Head Office : Sree Sindhi Guru Sangat Sabha Association, \# 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.
Ph: 040-23234418, 040-2324419, 040-2324420, 040-24750437

Branch: Electrical Engineering

GATE-2020 General Aptitude (GA)

Q. 1 - Q. 5 carry ONE mark each.

1. Fill in the blank with an appropriate phrase

Jobs are hard to \qquad
(A) Come by
(B) Come down
(C) Come of
(D) Come from

Ans: (A)
Sol: 'Come by' means to manage to get something.
02. The question below consists of a pair of related words followed by four pairs of words. Select the pair that best expresses the relation in the original pair.
MONKEY : TROOP:
(A) sheep : hard
(B) elephant : Parliament
(C) bacteria : Colony
(D) wolves : School

Ans: (C)

Sol: Troop consists of monkeys just as a colony consists of bacteria.
03. Choose the most appropriate word from the options given below to complete the following sentence:
If you had gone to see him, he \qquad delighted.
(A) Would have been
(B) Will have been
(C) Had been
(D) Would be

Ans: (A)
Ans: 'A" conditional tense type 3 grammatical code is

If + had + V3, would + have + V3
04. Which of the following options is closest in meaning to the underlined word?

European intellectuals have long debated the consequences of the hegemony of American popular culture around the world.
(A) regimen
(B) vastness
(C) dominance
(D) popularity

Ans: (C)

Sol: Dominance means influence or control over another country, a group of people etc.
05. How many one-rupee coins, 50 paise coins 25 paise coins in total of which the numbers are proportional to 5,7 and 12 are together work ₹ 115 ?
(A) $50,70,120$
(B) $60,70,110$
(C) 70, 80, 90
(D) None of these

Ans: (A)
Sol: $(5 \times 1+7 \times 0.5+12 \times 0.25) x=115$
$(5+3.5+3) x=115$
$11.5 \mathrm{x}=115$
$\mathrm{x}=10$
\therefore Number of one rupee coin $=5 \mathrm{x}=5 \times 10$

$$
=50
$$

Number of 5-paise coin $=7 x=7 \times 10=70$
Number of 25 -paise coin $=12 \mathrm{x}=12 \times 10$

$$
=120
$$

Q. 6 - Q. 10 carry TWO marks each.
06. Critical reading is a demanding process. To read critically, you must slow down your reading and, with pencil in hand, perform specific operations on the text mark up the text with your reactions, conclusions, and questions, then you read, become an active participant.

This passage best supports the statement that
(A)Critical reading is a slow, dull but essential process.
(B) The best critical reading happens at critical times in a person's life.
(C) Readers should get in the habit of questioning the truth of what they read.
(D)Critical reading requires thoughtful and careful attention.

Ans: (D)

Sol: Choice (A) is incorrect because the author never says that reading is dull.

Choice (B) and (C) are not support by the paragraph.
Choice (D) is correct as it is implied in the entire passage.
07. Anil's house faces east. From the back-side of the house, he walks straight 50 metres, then turns to the right and walks 50 m again finally, he turns towards left and stops after walking 25 m Now Anil is in which direction from the starting point?

ACE Engineering Academy

ESE-MAINS

Classes Start from: $13^{\text {th }}$ FEB 2020

ESE-2018, 2019 Prelims Qualified Students are also eligible for Fee Discounts

- H.0. \# 4-1-1236/1/A, Sindhu Sadan, King Koti Road, Abids, Hyderabad - 500001, Telangana, India.
- Ph: 040-23234418/19/20, 040-24750437.
- Email: hyderabad@aceenggacademy.com
- www.aceenggacademy.com
(A) South-east
(B) South-west
(C) North-east
(D) North- west

Ans: (D)

