

GENERAL APTITUDE

Q. 1 Suresh wanted to lay a new carpet in his new mansion with an area of $70 \times 55 \mathrm{sq}$. mts. However an area of 550 sq . mts. had to be left out for flower pots. If the cost of carpet is Rs. 50 per sq. mts., how much money (in Rs.) will be spent by Suresh for the carpet now?
(a) Rs. 1,65, 000
(b) Rs. 2,75, 000
(c) Rs. 1,92, 500
(d) Rs. 1,27, 500

Ans. (a)

$$
\text { Cost of carpet }=[70 \times 55-550] \times 50=\text { Rs. } 1,65,000
$$

Q. 2 Daytime temperatures in Delhi can \qquad $40^{\circ} \mathrm{C}$.
(a) get
(b) peak
(c) reach
(d) stand

Ans. (c)
Daytime temperatures in Delhi can reach 40°.
Q. 3 A retaining wall with measurements $30 m \times 12 m \times 6 \mathrm{~m}$ was constructed with bricks of dimensions $8 \mathrm{~cm} \times 6 \mathrm{~cm} \times 6 \mathrm{~cm}$ If 60% of the wall consists of bricks, the number of bricks used for the construction is \qquad lakhs.
(a) 30
(b) 40
(c) 75
(d) 45

Ans. (d)
Number of bricks $=$

$$
\begin{aligned}
\Rightarrow 30 \times 12 \times 6 \times 10^{6} \times 0.6 & =8 \times 6 \times 6 \times x \\
x & =4.5 \times 10^{6}=45 \times 10^{5}=45 \text { lakhs bricks }
\end{aligned}
$$

Q. 4 Hima Das was \qquad only Indian athlete to win \qquad gold for India.
(a) the, a
(b) $a n, a$
(c) an, the
(d) the, many

Ans. (a)
Hima Das was the only Indian athlete to win a gold for India.
Q. 5 The growth rate of ABC Motors in 2017 was the same \qquad XYZ Motors in 2016.
(a) as that off
(b) as those of
(c) as off
(d) as that of

Ans. (d)
The growth of ABC motors was same in 2017 as that of XYZ motors in 2016. Subject of the sentence is 'The growth of $A B C$ motors'. It is to be compared with the growth of XYZ motors hence use of 'that of' is appropriate.
Q. 6 Mohan, the manager, wants his four workers to work in pairs. No pair should work for more than 5 hours. Ram and John have worked together for 5 hours. Krishna and Amir have worked as a team for 2 hours. Krishna does not want to work with Ram. Whom should Mohan allot to work with John, if he wants all the workers to continue working?
(a) Amir
(b) Krishna
(c) Ram
(d) None of the three

Ans. (b)
Ram and John $=5$ hours
Krishna and Amir = 2 hours
Krishna does not work with Ram.
Now pair will be

> John and Krishna
> Ram and Amir

Given all the workers to continue working. John and Krishna will be one pair.
Q. 7 "Popular Hindi fiction, despite - or perhaps because of - its wide reach, often does not appear in our cinema. As ideals that viewers are meant to look up to rather than identify with, Hindi film protagonists usually read books of aspirational value: textbooks, English books, or high value literature.'

Which one of the following CANNOT be inferred from the paragraph above?
(a) Protagonists in Hindi movies, being ideals for viewers, read only books of aspirational value
(b) People do not look up to writers of textbooks, English books or high value literature
(c) Though popular Hindi fiction has wide reach: it often does not appear in the movies
(d) Textbooks, English books or high literature have aspirational value, but not popular Hindi Fiction

Ans. (a)
The statement "Protagonists in Hindi movies read ONLY books of aspirational value" is contradictory to the expression in the passage "Hindi film protagonists usually read books of aspirational value: textbooks, English books, or high value literature."
Q. 8 Population of state X increased by $x \%$ and the population of state Y increased by $\mathrm{y} \%$ from 2001 to 2011. Assume that x is greater than y. Let P be the ratio of the population of state X to state Y in a given year. The percentage increase in P from 2001 to 2011 is \qquad -

Commencing from
$20^{\text {th }}$ Feb, 2019
These batches are offered only at Delhi Centre.

$17^{\text {tr }}$ Mar, 2019
Test series will be conducted at all MADE EASY centres across India.

Features:

- Very useful to develop numerical solving approach \& improving writing skills.
- Special focus on improving answer layout specially for theory questions.
- Classes will be delivered by senior faculties.
- Updated Mains workbook for every subject having varied practice question sets.
- Test series will be conducted on every Sunday in synchronisation with the subject taught in class.
- Discussion on probable questions.
- Comprehensive and in-depth discussion on variety of conventional questions, thus strengthening fundamental concepts.
Batch
Details

Course Duration

90 days $/ 300-350$ hours

Class Duration
5-6 days a week and 6-7 hours a day

Test Series
Every Sunday

Streams	Batch Code	Batch Commencing Date	Venue (Delhi)	Timing
ME	A	20-Feb-2019	Ghitorni Centre	7:30 AM to 1:30 PM
ME	B	20-Feb-2019	Ghitorni Centre	3:00 PM to 9:00 PM
ME	C	$20-$-eb-2019	Saket Centre	7:30 AM to 1:30 PM
CE	A	21-Feb-2019	Ignou Road Centre	7:30 AM to 1:30 PM
CE	B	21-Feb-2019	Kalu Sarai Centre	3:00 PM to 9:00 PM
EE	A	22-Feb-2019	Lado Sarai Centre	7:30 AM to 1:30 PM
EE	B	22-Feb-2019	Kalu Sarai Centre	3:00 PM to 9:00 PM
EC	A	22-Feb-2019	Lado Sarai Centre	7:30 AM to 1:30 PM

$\begin{gathered} \text { Fee } \\ \text { Structure } \end{gathered}$	Program	Ex. MADE EASY Students Enrolled in Postal, Rank Improvement, Mains, GS, Post-GATE, ESE+ GATE, GATE Batches	Non MADE EASY students
	Mains Exclusive Batch (Inclusive of ESE-2019 Mains Offline Test Series)	₹ 18,500	₹ 22,500
	ESE 2019 Mains Offline Test Series	Rs. 3,500/- Rs. 2,500/-	Rs. $4,500 /-\quad$ Rs. 3,500/-

RS. 1000/- Discount on test series valid till 15-02-2019

Hostel facility will be arranged
(a) $\frac{x}{y}$
(b) $\frac{100(x-y)}{100+y}$
(c) $x-y$
(d) $\frac{100(x-y)}{100+x}$

Ans. (b)
Let a, b be initial population
Given

$$
\frac{a}{b}=p(\text { ratio earlier })
$$

$$
\frac{a\left(1+\frac{x}{100}\right)}{b\left(1+\frac{y}{100}\right)}=p^{\prime} \text { (new ratio) }
$$

So, required \% change,

$$
\frac{p^{\prime}-p}{p} \times 100=\left[\frac{\frac{a}{b}\left(\frac{100+x}{100+y}\right)-\frac{a}{b}}{\frac{a}{b}}\right] \times 100=\frac{100(x-y)}{100+y}
$$

Q. 9 An oil tank can be filled by pipe X in 5 hours and pipe Y in 4 hours, each pump working on its own. When the oil tank is full and the drainage hole is open, the oil is drained in 20 hours. If initially the tank was empty and someone started the two pumps together but left the drainage hole open, how many hours will it take for the tank to be filled? (Assume that the rate of drainage is independent of the Head)
(a) 4.00
(b) 1.50
(c) 2.00
(d) 2.50

Ans. (d)
Let

$$
\begin{aligned}
\text { inlet pipes, } A & =4 \text { hours } \\
B & =5 \text { hours } \\
\text { outlet pipe, } C & =20 \text { hours }
\end{aligned}
$$

In 1 hour $(A+B+C)$ can fill $=\frac{1}{4}+\frac{1}{5}-\frac{1}{20}=\frac{8}{20}=\frac{2}{5}$

$$
(A+B+C) \text { together }=\frac{5}{2}=2.5 \text { hours }
$$

Q. 10 The Newspaper reports that over 500 hectares of tribal land spread across 28 tribal settlements in Mohinitampuram forest division have already been "alienated". A top forest official said, "First the tribals are duped out of their land holdings. Second, the families thus rendered landless are often forced to encroach further into the forests".

On the basis of the information available in the paragraph \qquad is/are responsible for duping the tribals.
(a) The Newspaper
(b) it cannot be inferred who
(c) forest officials
(d) landless families

Ans. (b)
The Newspaper is just reporting the matter, it cannot be responsible for duping the tribals.
A top forest official made statement about tribals being duped hence officials cannot be responsible for duping the tribals.

