \times 10^{3}=2 \pi p(0.01)\left[\frac{40^{4}-20^{4}}{4}\right]
$$

$$
p=0.5 \mathrm{MPa}
$$

Q. 53 A product made in two factories, P and Q, is transported to two destinations, R and S. The per unit costs of transportation (in Rupees) from factories to destinations are as per the following matrix:

Factory	Destination	R

Factory P produces 7 units and factory Q produces 9 units of the product. Each destination requires 8 units. If the north-west corner method provides the total transportation cost X (in Rupees) and the optimized (the minimum) total transportation cost is Y (in Rupees), then $(X-Y$), in Rupees, is
(a) 0
(b) 15
(c) 35
(d) 105

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
Mechanical Engineering | Session-2

Ans. (*)

$$
X=105
$$

Using penalty corner method and following modi method we get

- 4 water value indicates that its optimum table, so

$$
\begin{aligned}
Y & =7 \times 7+3 \times 8+4=49+24+4=78 \\
X-Y & =105-77=28
\end{aligned}
$$

Q. 54 One kg of an ideal gas (gas constant $R=287 \mathrm{~J} / \mathrm{kgK}$) undergoes an irreversible process from state-1 (1 bar, 300 K) to state-2 (2 bar, 300 K). The change in specific entropy $\left(s_{2}-s_{1}\right)$ of the gas (in $\mathrm{J} / \mathrm{kgK}$) in the process is \qquad —.

Ans. (-198.93)
Change in specific entropy of ideal gas

$$
\begin{aligned}
s_{f}-s_{i} & =c_{p} \ln \frac{T_{f}}{T_{i}}-R \ln \frac{P_{f}}{P_{i}} \\
& =1005 \ln \frac{300}{300}-287 \ln \frac{2}{1} \\
& =0-287 \ln 2=-198.93 \mathrm{~J} / \mathrm{kg}-\mathrm{K}
\end{aligned}
$$

Q. 55 A project starts with activity A and ends with activity F. The precedence relation and durations of the activities are as per the following table:

Activity	Immediate predecessor	Duration (days)
A	-	4
B	A	3
C	A	7
D	B	14
E	D	4
F	E	9

The minimum project completion time (in days) is \qquad .

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
India's Best Institute for IES, GATE \& PSUs Mechanical Engineering | Session-2

Ans. (30)

There are two path,

$$
\begin{aligned}
& A-B-D-F=30 \text { days } \\
& A-C-E-F=24 \text { days }
\end{aligned}
$$

Critical path $A-B-D-F$ and of 30 days and it is also minimum time required to complete a project.

GENERAL APTITUDE

Q. 1 If a and b are integers and $a-b$ is even, which of the following must always be even?
(a) $a b$
(b) $a^{2}+b^{2}+1$
(c) $a^{2}+b+1$
(d) $a b-b$

Ans. (d)
Q. 2 The ways in which this game can be played \qquad potentially infinite.
(a) is
(b) is being
(c) are
(d) are being

Ans. (a)
Q. 3 If you choose plan P, you will have to \qquad plan Q, as these two are mutually \qquad -.
(a) forgo, exclusive
(b) forget, inclusive
(c) accept, exhaustive
(d) adopt, intrusive

Ans. (a)
Q. $4 P$ looks at Q while Q looks at R, P is married, R is not. The number of pairs of people in which a married person is looking at an unmarried person is
(a) 0
(b) 1
(c) 2
(d) cannot be determined

Ans. (d)

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination
Mechanical Engineering | Session-2
Q. 5 A couple has 2 children. The probability that both children are boys if the older one is a boy is
(a) $1 / 4$
(b) $1 / 3$
(c) $1 / 2$
(d) 1

Ans. (c)
Q. 6 All people in a certain island are either 'Knights' or 'Knaves' and each person knows every other person's identity. Knights NEVER lie, and knaves ALWAYS lie.
P says 'Both of us are knight'. Q says 'None of us are knaves'
Which one of the following can be logically inferred from the above?
(a) Both P and Q are knights
(b) P is a knight; Q is a knave
(c) Both P and Q are knaves
(d) The identities of P, Q cannot be determined

Ans. (d)
Q. 7 There are 4 women P, Q, R, S and 5 men V, W, X, Y, Z in a group. We are required to form pairs each consisting of one woman and one man. P is not to be paired with Z, and Y must necessarily be paired with someone. In how many ways can 4 such pairs be formed?
(a) 74
(b) 76
(c) 78
(d) 80

Ans. (c)
Q. 8 In the graph below, the concentration of a particular pollutant in a lake is plotted over (alternate) days of a month in winter (average temperature $10^{\circ} \mathrm{C}$) and a month in summer (average temperature $30^{\circ} \mathrm{C}$)

For more Previous Solved Papers visit: www.ErForum.Net

GATE 2017 : Examination Mechanical Engineering | Session-2

Consider the following statements based on the data shown above:
i. Over the given month, the difference between the maximum and the minimum pollutant concentrations is the same in both winter and summer.
ii. There are at least four days in the summer month such that the pollutant concentrations on those days are within 1 ppm of the pollutant concentrations on the corresponding days in the winter month.
Which one of the following options is correct?
(a) only i
(b) only ii
(c) both i and ii
(d) Neither i nor ii

Ans. (b)
Q. 9 X bullocks and Y tractors take 8 days to plough a field. If we halve the number of bullocks and double the number of tractors, it takes 5 days to plough the same field. How many days will it take X bullocks alone to plough the field?
(a) 30
(b) 35
(c) 40
(d) 45

Ans. (a)
Q. 10 If you are looking for a history of India, or for an account of the rise and fall of the British Raj, or for the reason of the cleaving of the subcontinent into two mutually antagonistic parts and the effects this mutilation will have in the respective sections, and ultimately on Asia, you will not find it in these pages; for though I have spent a lifetime in the country, I lived too near the seat of events, and was too intimately associated with the actors, to get the perspective needed for the impartial recording of these matters."
Which of the following is closest in meaning to 'cleaving'?
(a) deteriorating
(b) arguing
(c) departing
(d) splitting

Ans. (d)