Sol: The movement of Anil are shown in the adjoining figure

He starts walking from back of his house (i.e) towards west now, the final position is D, which is to the north west of his starting point A.
08. A and B enter into a partnership, A puts in ₹ 50 and B puts in $₹ 45$. At the end of 4 months, A withdraws half his capital and at the end of 5 months B withdraws $\frac{1}{2}$ of his, C then enters with a capital of ₹ 70 . At the end of 12 months, the profit of concern is ₹ 254 , how can the profit be divided among A, B and C ?
(A) ₹ 76 , ₹ 80 and ₹ 98
(B) ₹ 80 , ₹ 76 and ₹ 98
(C) ₹ 76 , ₹ 98 and ₹ 80
(D) None of these

Ans: (B)

Sol: A's share : B's share : C's share $(50 \times 4+25 \times 8):(45 \times 5+22.5 \times 7):(70 \times 7)$
$400 \quad: 382.5 \quad: 490$

800
160
Total profit $=₹ 254$

$$
\begin{aligned}
\text { Profit of } A & =\frac{160}{160+153+196} \times 254 \\
& =\frac{160}{509} \times 254=₹ 80
\end{aligned}
$$

Profit of $B=\frac{153}{509} \times 254=₹ 76$
Profit of $\mathrm{C}=\frac{196}{509} \times 254=₹ 98$
\because Hence option ' B ' is correct.
09. A sum of ₹ 25400 was lent out in two parts, one of 12% and the other at $12 \frac{1}{2} \%$ of the total annual income is $₹ 3124.2$, the money lent at 12% is \qquad .
(A) ₹ 15240
(B) ₹ 25400
(C) ₹ 10160
(D) ₹ 31242

Ans: (C)

Sol: Overall rate of interest

$$
\frac{3124.2}{25400} \times 100=12.3 \%
$$

\therefore The sum will be divided in the ratio 0.2:0.3 (or) 2:3
\therefore The sum lent at $12 \%=25400 \times \frac{2}{5}$

$$
=₹ 10160 .
$$

10. The following question is to be answered on the basis of the table given below.

Category of personnel	Number of staff in the year-1990	Number of staff in the year-1995
Data preparation	18	25 inc
Data control	5	8
Operators	18	32
Programmers	21	26
Analysts	15	31
Managers	3	3
Total	80	135

What is the increase in the sector angle for operators in the year 1995 over the sector angle for operators in the year 1990 ?
(A) 4°
(B) 3°
(C) 2°
(D) 1°

Ans: (A)
Sol: Sector angle for operators in the year 1990

$$
=\frac{18}{80} \times 360^{\circ}=81^{\circ}
$$

Sector angle for operator in the year 1995

$$
=\frac{32}{135} \times 360^{\circ}=85.33 \simeq 85 \%
$$

\therefore Required difference $=85^{\circ}-81^{\circ}=4^{\circ}$

Q. 1 - Q. 25 carry ONE mark each.

1. A 2 winding transformer supplies a leading power factor load at rated secondary voltage. For a given load current, if magnitude of the load power factor varies, the core losses, as compared with the no load core losses, will
(A) remain unchanged.
(B) increase.
(C) decrease.
(D) either increase, remain constant, or decrease.

Ans: (D)
Sol: Assume (for simplicity) that the approximate equivalent circuit shown in fig. 1 correctly represents the transformer.

Equivalent circuit ref secondary.
Fig. 1
An approximate but widely used expression for $\left(V_{1}-V_{2}\right)$ is
$\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)=\mathrm{I}_{2}\left(\mathrm{r}_{\mathrm{eq}} \cos \theta-\mathrm{x}_{\mathrm{eq}} \sin \theta\right)$.
On no load, $\mathrm{I}_{2}=0$.
\therefore Drop across the impedance $\left(\mathrm{r}_{\mathrm{eq}}+\mathrm{jx}_{\mathrm{eq}}\right)$ is zero and $\mathrm{V}_{1}=\mathrm{V}_{2}$. No load core losses $=\frac{\mathrm{V}_{2}^{2}}{\mathrm{R}_{\mathrm{c}}}$.