CIVIL ENGINEERING

Q. 1 The notation "SC" as per Indian Standard Soil Classification System refers to
(a) Silty clay
(b) Clayey sand
(c) Sandy clay
(d) Clayey silt

Ans. (b)

$$
\text { SC } \rightarrow \text { Clayey sand }
$$

Q. 2 The speed-density relationship in a mid-block section of a highway follows the Greenshield's model. If the free flow speed is v_{f} and the jam density is k_{j} the maximum flow observed on this section is
(a) $\frac{v_{f} k_{j}}{4}$
(b) $\frac{v_{f} k_{j}}{2}$
(c) $v_{t} k_{j}$
(d) $\frac{v_{f} k_{j}}{8}$

Ans. (a)

$$
\text { maximum flow }=\frac{1}{4} v_{f} k_{j}
$$

Q. 3 A vehicle is moving on a road of grade $+4 \%$ at a speed of $20 \mathrm{~m} / \mathrm{s}$. Consider the coefficient of rolling friction as 0.46 and acceleration due to gravity as $10 \mathrm{~m} / \mathrm{s}^{2}$. On applying brakes to reach a speed of $10 \mathrm{~m} / \mathrm{s}$, the required braking distance (in m , round off to nearest integer) along the horizontal, is \qquad _.

Ans. (30)

$$
\begin{aligned}
\frac{m}{2}\left[v_{2}^{2}-v_{1}^{2}\right] & =-L m g[\tan \theta+f] \\
\Rightarrow \quad \frac{v_{1}^{2}-v_{2}^{2}}{2 g} & =L[\tan \theta+f] \\
\frac{20^{2}-10^{2}}{2 \times 10} & =L[0.04+0.46] \\
L & =30 \mathrm{~m}
\end{aligned}
$$

Now braking distance along horizontal $=[L \cos \theta]$

$$
=30 \times 0.999=29.97 \mathrm{~m} \simeq 30 \mathrm{~m} \text { (Near integer) }
$$

Q. 4 The Laplace transform of $\sin h(a t)$ is
(a) $\frac{s}{s^{2}+a^{2}}$
(b) $\frac{s}{s^{2}-a^{2}}$
(c) $\frac{a}{s^{2}-a^{2}}$
(d)

Ans. (c)

$$
L(\sin h(a t))=\frac{a}{s^{2}-a^{2}}
$$

Q. 5 The value of the function $\mathrm{f}(x)$ is given at n distinct values of x and its value is to be interpolated at the point x^{*}, using all the n points. The estimate is obtained first by the Lagrange polynomial, denoted by I_{L} and then by the Newton polynomial, denoted by I_{N}. Which one of the following statements is correct?
(a) I_{L} is always greater than I_{N}
(b) No definite relation exists between I_{L} and I_{N}
(c) I_{L} and I_{N} are always equal
(d) I_{L} is always less than I_{N}

Ans. (b)

End of Solution
Q. 6 A closed thin-walled tube has thickness, t , mean enclosed area within the boundary of the centerline of tube's thickness, A_{m} and shear stress, τ. Torsional moment of resistance T , of the section would be
(a) $2 \tau A_{m} t$
(b) $4 \tau A_{m} t$
(c) $\tau A_{m} t$
(d) $0.5 \tau A_{m} t$

Ans. (a)

$$
\begin{aligned}
\text { Shear stress, } \tau & =\frac{T}{J} R=\frac{T}{2 \pi R^{3} t} R \\
\therefore & =\frac{T}{2 \pi R^{2} t}=\frac{T}{2 A_{m} \cdot t} \\
\therefore \quad T & =2 \tau A_{m} t
\end{aligned}
$$

Q. 7 If the fineness modulus of a sample of fine aggregates is 4.3, the mean size of the particles in the sample is between
(a) $300 \mu \mathrm{~m}$ and $600 \mu \mathrm{~m}$
(b) 2.36 mm and 4.75 mm
(c) 1.18 mm and 2.36 mm
(d) $150 \mu \mathrm{~m}$ and $300 \mu \mathrm{~m}$

Ans. (c)
The sieves that are to be used for the sieve analysis of the aggregate (coarse, fine, or all-in-aggregate) for concrete as per IS:2386 (Part I) -1963 are, $80 \mathrm{~mm}, 40 \mathrm{~mm}$, $20 \mathrm{~mm}, 10 \mathrm{~mm}, 4.75 \mathrm{~mm}, 2.36 \mathrm{~mm}, 1.18 \mathrm{~mm}, 600 \mu \mathrm{~m}, 300 \mu \mathrm{~m}$ and $150 \mu \mathrm{~m}$.
The fineness modulus can be regarded as a weighted average size of a sieve on which material is retained and the sieves being counted from the first sieve.
Fineness modulus of 4.3 indicates size between $4^{\text {th }}$ and $5^{\text {th }}$ sieve i.e., between 1.18 mm and 2.36 mm .
Q. 8 The degree of static indeterminacy of the plane frame as shown in the figure is \qquad

Ans. (15)

$$
\begin{aligned}
D_{s e} & =7-3=4 \\
D_{s i} & =(3 \times 4)-(2-1)=11 \\
D_{s} & =15
\end{aligned}
$$

Q. 9 The characteristic compressive strength of concrete required in a project is 25 MPa and the standard deviation in the observed compressive strength expected at site is 4 MPa . The average compressive strength of cubes tested at different water-cement (w/c) ratios using the same material as is used for the project is given in the table.

w/c(\%)	45	50	55	60
Average compressive strength of cubes (MPa)	35	25	20	15

The water-cement ratio (in percent, round off to the lower integer) to be used in the mix is \qquad _.

Ans. (46)

$$
\begin{aligned}
\text { Target mean strength } & =f_{c k}+1.65 \sigma \\
& =25+1.65 \times 4.0=31.6 \\
\text { Water content required, } & =50-\frac{(50-45)}{(35-25)} \times(31.6-25)=46.7 \%
\end{aligned}
$$

```
say 46%(round off to the lower integer)
```

Q. 10 Structural failures considered in the mechanistic method of bituminous pavement design are
(a) Fatigue and Rutting
(b) Fatigue and Shear
(c) Shear and Slippage
(d) Rutting and Shear

Ans. (a)
Q. 11 The following inequality is true for all x close to 0 .

$$
2-\frac{x^{2}}{3}<\frac{x \sin x}{1-\cos x}<2
$$

What is the value of $\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x}$?
(a) 1
(b) 0
(c) $\frac{1}{2}$
(d) 2

Ans. (d)

$$
\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x}
$$

$$
\lim _{x \rightarrow 0} \frac{\sin x}{\frac{1-\cos x}{x}}=\lim _{x \rightarrow 0} \frac{\frac{\sin x}{x}}{\frac{1-\cos x}{x^{2}}}=\frac{1}{1 / 2}=2
$$

Rest of India (Regular Batches)

Patna	Lucknow	Bhopal	Indore	Jaipur
25-Feb'19	20-Feb'19	$25-$ Feb'19	20-Feb'19	17-Feb'19
Pune	Hyderabad	Bhubaneswar	Kolkata	
11-Feb'19	17 -Feb'19	25 -Feb'19	2-Mar'19	

Admission open

Q. 12 The command area of a canal grows only one crop. i.e., wheat. The base period of wheat is 120 days and its total water requirement, Δ, is 40 cm . If the canal discharge is 2 $\mathrm{m}^{3} / \mathrm{s}$, the area, in hectares, rounded off to the nearest integer, which could be irrigated (neglecting all losses) is \qquad -

Ans. (5184)
Given data:
Base period, $B=120$ days
Delta of crop, $\Delta=40 \mathrm{~cm}$
Discharge, $Q=2 \mathrm{~m}^{3} / \mathrm{s}$
Area to be irrigated, $A=$?
$\therefore \quad$ Duty of water, $\Delta=\frac{864 \times B}{\Delta}$ ha/cumec
and Area to be irrigated; $A=Q \times D$

$$
\begin{array}{ll}
\Rightarrow & A=2 \times \mathrm{m}^{3} / \mathrm{s} \times \frac{864 \times 120}{40} \times \frac{\text { ha }}{\text { cumec }} \\
\Rightarrow & A=5184 \text { ha }
\end{array}
$$

Q. 13 A solid sphere of radius, r and made of material with density, ρ_{s} is moving through the atmosphere (constant pressure, p) with a velocity, v. The net force ONLY due to atmospheric pressure $\left(F_{p}\right)$ acting on the sphere at any time t, is
(a) $4 \pi r^{2} p$
(b) $\frac{4}{3} \pi r^{3} \rho_{s} \frac{d v}{d t}$
(c) $\pi r^{2} p$
(d) zero

Ans. (d)
Q. 14 A steel column is restrained against both translation and rotation at one end and is restrained only against rotation but free to translate at the other end. Theoretical and design (IS:800-2007) values, respectively, of effective length factor of the column are
(a) 1.0 and 1.2
(b) 1.2 and 1.0
(c) 1.0 and 1.0
(d) 1.2 and 1.2

Ans. (a)
Q. 15 For a channel section subjected to a downward vertical shear force at its centroid, which one of the following represents the correct distribution of shear stress in flange and web?
(a)

(b)

(c)

(d)

Ans. (c)
Shear flow distribution for channel.

