COPYRIGHT RESERVED

Code: 041302

B.Tech 3rd Semester Exam., 2014

DIGITAL ELECTRONICS

Time: 3 hours

Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Choose the correct answer (any seven) :

 $2 \times 7 = 14$

- (a) The binary number equivalent of decimal number 15.25 is
 - (i) 1111·01
- (ii) 1010·10
- (iii) 1100·01
- (iv) 1111·10
- (b) The Boolean expression

 $\overline{ABC} + \overline{A}\overline{BC} + ABC + A\overline{B}\overline{C}$

is of which gate?

(i) OR

- (ii) EX-NOR
- (iii) NAND
- (iv) EX-OR

AK15-1400/88

(Turn Over)

- (c) In a 4-variable K-map, a 2-variable product term is produced by
 - (i) a 2-cell group of 1s
 - (ii) an 8-cell group of 1s
 - (iii) a 4-cell group of 1s
 - (iv) a 4-cell group of 0s
- (d) A feature that distinguishes the J-K flip-flop from the S-R flip-flop is the
 - (i) toggle condition
 - (ii) preset input
 - (iii) type of clock
 - (iv) clear input
- (e) A full-adder can be implemented with half-adders and OR gates. A 4-bit parallel full-adder without any initial carry requires
 - (1) 8 half-adders and 4 OR gates
 - (ii) 8 half-adders and 3 OR gates
 - (iii) 7 half-adders and 4 OR gates
 - (iv) 7 half-adders and 3 OR gates

AK15-1400/88

(Continued)

- (f) A modulus-12 counter must have
 - (i) 12 flip-flops
 - (ii) 3 flip-flops
 - (iii) 4 flip-flops
 - (iv) 10 flip-flops
- (g) Which of the following is not a TTL circuit?
 - (i) 74F00
 - (ii) 74AS00
 - (iii) 74HC00
 - (iv) 74ALS00
- (h) CMOS operates more reliably than TTL in a high-noise environment because of its
 - (i) lower noise margin
 - (ii) input capacitance
 - (iii) higher noise margin
 - (iv) smaller power dissipation

AK15-1400/88

(Turn Over)

- (i) The resolution of a DAC is approximately 0.4% of its full-scale range. It is
 - (i) 8-bit converter
 - (ii) 10-bit converter
 - (iii) 12-bit converter
 - (iv) 16-bit converter
- (j) The number of comparators in a parallel conversion type 8-bit ADC is
 - (i) 8
 - (ii) 16
 - (iii) 255
 - (iv) 256
- 2. (a) Explain the operation of the following using truth table:
 - (i) S-R flip-flop
 - (ii) J-K flip-flop
 - (iii) T-type flip-flop
 - (b) Explain the operation of parallel in/ serial out shift registers. 14

AK15-1400/88

(Continued)

14

- Sketch a NAND-NAND logic circuit for the Boolean equation y = AB + AC + BD.
 - Simplify the following expression using Boolean algebra technique:

$$Z = (B + \overline{C})(\overline{B} + C) + \overline{A} + B + \overline{C}$$

Show that

$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} = \overline{C}$$

(iii) Find the Boolean expression for the output of the logic circuit shown in figure below:

14

- Implement a full-adder using a decoder and two OR gates.
 - diagram of an Draw the logic asynchronous decade counter and 14 explain its working.
- Design a parity generator to generate even parity bit for a 4-bit word.
 - Explain a 3-bit up/down synchronous counter.

AK15-1400/88

(Turn Over)

- 6. Draw the circuit diagram of a monostable multivibrator using 555 timer. Explain its operation and sketch the relevant waveforms. Find the expression for the time period of the output waveform.
- 7, Implement the following Boolean function using 8:1 multiplexer: 14 $f(A, B, C, D) = \Sigma m(2, 4, 5, 7, 10, 14)$
- 8. Design a 4-bit full-adder with look-ahead carry generator. 14
- Write short notes on the following: 31/2×4=14
 - **CMOS**
 - **EPROM**
 - Parity checker
 - Astable multivibrators

14