If $\cos \theta$ is large, $\sin \theta$ will be small. (Assume $0 \leq \theta \leq 90^{\circ}$). $\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)$ is positive.
$\mathrm{V}_{1}>\mathrm{V}_{2}$. core losses $\frac{\mathrm{V}_{1}^{2}}{\mathrm{R}_{\mathrm{c}}}>$ no load core losses.

If $\cos \theta$ is small, $\sin \theta$ will be large. $\left(\mathrm{V}_{1}-\right.$ V_{2}) is negative. $\mathrm{V}_{1}<\mathrm{V}_{2}$. core losses $\frac{\mathrm{V}_{1}^{2}}{\mathrm{R}_{\mathrm{c}}}<$ no load core losses.

There will be some θ for which $V_{1}-V_{2}=0$.
Then core loss $\frac{\mathrm{V}_{1}^{2}}{\mathrm{R}_{\mathrm{c}}}$ equals no load core loss.
02. The armature of a 2-pole, 200 V dc separately excited generator has 400 conductors and runs at 300 rpm . The number of field turns are 1200. Now the field circuit
is opened. If the field flux dies away completely in 0.075 sec , average field induced emf during the 0.075 sec period is
\qquad V.

Ans: (1600)
Sol: $1 . \mathrm{K}=\frac{\mathrm{PZ}}{2 \pi \mathrm{~A}}=\frac{400}{2 \pi}=\frac{200}{\pi}$.

2. Initial operation:

2.1. $\omega=300 \times \frac{2 \pi}{60}=10 \pi \mathrm{r} / \sec (\mathrm{mech})$
2.2. $\mathrm{Flux} /$ pole $=\phi \quad$ (unknown).
2.3. $\mathrm{E}=\frac{200}{\pi} \phi(10 \pi)=200$
(from given data).

$$
\therefore \phi=0.1 \mathrm{~Wb} \text {. }
$$

3. The field flux decreases from $\phi=0.1$ Wbullo Nzero in 0.075 sec . $\left.\frac{\mathrm{d} \phi}{\mathrm{dt}}\right|_{\text {ave }}=\frac{0.1}{0.075}=\frac{4}{3} \mathrm{~Wb} / \mathrm{sec}$.
(Ignore the negative sign).
4. With 1200 field turns, average field induced emf during the period

$$
=1200 \times \frac{4}{3}=1600 \mathrm{~V}
$$

3. A 3- ϕ star connected 400 V (line to line), 8 kW (output) synchronous motor with full load efficiency of 88% operating with minimum possible current. The synchronous impedance per phase is 8Ω with negligible resistance. The induced

Hyderabad | Ahmedabad | Pune | Delhi| Bhubaneswar | Bangalore |Chennai | Lucknow | Visakhapatnam | Vjayawada | Tirupati | Kolkata Head Office Address: \# 4-1-1236/1/A, Sindhu Sadan, King Koti, Abids, Hyderabad - 500001, Telangana, India.

SHORT THAM BATCHES GATE + PSUs - 2021

@ HYDERABAD
Streams: EC, EE, ME, CE, CSIT, IN \& PI
$28^{\text {th }}$ April, $5^{\text {th }}$ May,
$10^{\text {th }}$ May, $17^{\text {th }}$ May, $25^{\text {th }}$ May, $1^{\text {st }}$ June, $8^{\text {th }}$ June, 2020 n

Course Duration: $\mathbf{5 5}$ to 60 Days
重 040-23234418/19/20, 040-24750437
М hyderabad@aceenggacademy.com

@ DELHI

Streams: EC, EE, ME, CE, IN \& PI $10^{\text {th }} \& 20^{\text {th }}$ v.ErForunMay 2020

Course Duration: 60 to 70 Days霊 7838971777 (Call or Whatsapp)
Mdelhi@aceenggacademy.com

Early Bird Offer Rs. 3,000/- Register before 31 ${ }^{\text {st }}$ March 2020

Upcoming Batches @ YDERABAD

GATE+PSUs-2021
Spark Batches $\quad: 10^{\text {th }}$ May, $8^{\text {th }} \& 23^{\text {rd }}$ June 2020.
Regular Batches $: 26^{\text {th }}$ April, $10^{\text {th }}, 24^{\text {th }}$ May, $8^{\text {th }}, 23^{\text {rd }}$ June, $7^{\text {th }}, 22^{\text {nd }}$ July, $5^{\text {th }} \& 20^{\text {th }}$ August 2020.