Q. 16 An anisotropic soil deposit has coefficient of permeability in vertical and horizontal directions as k_{z} and k_{x}, respectively. For constructing a flow net, the horizontal dimension of the problem's geometry is transformed by a multiplying factor of
(a) $\frac{k_{x}}{k_{z}}$
(b) $\sqrt{\frac{k_{z}}{k_{x}}}$
(c) $\sqrt{\frac{k_{x}}{k_{z}}}$
(d) $\frac{k_{z}}{k_{x}}$

Ans. (b)

$$
X=X_{T} \sqrt{\frac{k_{x}}{k_{z}}}
$$

Transformed horizontal dimension, $X_{T}=X \sqrt{\frac{k_{z}}{k_{x}}}$
Q. 17 An earthen dam of height H is made of cohesive soil whose cohesion and unit weight are c and γ, respectively. If the factor of safety against cohesion is F_{c}, the Taylor's stability number $\left(S_{n}\right)$ is
(a) $\frac{c}{F_{c} \gamma H}$
(b) $\frac{c F_{c}}{\gamma H}$
(c) $\frac{\gamma H}{c F_{c}}$
(d) $\frac{F_{c} \gamma H}{c}$

Ans. (a)

$$
S_{n}=\frac{c}{\gamma H_{c}}=\frac{c}{\gamma F_{c} H} \quad\left\{\because F_{c}=\frac{H_{c}}{H}\right\}
$$

Q. 18 The velocity field in a flow system is given by $v=2 \boldsymbol{i}+(x+y) \boldsymbol{j}+(x y z) \boldsymbol{k}$. The acceleration of the fluid at $(1,1,2)$ is
(a) $4 i+12 k$
(b) $2 i+10 k$
(c) $\mathrm{j}+\mathrm{k}$
(d) $4 j+10 k$

Ans. (d)

$$
\begin{aligned}
& \vec{v}=2 \hat{i}+(x+y) \hat{j}+x y z \hat{k} \\
& u=2 \\
& v=x+y \\
& w=x y z \\
& a_{x}=u \cdot \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}+\frac{\partial u}{\partial t}=0 \\
& a_{y}=u \cdot \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}+\frac{\partial v}{\partial t}=2+(x+y) \\
& a_{y}=x+y+2 \\
& a_{z}=u \cdot \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}+\frac{\partial w}{\partial t}
\end{aligned}
$$

MADE EASY
India's Best Institute for IES, GATE \& PSUs

At (1, 1, 2)

$$
\begin{aligned}
& =2(y z)+(x+y)(x z)+x y z(x y) \\
a_{z} & =2 y z+x^{2} z+x y z+x^{2} y^{2} z \\
a_{y} & =1+1+2=4 \\
a_{z} & =2(1)(2)+(1)^{2}(2)+(1)(1)(2)+(1)^{2}(1)^{2}(2) \\
& =4+2+2+2=10 \\
\vec{a} & =4 \hat{j}+10 \hat{k}
\end{aligned}
$$

Q. 19 An inflow hydrograph is routed through a reservoir to produce an outflow hydrograph. The peak flow of the inflow hydrograph is P_{I} and the time of occurrence of the peak is t_{I}. The peak flow of the outflow hydrograph is P_{o} and the time of occurrence of the peak is t_{0}. Which one of the following statements is correct?
(a) $P_{I}>P_{o}$ and $t_{I}>t_{o}$
(b) $P_{I}>P_{o}$ and $t_{I}<t_{o}$
(c) $P_{I}<P_{o}$ and $t_{I}<t_{o}$
(d) $P_{I}<P_{o}$ and $t_{I}>t_{o}$

Ans. (b)

The outflow from the reservoir is uncontrolled therefore peak of outflow hydrograph will occur at the junction of inflow and outflow hydrograph.

$$
t_{0}<t_{0}
$$

Q. 20 Euclidean norm (length) of the vector $\left[\begin{array}{lll}4 & -2 & -6\end{array}\right]^{\top}$ is
(a) $\sqrt{48}$
(b) $\sqrt{56}$
(c) $\sqrt{24}$
(d) $\sqrt{12}$

Ans. (b)

$$
\begin{aligned}
& \qquad x=\left[\begin{array}{c}
4 \\
-2 \\
-6
\end{array}\right] \\
& \text { Euclidean norm length }=\sqrt{16+4+36}=\sqrt{56}
\end{aligned}
$$

Q. 21 The data from a closed traverse survey PQRS (run in the clockwise direction) are given in the table

Line	Included angle (in degrees)
$P Q$	88
$Q R$	92
$R S$	94
$S P$	89

The closing error for the traverse PQRS (in degrees) is \qquad .

Ans. (3)
Assuming it as anticlockwise traverse.
Mathematically sum of interior angle for a closed traverse

$$
=(2 n-4) \times 90=(2 \times 4-4) \times 90=4 \times 90=360^{\circ}
$$

Given sum of interior angles,

$$
=88+92+94+89=363^{\circ}
$$

Then error in interior angle $=363-360=3^{\circ}$
Note: In this question as per clockwise traverse included angle should be taken as exterior angle. But if we take exterior angle then we get all interior angles more than 180°.
Q. 22 What is curl of the vector field $2 x^{2} y \mathbf{i}+5 z^{2} j-4 u y z k$?
(a) $-14 z \mathbf{z}-2 x^{2} \mathbf{k}$
(b) $6 z i+4 x^{2} j-2 x^{2} k$
(c) $-14 z i+6 y j+2 x^{2} k$
(d) $6 z i-8 x y j+2 x^{2} y k$

Ans. (a)

$$
\begin{aligned}
\text { curl } \bar{F} & =\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
2 x^{2} y & 5 z^{2} & -4 y z
\end{array}\right| \\
& =\bar{i}(-4 z-10 z)-\bar{j}(0-0)+\bar{k}\left(0-2 x^{2}\right) \\
& =-14 z \mathbf{z}-2 x^{2} \mathbf{k}
\end{aligned}
$$

Q. 23 Analysis of a water sample revealed that the sample contains the following species.
$\mathrm{CO}_{3}^{2-}, \mathrm{Na}^{+}, \mathrm{PO}_{4}^{3-}, \mathrm{Al}^{3+}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{Cl}^{-}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{HCO}_{3}^{-}, \mathrm{Fe}^{2+}, \mathrm{OH}^{-}$
Concentrations of which of the species will be required to compute alkalinity?
(a) $\mathrm{CO}_{3}^{2-}, \mathrm{H}^{+}, \mathrm{HCO}_{3}^{-}, \mathrm{OH}^{-}$
(b) $\mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{OH}^{-}$
(c) $\mathrm{CO}_{3}^{2-}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}, \mathrm{OH}^{-}$
(d) $\mathrm{CO}_{3}^{2-}, \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCO}_{3}^{-}$

Ans. (a)
Alkalinity is defined as ability of water to neutralize the acid or hydronium ion
Alkalinity $\left(\mathrm{A}_{\mathrm{T}}\right)$ of water $=\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{B}(\mathrm{OH})_{4}^{-}\right]+\left[\mathrm{H}_{3}\left(\mathrm{SiO}_{4}\right)^{-}\right]+\left[\mathrm{HS}^{-}\right]+$organic anions $]+\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]$
From given options of ions in problem answer is (a).
i.e. $\mathrm{CO}_{3}{ }^{2-}, \mathrm{H}^{+}, \mathrm{HCO}_{3}^{-}, \mathrm{OH}^{-}$
Q. 24 Construction of a new building founded on a clayey soil was completed in January 2010. In January 2014, the average consolidation settlement of the foundation in clay was recorded as 10 mm . The ultimate consolidation settlement was estimated in design as 40 mm . Considering double drainage to occur at the clayey soil site, the expected consolidation settlement in January 2019 (in mm, roundoff to the nearest integer) will be \qquad _.

Ans. (15)
Jan. 2010 - Jan. 2014 (4 years)
\Rightarrow Settlement is 10 mm

$$
\Delta H=40 \mathrm{~mm}
$$

2 - way drainage
Settlement in Jan. 2019 (in 9 years) = ?
In 4 years,

$$
\% U=\frac{\Delta h}{\Delta H} \times 100=\frac{10}{40} \times 100=25 \%
$$

$$
T_{v}=\hat{C}_{v} \frac{t}{d^{2}}
$$

$\Rightarrow \quad T_{v}=\frac{\pi}{4} U^{2}$

$$
\begin{equation*}
\frac{\pi}{4}\left(\frac{25}{100}\right)^{2}=\frac{C_{V}}{d^{2}} \times 4 \text { years } \tag{1}
\end{equation*}
$$

In 9 years

$$
T_{v}=\frac{C_{v} t}{d^{2}}=\left\{\frac{\pi}{4} \times \frac{(0.25)^{2}}{4}\right\} \times 9 \text { years }=0.11044
$$

$$
\begin{aligned}
\left(T_{V}\right)_{60} & =0.283 \\
\% U & <60 \%
\end{aligned}
$$

$$
\begin{array}{rlrl}
\therefore & T_{v} & =0.11044=\frac{\pi}{4} U^{2} \\
& \% U & =0.3749=37.499 \% \\
& \therefore & \% U & =\frac{\Delta h}{\Delta H} \times 100=\frac{\Delta h}{40 \mathrm{~mm}} \times 100=37.499 \\
& \Delta h & =14.99 \mathrm{~mm}=15 \mathrm{~mm}
\end{array}
$$

Q. 25 Which one of the following options contains ONLY primary air pollutants?
(a) Ozone and peroxyacetyl nitrate
(b) Hydrocarbons and ozone
(c) Hydrocarbons and nitrogen oxides
(d) Nitrogen oxides and peroxyacetyl nitrate

Ans. (c)
Hydrocarbons and nitrogen oxides are considered primary air pollutants.
Q. 26 Consider the reactor shown in the figure. The flow rate through the reactor is $\mathrm{Q} \mathrm{m}^{3} / \mathrm{h}$. The concentrations (in mg / L) of a compound in the influent and effluent are C_{0} and C , respectively. The compound is degraded in the reactor following the first order reaction. The mixing condition of the reactor can be varied such that the reactor becomes either a completely mixed flow reactor (CMFR) or a plug-flow reactor (PFR). The length of the reactor can be adjusted in these two mixing conditions to $L_{C M F R}$ and $L_{P F R}$ while keeping the cross-section of the reactor constant. Assuming steady state and for $\mathrm{C} / \mathrm{C}_{0}=0.8$, the value of $L_{\text {CMFR }} / L_{\text {PFR }}$ (round off to 2 decimal places) is \qquad -.

Ans. (1.12)

For (CMFR) completely mixed flow reactor

For (PFR) plug flow reactor

$$
c=c_{0} e^{-k t}
$$

As

$$
c / c_{0}=0.8
$$

For CMFR

$$
0.8=\frac{1}{1+k t_{C M F R}}
$$

$$
\begin{equation*}
t_{\mathrm{CMFR}}=\frac{0.25}{k} \tag{i}
\end{equation*}
$$

For PFR

$$
\begin{equation*}
0.8=e^{-k t_{P F R}} \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad t_{\text {PFR }}=\frac{0.22314}{k}$
Now for steady state

$$
\begin{aligned}
& v=\text { constant } \\
& L=v t
\end{aligned}
$$

and
So,

$$
\frac{L_{C M F R}}{L_{P F R}}=\frac{v t_{C M F R}}{v t_{P F R}}=\frac{0.25}{0.22314}=1.12
$$

mADE ERSㄴ

India's Best Institute for IES, GATE \& PSUs

Examination, 2019

Admission Open in Classroom Course for RRB-JE [CBT-1]

Classroom Centres: Delhi | Lucknow | Patna

Batches commencing from 14 in $^{\text {th }} 1$, 2119 All streams are eligible

Fee Structure : Classroom Course (RRB-JE)				
Exam	Course Duration	Timing	Freshers	Ex. MADE EASY Students Enrolled in any classroom/postal courses
CBT 1 (only)	50 Days (180-200 hours)	7 days a week 4 hours per day	Rs. $10,170+$ GST = Rs. $12,000 /-$	Rs. $7,628+$ GST = Rs. $9,000 /-$

Delhi:
7303231082, 7303212325

Lucknow :
09919111168 , 08400029422

Patna :

0612-2356615, 9955991166
Q. 27 A rolled I-section beam is supported on a 75 mm wide bearing plate as shown in the figure. Thicknesses of flange and web of the I-section are 20 mm and 8 mm , respectively. Root radius of the I-section is 10 mm . Assume: material yield stress, $f_{y}=250 \mathrm{MPa}$ and partial safety factor for material. $\gamma_{\mathrm{mo}}=1.10$.

As per IS: 800-2007, the web bearing strength (in kN , round off to 2 decimal places) of the beam is \qquad _.

Ans. (272.73)
Web bearing strength $=\left[b+2.5\left(t_{f}+R\right)\right] \times t_{w} \times \frac{f_{y}}{\gamma_{m 0}}$

$=[75+2.5(20+10)] \times 8 \times \frac{250}{1.1}$
$=272.73 \mathrm{kN}$
Q. 28 The probability density function of a continuous random variable distributed uniformly between x and y (for $y>x$) is
(a) $y-x$
(b) $\frac{1}{y-x}$
(c) $x-y$
(d) $\frac{1}{x-y}$

Ans. (b)
Probability density function of uniform distribution is

$$
f(x)=\frac{1}{y-x}
$$

Q. 29 At the foot of a spillway, water flows at a depth of 23 cm with a velocity of $8.1 \mathrm{~m} / \mathrm{s}$, as shown in the figure.

The flow enters as an M-3 profile in the long wide rectangular channel with bed slope $=\frac{1}{1800}$ and Manning's $\mathrm{n}=0.015$. A hydraulic jump is formed at a certain distance from the foot of the spillway. Assume the acceleration due to gravity, $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Just before the hydraulic jump, the depth of flow y_{1} (in m, round off to 2 decimal places) is \qquad .

Ans. (0.42)

$\therefore \quad q=V_{y}=0.23 \times 8.1=1.863 \mathrm{~m}^{3} / \mathrm{s}-\mathrm{m}$

$$
S_{0}=\frac{1}{800}
$$

$$
D=0.015
$$

$y_{n}=$ Normal depth of flow
$R=y$ for wide rectangular channel
By Manning's equation

$$
\begin{array}{lc}
\therefore & q=\frac{y_{n}}{n} R^{2 / 3} S_{0}^{1 / 2} \\
\Rightarrow & 1.863=\frac{y_{n}^{5 / 3}}{0.015} \times\left(\frac{1}{1800}\right)^{1 / 2} \\
\Rightarrow & y_{n}=1.108 \mathrm{~m} \\
y_{1} \text { is conjugate depth of } y_{0},
\end{array}
$$

$$
\begin{aligned}
& \therefore \quad \frac{y_{1}}{y_{n}}=\frac{-1+\sqrt{1+8 \mathrm{Fr}_{n}^{2}}}{2} \\
& \therefore \quad y_{1}=\frac{-1+\sqrt{1+8 \times \frac{1.863^{2}}{9.81 \times 1.108^{3}}}}{2} \times 1.108 \\
& =0.418 \mathrm{~m} \simeq 0.42 \mathrm{~m} \\
& \left(F r_{n}^{2}=\frac{q^{2}}{g y_{n}^{3}}\right)
\end{aligned}
$$

Q. 30 The ordinates, u, of a 2-hour unit hydrograph (i.e., for 1 cm of effective rain), for a catchment are shown in the table.