ESE+GATE+PSUs-2021
Spark Batches $\quad: 10^{\text {th }}$ May, $8^{\text {th }} \& 23^{\text {td }}$ June 2020.
Regular Batches : $29^{\text {th }}$ March, $26^{\text {th }}$ April, $10^{\text {th }}, 24^{\text {th }}$ May, $8^{\text {th }}, 23^{\text {rd }}$ June \& $7^{\text {th }}$ July 2020.

Upcoming Batches @ DELH!

GATE+PSUs-2021
Weekend Batches : $28^{\text {th }}$ Dec, $11^{\text {th }}$ Jan \& $8^{\text {th }}$ Feb 2020.
Regular Batches $\quad: 17^{\text {th }}$ Feb, $7^{\text {th }}$ March, $10^{\text {th }} \& 20^{\text {th }}$ May 2020.
ESE+GATE+PSUs-2021
Weekend Batches : $28^{\text {th }}$ Dec, $11^{\text {th }}$ Jan \& $8^{\text {th }}$ Feb 2020.
Regular Batches $\quad: 17^{\text {th }} \mathrm{Feb}, 7^{\text {th }}$ March, $10^{\text {th }} \& 20^{\text {th }}$ May 2020.
GATE+PSUs-2022
Weekend Batches : $28^{\text {th }}$ Dec, $11^{\text {th }}$ Jan \& $8^{\text {th }}$ Feb 2020.
ESE+GATE+PSUs-2022
Weekend Batches : $28^{\text {th }}$ Dec, $11^{\text {th }}$ Jan \& $8^{\text {th }}$ Feb 2020.

SSC-JE Batches @ Hyderahai

New Batch Starts from: 10 ${ }^{\text {th }}$ May 2020
for Civil, Mechanical \& Electrical

Scan QR Code for Upcoming Batches Details

emf/ph is
(A) 233.7 V
(B) 238.7 V
(C) 248.7 V
(D) 253.7 V

Ans: (D)
Sol: $\mathrm{V}_{\mathrm{L}}=400 \mathrm{~V} \Rightarrow \mathrm{~V}_{\mathrm{ph}}=\frac{400}{\sqrt{3}}=231 \mathrm{~V}$
Motor output $=8 \mathrm{~kW}$
$P_{\text {in }}=\frac{P_{\text {out }}}{\eta}=\frac{8 \mathrm{~kW}}{0.88}=9091 \mathrm{~W}$
$P_{\text {in }}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi ;$ current will be minimum at upf

$$
\begin{aligned}
\therefore & \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{P}_{\text {in }}}{\sqrt{3} \mathrm{~V}_{\mathrm{L}}}=\frac{9091}{\sqrt{3} \times 400}=13.12 \mathrm{~A} \\
\mathrm{E} & =\sqrt{\left(\mathrm{V} \cos \phi-\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}\right)^{2}+\left(\mathrm{V} \sin \phi \mp \mathrm{I}_{\mathrm{a}} \mathrm{X}_{\mathrm{s}}\right)^{2}} \\
& =\sqrt{(231 \times 1-0)^{2}+(231 \times 0+13.12 \times 8)^{2}} \\
& =253.7 \mathrm{~V} \quad \text { Shared On WW }
\end{aligned}
$$

4. A variable shunt capacitor bank of reactive power rating ' Q_{c} ' connected in parallel with a load.

The load consumes an apparent power of 200 kVA at 0.8 power factor lagging. The reactive power ' Q_{c} ' varies as $20 \mathrm{kVAR} \leq \mathrm{Q}_{\mathrm{c}}$ $\leq 80 \mathrm{kVAR}$. The combination of capacitor bank and load will draw the lowest apparent power from connected bus bar for any value of ' Q_{c} ' is
(A) 165 kVA
(B) 188 kVA
(C) 200 kVA
(D) 212 kVA