$t($ hour $)$	0	1	2	3	4	5	6	7	8	9	10	11	12
$u\left(m^{3} / \mathrm{s}\right)$	0	2	8	18	32	45	30	19	12	7	3	1	0

A 6-hour storm occurs over the catchment such that the effective rainfall intensity is 1 $\mathrm{cm} /$ hour for the first two hours, zero for the next two hours, and $0.5 \mathrm{~cm} /$ hour for the last two hours. If the base flow is constant at $5 \mathrm{~m}^{3} / \mathrm{s}$, the peak flow due to this storm (in $\mathrm{m}^{3} / \mathrm{s}$, round off to 1 decimal place) will be_

Ans. (97.0)
Rainfall excess in $1^{\text {st }}$ two hours,

$$
R_{1}=1 \mathrm{~cm} / \mathrm{hr} \times 2 \mathrm{hr}=2 \mathrm{~cm}
$$

Rainfall excess in $2^{\text {nd }}$ two hours

$$
R_{2}=0
$$

Rainfall excess in $3^{\text {rd }}$ two hours,
$R_{3}=0.5 \mathrm{~cm} / \mathrm{hr} \times 2 \mathrm{hr}=1 \mathrm{~cm}$

Time (hr	ord. of 2 hr UH say u	$R_{1} u=2 u$	$R_{2} u=0$	$R_{3} u=1 \cdot u$	ord. of 6 hr Complex DRH	ord. of 6 hr Flood Hyd. $=6$ hr DRH + base Flow
			$\begin{array}{ll} \rightarrow & - \\ \rightarrow & - \\ \rightarrow & 0 \\ \rightarrow & - \\ \rightarrow & 0 \end{array}-$	$\begin{array}{lll} \rightarrow & - & - \\ \rightarrow & - & - \\ \rightarrow & - & - \\ \rightarrow & 0 & - \\ \rightarrow & 2 & - \\ \rightarrow & 32 & - \\ \rightarrow & 3 & - \\ \rightarrow & 19 & - \\ & 12 & - \\ 7 & - \\ 3 & - \\ 1 & - \\ 0 \end{array}$	$\begin{array}{lc} \rightarrow & 0 \\ \rightarrow & 4 \\ \longrightarrow & 16 \\ \rightarrow & 36 \\ \rightarrow & 64 \\ \rightarrow & 68 \\ \rightarrow & 56 \\ \rightarrow & 56 \\ \rightarrow & 59 \\ \rightarrow & 36 \\ \rightarrow & 21 \\ \rightarrow & 12 \\ \rightarrow & 7 \\ \rightarrow & 3 \end{array}$	$\begin{aligned} & \text { Peak flow } \\ & 92+5 \\ & =97 \mathrm{~m}^{3} / \mathrm{sec} \end{aligned}$

India's Best Institute for IES, GATE \& PSUs

Alternate method:

$$
\text { Flood peak }=(90+2)+5=97 \mathrm{~m}^{3} / \mathrm{s}
$$

Q. 31 The uniform arrival and uniform service rates observed on an approach road to a signalized intersection are 20 and 50 vehicles/minute, respectively. For this signal, the red time is 30 s , the effective green time is 30 s , and the cycle length is 60 s . Assuming that initially there are no vehicles in the queue, the average delay per vehicle using the approach road during a cycle length (in s, round off to 2 decimal places) is \qquad _.

Ans. (12.50)

$$
\text { Arrival rate }=20 \text { veh } / \mathrm{min}
$$

Service rate $=50$ veh $/ \mathrm{min}$
$R=30 \mathrm{sec}, G_{i}=30 \mathrm{sec}$, Cycle length $=60 \mathrm{sec}$

Time corresponding to which no. of arrival becomes same as no. of departure.
\Rightarrow

$$
\begin{aligned}
20 \times(R+t) & =50 t \\
20 \times(30+t) & =50 t \\
600+20 t & =50 t \\
t & =\frac{600}{30}=20 \mathrm{sec} \\
\text { Avg. Delay } & =\left(\frac{\text { Area under arrival line - Area under departure line }}{\text { Cumulative number of vehicle arrival }}\right)
\end{aligned}
$$

$$
=\left(\frac{\frac{1}{2} \times 16.67 \times 50-\frac{1}{2} \times 16.67 \times 25}{20}\right)=12.50 \mathrm{sec}
$$

Q. 32 For a plane stress problem, the state of stress at a point P is represented by the stress element as shown in figure.

By how much angle (θ) in degrees the stress element should be rotated in order to get the planes of maximum shear stress?
(a) 31.7
(b) 13.3
(c) 26.6
(d) 48.3

Ans. (a)

$\sigma_{x}=80, \sigma_{y}=-20, \tau_{x y}=-25$
Angle of plane of max shear

$$
\begin{gathered}
\theta=\theta_{p}+45^{\circ} \\
\tan 2 \theta_{p}=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}=\frac{-50}{100}
\end{gathered}
$$

India's Best Institute for IES, GATE \& PSUs

$$
\begin{array}{rlrl}
& & \theta_{p} & =-13.28^{\circ} \\
\therefore & \theta & =31.71^{\circ}
\end{array}
$$

Q. 33 A series of perpendicular offsets taken from a curved boundary wall to a straight survey line at an interval of 6 m are 1.22, 1.67, 2.04, 2.34, 2.14. 1.87, and 1.15 m . The area (in m^{2}, round off to 2 decimal places) bounded by the survey line, curved boundary wall, the first and the last offsets, determined using Simpson's rule, is \qquad —.

Ans. (68.50)

Area by Simpson's rule

$$
\begin{aligned}
A & =\frac{d}{3}\left[h_{0}+h_{n}+4\left(h_{1}+h_{3}+\ldots .\right)+2\left(h_{2}+h_{4}+\ldots\right)\right] \\
& =\frac{6}{3}[1.22+1.15+4 \times(1.67+2.34+1.87)+2(2.04+2.14)]
\end{aligned}
$$

$=68.50 \mathrm{~m}^{2}$
Q. 34 A flexible pavement has the following class of loads during a particular hour of the day.
(i) 80 buses with 2-axles (each axle load of 40 kN);
(ii) 160 trucks with 2-axles (front and rear axle loads of 40 kN and 80 kN , respectively) The equivalent standard axle load repetitions for this vehicle combination as per IRC:372012 would be
(a) 250
(b) 320
(c) 180
(d) 240

Ans. (c)
(i) 80 buses with 2 axle with 40 kN each.

$$
\begin{aligned}
& N_{1}=80 \times 2=160 \\
& L_{1}=40 \mathrm{kN}
\end{aligned}
$$

(ii) 160 trucks $\left\{\begin{array}{l}\text { Front axle } \rightarrow 40 \mathrm{kN} \\ \text { Rear axle } \rightarrow 80 \mathrm{kN}\end{array}\right.$

$$
\begin{aligned}
& \qquad \begin{array}{l}
N_{1}=160, L_{1}=40 \mathrm{kN} \\
N_{2}=160, L_{2}=80 \mathrm{kN} \\
\text { Total no. of repetitions }\left\{\begin{array}{l}
\text { For } 40 \mathrm{kN}=160+160=320 \\
\text { For } 80 \mathrm{kN}=160
\end{array}\right. \\
N_{1}=320, L_{1}=40 \mathrm{kN} \\
N_{2}=160, L_{2}=80 \mathrm{kN}
\end{array}
\end{aligned}
$$

As per $4^{\text {th }}$ power law

$$
\begin{aligned}
N_{s} & =N_{1}\left(\frac{L_{1}}{L_{5}}\right)^{4}+N_{2}\left(\frac{L_{2}}{L_{s}}\right)^{4} \\
& =320\left(\frac{40}{80}\right)^{4}+160\left(\frac{80}{80}\right)^{4}=20+160=180
\end{aligned}
$$

Q. 35 The inverse of the matrix $\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4\end{array}\right]$
(a) $\left[\begin{array}{ccc}10 & -4 & -9 \\ -15 & 4 & 14 \\ 5 & -1 & -6\end{array}\right]$
(b) $\left[\begin{array}{ccc}-10 & 4 & 9 \\ 15 & -4 & -14 \\ -5 & 1 & 6\end{array}\right]$
(c)

(d) $\left[\begin{array}{ccc}-2 & \frac{4}{5} & \frac{9}{5} \\ 3 & -\frac{4}{5} & -\frac{14}{5} \\ -1 & \frac{1}{5} & \frac{6}{5}\end{array}\right]$

Ans. (d)
Q. 36 In the context of provisions relating to durability of concrete, consider the following assertions:
Assertion (1): As per IS 456-2000, air entrainment to the extent of 3% to 6% is required for concrete exposed to marine environment.
Assertion (2): The equivalent alkali content (in terms of $\mathrm{Na}_{2} \mathrm{O}$ equivalent) for a cement containing 1% and 0.6% of $\mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$, respectively, is approximately 1.4% (rounded to 1 decimal place).

MRDE ERSU

India's Best Institute for IES, GATE \& PSUs

BIII: 2019 RINK PRAHYTOB

www.gaterankpredictor.madeeasy.in

Step 1
Select Your Stream

Step 2
Select the session you appeared for

Step 3
Paste the URL of your Response Sheet

and predict your - All India Rank - Normalized Marks

Click here to redirect at MADE EASY GATE Rank Predictor

Which one of the following statements is CORRECT?
(a) Both Assertion (1) and Assertion (2) are FLASE
(b) Assertion (1) is TRUE and Assertion (2) is FLASE
(c) Both Assertion (1) and Assertion (2) are TRUE
(d) Assertion (1) is FLASE and Assertion (2) is TRUE

Ans. (c)
(1) as per IS : 456-2000, CI. 8.2.2.3.
(2) percentage of $\mathrm{Na}_{2} \mathrm{O}$ (equivalent)

$$
\begin{aligned}
& =\mathrm{Na}_{2} \mathrm{O}(\%)+0.658 \times \mathrm{K}_{2} \mathrm{O}(\%) \\
& =1.0+0.658 \times 0.60=1.40 \% \quad \text { (Approx. })
\end{aligned}
$$

Both Assertions are correct
Q. 37 An ordinary differential equation is given below.

$$
\left(\frac{d y}{d x}\right)(x \ln x)=y
$$

The solution for the above equation is
(Note: K denotes a constant in the options)
(a) $y=K x e^{x}$
(b) $y=K x e^{-x}$
(c) $y=K \ln x$
(d) $y=K x \ln x$

Ans. (c)

$$
\begin{aligned}
\frac{d y}{d x}(x \ln x) & =y \\
\frac{d y}{y} & =\frac{d x}{x \ln x} \\
\int \frac{d y}{y} & =\int \frac{1}{x \ln x} d x+\ln k \\
\ln x & =t \\
\frac{1}{x} d x & =d t \\
\ln y & =\int \frac{d y}{t}+\ln k \\
\ln y & =\ln t+\ln k \\
\ln y & =k t \\
y & =k \ln x
\end{aligned}
$$

Q. 38 Constant head permeability tests were performed on two soil specimens, S1 and S2. The ratio of height of the two specimens $\left(L_{s 1}: L_{s 2}\right)$ is 1.5, the ratio of the diameter of specimens $\left(\mathrm{D}_{\mathrm{s} 1}: \mathrm{D}_{\mathrm{s} 2}\right)$ is 0.5 , and the ratio of the constant head $\left(\mathrm{h}_{\mathrm{s} 1}: \mathrm{h}_{\mathrm{s} 2}\right)$ applied on the specimens is 2.0. If the discharge from both the specimens is equal, the ratio of the permeability of the soil specimens $\left(k_{s 1}: \mathrm{k}_{\mathrm{s} 2}\right)$ is \qquad —.

Ans. (3)

$$
\begin{aligned}
& \frac{L_{s_{1}}}{L_{s_{2}}}=1.5 \\
& \frac{D_{s_{1}}}{D_{s_{2}}}=0.5 \\
& \frac{h_{s_{1}}}{h_{s_{2}}}=2 \\
& \frac{k_{s_{1}}}{k_{s_{2}}}=?
\end{aligned}
$$

Discharge is same.

$$
\begin{aligned}
k_{1} i_{1} A_{1} & =k_{2} i_{2} A_{2} \\
k_{1} \frac{h_{s 1}}{L_{s 1}} \times \frac{\pi}{4} \times D_{s_{1}}^{2} & =k_{2} \frac{h_{s 2}}{L_{s 2}} \times \frac{\pi}{4} \times D_{s_{2}}^{2} \\
\frac{k_{s 1}}{k_{s 2}} & =\frac{L_{s 1}}{L_{s 2}} \times \frac{h_{s 2}}{h_{s 1}} \times \frac{D_{s_{2}}^{2}}{D_{s_{1}}^{2}}=1.5 \times \frac{1}{2} \times\left(\frac{1}{0.5}\right)^{2}=3
\end{aligned}
$$

Q. 39 A timber pile of length 8 m and diameter 0.2 m is driven with a 20 kN drop hammer, falling freely from a height of 1.5 m . The total penetration of the pile in the last 5 blows is 40 mm . Use the Engineering News Record expression. Assume a factor of safety of 6 and empirical factor (allowing reduction in the theoretical set, due to energy losses) of 2.5 cm . The safe load carrying capacity of the pile (in kN , round off to 2 decimal places) is \qquad —.

Ans. (151.51)

$$
L=8 \mathrm{~m} ; d=0.2 \mathrm{~m}, 20 \mathrm{kN}=W \rightarrow \text { drop hammer }
$$

$$
H=1.5 \mathrm{~m}
$$

Penetration in 5 blows $=40 \mathrm{~mm}$

$$
\begin{aligned}
\therefore \quad \text { in } 1 \text { blow } & =\frac{40}{5}=8 \mathrm{~mm}=0.8 \mathrm{~cm} \\
Q_{\text {safe }} & =\left(\frac{W H}{S+C}\right) \times \frac{1}{F O S}=\frac{1}{6}\left[\frac{20 \mathrm{kN} \times(1.5 \times 100)}{0.8 \mathrm{~cm}+2.5 \mathrm{~cm}}\right] \\
Q_{\text {safe }} & =151.51 \mathrm{kN}
\end{aligned}
$$

Q. 40 A broad gauge railway line passes through a horizontal curved section (radius $=875$ m) of length 200 m . The allowable speed on this portion is $100 \mathrm{~km} / \mathrm{h}$. For calculating the cant, consider the gauge as centre-to-centre distance between the rail heads, equal to 1750 mm . The maximum permissible cant (in mm , round off to 1 decimal place) with respect to the centre-to-centre distance between the rail heads is \qquad
Ans. (81.5)
Allowable speed is given as 100 kmph

$$
\begin{aligned}
e_{\mathrm{th}} & =\frac{G V_{\max }^{2}}{127 R} \\
e_{\mathrm{th}} & =\frac{1.750 \times 100^{2}}{127 \times 875} \\
e_{\mathrm{th}} & =15.75 \mathrm{~cm} \\
e_{\mathrm{th}} & =e_{\mathrm{act}}+\text { C.D. } \\
e_{\text {act }} & =e_{\text {th }}-\text { C.D. }=15.75-7.6 \\
e_{\text {act }} & =8.15 \mathrm{~cm} \simeq 81.5 \mathrm{~mm}
\end{aligned}
$$

Q. 41 The dimensions of a soil sampler are given in the table.

Parameter	Cutting edge	Sampling tube
Inside diameter (mm)	80	86
Outside diameter (mm)	100	90

For this sampler, the outside, clearance ratio (in percent, round off to 2 decimal places) is \qquad _.

Ans. (11.11)
Outside clearance.
Outside clearance $=\left[\frac{D_{2}-D_{4}}{D_{4}}\right] \times 100$
Outside clearance $=\left[\frac{100-90}{90}\right] \times 100=11.11 \%$

Q. 42 A square footing of 2 m sides rests on the surface of a homogeneous soil bed having the properties: cohesion $c=24 \mathrm{kPa}$, angle of internal friction $\phi=25^{\circ}$, and unit weight $\gamma=18 \mathrm{kN} / \mathrm{m}^{3}$. Terzaghi's bearing capacity factors for $\phi=25^{\circ}$ are $\mathrm{N}_{\mathrm{c}}=25.1, N_{q}=12.7$, $N_{\gamma}=9.7, N_{c}^{\prime}=14.8 ., N_{q}^{\prime}=5.6$, and $N_{\gamma}^{\prime}=3.2$. The ultimate bearing capacity of the foundation (in kPa , round off to 2 decimal places) is \qquad

Ans. (353.92)

$$
\begin{aligned}
c & =24 \mathrm{kN} / \mathrm{m}^{2}, \phi=25^{\circ}, \gamma=18 \mathrm{kN} / \mathrm{m}^{3} \\
N_{c} & =25.1, N_{q}=12.7, N_{\gamma}=9.7 \\
N_{c}^{\prime} & =14.8, N_{q}^{\prime}=5.6, N_{\gamma}^{\prime}=3.2 \\
B & =2 \mathrm{~m}, L=2 \mathrm{~m}, D_{f}=0 \text { (Surface footing) } \\
\phi & =25^{\circ}<28^{\circ} \rightarrow \text { Assume local shear failure. } \\
C_{m} & =\frac{2}{3} c=\frac{2}{3} \times 24=16 \mathrm{kN} / \mathrm{m}^{2} \\
N_{c}^{\prime} & =14.8, N_{q}^{\prime}=5.6, N_{\gamma}^{\prime}=3.2
\end{aligned}
$$

Square footing
Since,
Hence,

Ultimate bearing capacity of square footing,

$$
\begin{aligned}
& q_{u}=1.3 \mathrm{c}_{\mathrm{m}} \mathrm{~N}_{\mathrm{c}}{ }^{\prime}+\gamma \mathrm{D}_{\mathrm{f}} \mathrm{~N}_{\mathrm{q}}{ }^{\prime}+0.4 \gamma B \mathrm{VN}_{\gamma}^{\prime} \\
& q_{u}=1.3 \times 16 \times 14.8+0+0.4 \times 18 \times 2 \times 3.2 \\
& q_{u}=307.84+46.08 \\
& q_{u}=353.92 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Q. 43 The speed-density relationship of a highway is given as

$$
u=100-0.5 \mathrm{k}
$$

where, $u=$ speed in km per hour, $k=$ density in vehicles per km . The maximum flow (in vehicles per hour, round off to the nearest integer) is \qquad .

Ans. (5000)

$$
\begin{aligned}
& u=100-0.5 \mathrm{k} \\
& u=100\left[1-\frac{k}{(100 / 0.5)}\right]
\end{aligned}
$$

Green shield model $u=V_{f}\left(1-\frac{k}{k_{j}}\right)$

$$
V_{f}=\text { free mean speed }=100 \mathrm{kmph}
$$

$$
k_{j}=\text { Jam density }=\frac{100}{0.5}=200 \text { veh. } / \mathrm{km}
$$

Max flow: $a_{\text {max }}=\frac{1}{4} V_{f} k_{j}$

$$
=\frac{1}{4} \times 100 \times 200=5000 \mathrm{veh} / \mathrm{hr}
$$

Q. 44 A water treatment plant treats $6000 \mathrm{~m}^{3}$ of water per day. As a part of the treatment process, discrete particles are required to be settled in a clarifier. A column test indicates that an overflow rate of 1.5 m per hour would produce the desired removal of particles through settling in the clarifier having a depth of 3.0 m . The volume of the required clarifier, (in m^{3}, round off to 1 decimal place) would be_ \qquad _.

Ans. (500.0)
Design discharge, $Q_{0}=6000 \mathrm{~m}^{3} / \mathrm{d}$
Overflow rate OFR $\left(v_{s}\right)=1.5 \mathrm{~m} / \mathrm{hr}$

$$
\begin{aligned}
& S A=\frac{Q_{0}}{O F R} \\
& \text { Volume, } \begin{aligned}
V & =S A \times \text { Depth (H) } \\
& =\frac{Q_{0}}{O F R} \times H=\frac{6000 \times 3}{1.5 \times 24} \\
V & =500 \mathrm{~m}^{3}
\end{aligned}
\end{aligned}
$$

Q. 45 A plane frame shown in the figure (not to scale) has linear elastic springs at node H . The spring constants are $k_{x}=k_{y}=5 \times 10^{5} \mathrm{kN} / \mathrm{m}$ and $k_{\theta}=3 \times 10^{5} \mathrm{kNm} / \mathrm{rad}$.

For the externally applied moment of 30 kNm at node F , the rotation (in degrees, round off to 3 decimals) observed in the rotational spring at node H is \qquad
Ans. (0.006)

No moment can be taken by segment FE

$$
\therefore \quad M_{F E}=0
$$

$$
M_{\theta}=k_{\theta} \times \theta
$$

$$
30 \mathrm{kNm}=3 \times 10^{5} \mathrm{kNm} / \mathrm{rad} \times \theta
$$

$$
\Rightarrow \quad \theta=1 \times 10^{-4} \text { radians }=0.0057^{\circ}
$$

End of Solution
Q. 46 The critical bending compressive stress in the extreme fibre of a structural steel section is 1000 MPa . It is given that the yield strength of the steel is 250 MPa , width of flange is 250 mm and thickness of flange is 15 mm . As per the provisions of IS: 800-2007. the non-dimensional slenderness ratio of the steel cross-section is
(a) 0.50
(b) 0.75
(c) 0.25
(d) 2.00

Ans. (a)

$$
\lambda=\sqrt{\frac{f_{y}}{f_{c r}}}=\sqrt{\frac{250}{1000}}=0.5
$$

Q. 47 Raw municipal solid waste (MSW) collected from a city contains 70\% decomposable material that can be converted to methane. The water content of the decomposable material is 35\%. An elemental analysis of the decomposable material yields the following mass percent.

$$
\mathrm{C}: \mathrm{H}: \mathrm{O}: \mathrm{N}: \text { other }=44: 6: 43: 0.8: 6.2
$$

The methane production of the decomposable material is governed by the following stoichiometric relation
$\mathrm{C}_{a} \mathrm{H}_{b} \mathrm{O}_{c} \mathrm{~N}_{d}+n \mathrm{H}_{2} \mathrm{O} \rightarrow m \mathrm{CH}_{4}+s \mathrm{CO}_{2}+d \mathrm{NH}_{3}$
Given atomic weights: $\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16, \mathrm{~N}=14$. The mass of methane produced (in grams, round off to 1 decimal place) per kg of raw MSW will be \qquad —.

Ans. (271)
mass of MSW = 1 kg
mass of decomposable material $=0.7 \times 10^{3}=700 \mathrm{gm}$
mass of decomposable solid $=0.65 \times 700=455 \mathrm{gm}$
\% mass C : H: O : N : other = $44: 6: 43: 0.8: 6.2$

$$
\begin{aligned}
\text { Moles of } C & =\frac{455}{12} \times \frac{44.00}{100}=16.68(a) \\
H & =\frac{455}{1} \times \frac{6}{100}=27.3(b)
\end{aligned}
$$

$$
\begin{aligned}
Q=\frac{455}{16} \times \frac{43}{100} & =12.22(c) \\
N=\frac{455}{14} \times \frac{0.8}{100}= & 0.26(d) \\
\mathrm{C}_{a} \mathrm{H}_{b} \mathrm{O}_{c} \mathrm{~N}_{d}+\left(a-\frac{b}{4}-\frac{c}{2}+\frac{3}{4} d\right) \mathrm{H}_{2} \mathrm{O} & \rightarrow\left(\frac{a}{2}+\frac{b}{8}-\frac{c}{4}-\frac{3 d}{8}\right) \mathrm{CH}_{4} \\
& +\left(\frac{a}{2}-\frac{b}{8}+\frac{c}{4}+\frac{3 d}{8}\right) \mathrm{CO}_{2}+\mathrm{dNH}_{3}
\end{aligned}
$$

Moles of CH_{4} formed by, 1 mole of decomposable material

$$
\begin{aligned}
& =\frac{a}{2}+\frac{b}{8}-\frac{c}{4}-\frac{3 d}{8} \\
& =\frac{16.68}{2}+\frac{27.3}{8}-\frac{12.22}{4}-\frac{3}{8} \times 0.26=16.93
\end{aligned}
$$

$$
\text { mass of } \mathrm{CH}_{4} \text { formed }=16.93 \times 16=271 \mathrm{gm}
$$

Q. 48 A $2 \mathrm{~m} \times 4 \mathrm{~m}$ rectangular footing has to carry a uniformly distributed load of 120 kPa . As per the 2:1 dispersion method of stress distribution, the increment in vertical stress (in kPa) at a depth of 2 m below the footing is \qquad -.

Ans. (40)
The area of rectangular footing $=2 \mathrm{~m} \times 4 \mathrm{~m}$

$$
9=120 \mathrm{kPa}
$$

as 2:1 dispersion method of stress distribution

$$
\begin{aligned}
& \Delta \bar{\sigma}=\frac{q(B \times L)}{(B+2 n Z)(L+2 n Z)}=\frac{120 \times 2 \times 4}{\left(2+2 \times \frac{1}{2} \times 2\right)\left(4+2 \times \frac{1}{2} \times 2\right)} \\
& \Delta \bar{\sigma}=40 \mathrm{kPa}
\end{aligned}
$$

Q. 49 A camera with a focal length of 20 cm fitted in an aircraft is used for taking vertical aerial photographs of a terrain. The average elevation of the terrain is 1200 m above mean sea level (MSL). What is the height above MSL at which an aircraft must fly in order to get the aerial photographs at a scale of 1:8000?
(a) 3200 m
(b) 2600 m
(c) 3000 m
(d) 2800 m

General Studies \& Engineering Aptitude Batches for ESE 2020 (Preliminary Examination)

Syllabus Covered

1. Current issues of national and international importance relating to social economic and industrial development.
2. Engineering Aptitude covering Logical reasoning and Analytical ability.
3. Engineering Mathematics and Numerical Analysis.
4. General Principles of Design, Drawing, Importance of Safety.
5. Standards and Quality practices in production, construction, maintenance and services.
6. Basic of Energy and Environment : Conservation, Environmental pollution and degradation, Climate Change, Environmentalimpact assessment.
7. Basic of Project Management.
8. Basics of Material Science and Engineering.
9. Information and Communication Technologies (ICT) based tools and their applications in Engineering such as networking, e-governance and technology based education.
10. Ethics and values in engineering profession.

Course Duration

Regular Batches : 2.5 months Weekend Batches : 4 months

Timings

Regular : 6 to 7 days a week and $4-6$ hours a day
Weekend : Sat, Sun \& public holiday, 8 hours each day

Teaching Hours

250-300
hours

Batch Type	Commencing Dates	Venue	Timing
Regular Batch	$20^{\text {th }}$ Feb, 2019	Ghitorni (Delhi)	$8: 00$ AM to 12:00 PM
Weekend Batch	$24^{\text {th }}$ Feb, 2019	Ghitorni (Delhi)	$8: 00$ AM to 5:00 PM
Weekend Batch	$24^{\text {th }}$ Feb, 2019	Noida Centre	$8: 00$ AM to 5:00 PM

Fee Structure

Non-MADE EASY Students

₹ 25,000

- GS \& Engg Aptitude Books will be issued.

Ex. MADE EASY Students

Enrolled in Postal, Rank Improvement, Mains, GS, GATE, GATE + ESE Batches
₹ 18,000 - GS \& Engg Aptitude Books will NOT be issued.

- Interested students can avail books by paying the fee of Rs. 2,000/-

Ans. (d)

Given focal length $=20 \mathrm{~cm}$
as we know scale of vertical photograph $=\frac{f}{H-h_{\text {avg }}}$
its given as 1:8000
Hence,

$$
\frac{f}{H-h_{\text {avg. }}}=\frac{1}{8000}
$$

$$
\begin{array}{rlrl}
& & \frac{20 \mathrm{~cm}}{(H-1200) \times 100 \mathrm{~cm}} & =\frac{1}{8000} \\
\Rightarrow \quad & H & =2800 \mathrm{~m}
\end{array}
$$

Q. 50 A long uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ and a concentrated load of 60 kN are moving together on the beam ABCD shows in the figure (not drawn to scale). The relative positions of the two loads are not fixed. The maximum shear force (in kN , round off to the nearest integer) caused at the internal hinge B due to the two loads is \qquad -

Ans. (-70)
ILD for V_{B}

$$
\text { Maximum shear } V_{B}=-\left[\left(\frac{1}{2} \times 2 \times 1 \times 10\right)+(60 \times 1)\right]=-70 \mathrm{kN}
$$

Q. 51 Chlorine is used as the disinfectant in a municipal water treatment plant. It achieves 50 percent of disinfection efficiency measured in terms of killing the indicator microorganisms (E-Coli) in 3 minutes. The minimum time required to achieve 99 percent disinfection efficiency would be
(a) 19.93 minutes
(b) 11.93 minutes
(c) 9.93 minutes
(d) 21.93 minutes

Ans. (a)
During disinfection variations of micro-organism is given by

$$
\begin{aligned}
& N_{t}=N_{o} \mathrm{e}^{-\mathrm{kt}} \\
& N_{t}=\text { No. of micro-organism at time } t \\
& N_{o}=\text { No. of micro-organism at time } 0
\end{aligned}
$$

So, disinfection efficiency at any time ' t ', $\eta_{\mathrm{t}}=\frac{N_{0}-N_{t}}{N_{0}} \times 100$
For

$$
t=3 \mathrm{~min} ; \eta_{3}=50 \%
$$

$$
\eta_{3}=\frac{N_{0}-N_{o} e^{-k \times 3}}{N_{0}} \times 100=50
$$

$$
k=0.231 \mathrm{~min}^{-1}
$$

Now for

$$
\eta_{t}=99 \%
$$

$$
\eta_{\mathrm{t}}=\frac{N_{o}-N_{t}}{N_{\mathrm{o}}} \times 100=99
$$

$$
\frac{N_{O}-N_{O} e^{-0.231 \times t}}{N_{0}} \times 100=99
$$

19.93 min

Q. 52 A confined aquifer of 15 m constant thickness is sandwiched between two aquicludes as shown in the figure (not drawn to scale).

The heads indicated by two piezometers P and Q are 55.2 m and 34.1 m , respectively. The aquifer has a hydraulic conductivity of $80 \mathrm{~m} /$ day and its effective porosity is 0.25 . If the distance between the piezometers is 2500 m , the time taken by the water to travel through the aquifer from piezometer location P to Q (in days, round off to 1 decimal place) is \qquad -.

Ans. (925.7)

$$
\begin{aligned}
v & =k i \\
v_{s} & =\frac{k i}{n} \\
v_{s} & =80 \mathrm{~m} / \text { day } \times\left(\frac{55.2-34.1}{2500} \times \frac{1}{0.25}\right)=\frac{2500}{\text { time }} \\
\text { time } & =925.651 \text { day } \\
& =925.7 \text { days }
\end{aligned}
$$

Q. 53 Consider the hemi-spherical tank of radius 13 m as shown in the figure (not drawn to scale). What is the volume of water (in m^{3}) when the depth of water at the centre of the tank is 6 m ?

(a) 156π
(b) 396π
(c) 468π
(d) 78π

Ans. (b)

$$
\begin{aligned}
\text { Volume of water } & =\frac{1}{3} \pi h^{2}(3 r-h) \\
& =\frac{1}{3} \pi \times 6^{2} \times(3 \times 13-6)=396 \pi
\end{aligned}
$$

Q. 54 When a specimen of M 25 concrete is loaded to a stress level of 12.5 MPa , a strain of 500×10^{-6} is recorded. If this load is allowed to stand for a long time, the strain increases to 1000×10^{-6}. In accordance with the provisions of IS:456-2000, considering the longterm effects, the effective modulus of elasticity of the concrete (in MPa) is \qquad -.

Ans. (12500)

$$
\begin{aligned}
\text { Initial strain } & =500 \times 10^{-6} \\
\text { stress } & =12.5 \mathrm{~N} / \mathrm{mm}^{2} \\
E_{c} & =\frac{\text { stress }}{\text { strain }}=\frac{12.5}{500 \times 10^{-6}}=25000 \mathrm{~N} / \mathrm{mm}^{2} \\
E_{c} & =5000 \sqrt{25}=25000 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Total strain after long time

$$
\begin{aligned}
& =1000 \times 10^{-6} \\
E_{c e} & =\frac{E_{c}}{1+\theta} \\
\theta & =\frac{\text { Ultimate strain due to creep }}{\text { Elastic strain }}=\frac{(1000-500) \times 10^{-6}}{500 \times 10^{-6}}=1.0
\end{aligned}
$$

Effective modulus of elasticity

$$
E_{c e}=\frac{E_{C}}{1+\theta}=\frac{25000}{1+1.0}=12500 \mathrm{~N} / \mathrm{mm}^{2}
$$

Q. 55 Two identical pipes (i.e., having the same length, same diameter, and same roughness) are used to withdraw water from a reservoir. In the first case, they are attached in series and discharge freely into the atmosphere. In the second case, they are attached in parallel and also discharge freely into the atmosphere. Neglecting all minor losses, and assuming that the friction factor is same in both the cases, the ratio of the discharge in the parallel arrangement to that in the series arrangement (round off to 2 decimal places) is \qquad -.

Ans. (2.83)
Given: Two identical pipes of same length (L), diameter (D) and roughness $\left(k_{s}\right)$. $1^{\text {st }}$ case (series)
Assume height of reservoir $=H$

$$
\begin{align*}
& H=h_{f 1}+h_{f 2} \tag{i}\\
& H=2 h_{f 1}
\end{align*}
$$

$$
H=2\left[\frac{8 Q_{1}^{2}}{\pi^{2} g} \times \frac{f \cdot L}{D^{5}}\right]
$$

$2^{\text {nd }}$ case (Parallel)

$$
\begin{align*}
& H=\frac{8}{\pi^{2} g}\left(\frac{Q_{2}}{2}\right)^{2} \times \frac{f L}{D^{5}} \\
& H=\frac{8}{\pi^{2} g} \times \frac{f L}{D^{5}} \times \frac{Q_{2}^{2}}{4} \tag{ii}
\end{align*}
$$

By eq. (i) and (ii)

$$
\begin{aligned}
2\left[\frac{8 Q_{1}^{2}}{\pi^{2} g} \times \frac{f \cdot L}{D^{5}}\right] & =\frac{8}{\pi^{2} g} \times \frac{f L}{D^{5}} \times \frac{Q_{2}^{2}}{4} \\
\frac{8}{\pi^{2} g} \times \frac{f L}{D^{5}} 2 Q_{1}^{2} & =\frac{8}{\pi^{2} g} \times \frac{f L}{D^{5}} \frac{Q_{2}^{2}}{4} \\
\frac{Q_{2}}{Q_{1}} & =\sqrt{8} \\
& =2.83 \text { (round off to } 2 \text { decimal place) }
\end{aligned}
$$