Ans: (A)

Sol:

Load real and reactive power consumptions,

$$
\mathrm{P}_{\ell}=\mathrm{S}_{\ell} \cdot \cos \phi_{\ell}=200 \times 0.8=160 \mathrm{~kW}
$$

$$
\mathrm{Q}_{\ell}=\mathrm{S}_{\ell} \cdot \sin \phi_{\ell}=200 \times 0.6=120 \mathrm{kVAR}
$$

Net real power drawn, $\mathrm{P}=\mathrm{P}_{\ell}=160 \mathrm{~kW}$
Net reactive power drawn, $\mathrm{Q}=\mathrm{Q}_{\ell}-\mathrm{Q}_{\mathrm{C}}$

$$
=120-\mathrm{Q}_{\mathrm{C}}
$$

Net apparent power, $\mathrm{S}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}$

$$
=\sqrt{160^{2}+\left(120-\mathrm{Q}_{\mathrm{C}}\right)^{2}}
$$

$V_{\text {. E Minimum net }}$ apparent power $\left(\mathrm{S}_{\mathrm{min}}\right)$ occurs for lowest value of ' Q ' or highest value of ' QC_{C} '

$$
\begin{aligned}
S_{\min } & =\sqrt{(160)^{2}+(120-80)^{2}} \\
& =165 \mathrm{kVA}
\end{aligned}
$$

5. A 150 bus power system network consists 25 generator buses, 5 buses having fixed shunt capacitor banks, 3 buses having SVC's, 2 buses having STATCOM's and remaining buses are treated as load buses. How many number of equations to be solved in load flow analysis of this system by Gauss Seidel method and Newton Raphson method (rectangular form) respectively
(A) 150,264
(B) 150,298
(C) 149,269
(D) 149, 298

Ans: (D)
Sol: Number of equations to be solved in Gauss
Seidel method $=\mathrm{n}-1=149$
Number of equations to be solved in
Newton Raphson method (rectangular form)
$=2 n-2=300-2=298$

The reading of wattmeter is
(A) 1600 W
(B) 800 W
(C) 1414 W
(D) 1131 W

Ans: (D)

Sol: Load current $I_{L}=\frac{V}{Z}$

$$
\begin{aligned}
& \quad=\frac{100}{\sqrt{4^{2}+3^{2}}}=\frac{100}{5}=20 \mathrm{~A} \\
& \mathrm{~V}_{\text {p.c }}=\frac{100 \times \sqrt{2}}{2}
\end{aligned}
$$

$\left[\because\right.$ Half wave sinusoidal, rms value is $\left.\frac{\mathrm{V}_{\mathrm{m}}}{2}\right]$

$$
\cos \phi=\frac{\mathrm{R}}{\mathrm{Z}}=\frac{4}{5}=0.8
$$

$$
\mathrm{P}_{\mathrm{avg}}=\mathrm{V}_{\mathrm{rms}} \times \mathrm{I}_{\mathrm{rms}} \times \cos \phi
$$

The switching energy loss (in mJ) during turn on is \qquad . (Give upto one decimal place)

Ans: 1.985 (Range: 1.9 to 2.1)

Sol: $I_{C}=\frac{V_{C C}-V_{C E(\text { sat })}}{R_{C}}$

$$
=\frac{200-1.5}{10}=19.85 \mathrm{~A}
$$

Turn ON energy loss $=\frac{\mathrm{V}_{\mathrm{CC}} \mathrm{I}_{\mathrm{C}}}{6} \times \mathrm{T}_{\text {on }}$

$$
=\frac{200 \times 19.85}{6} \times 3 \times 10^{-6}
$$

$$
=1.985 \mathrm{~mJ}
$$

9. A three-phase voltage source inverter (VSI) as shown in the figure is feeding a delta connected resistive load of $30 \Omega /$ phase. If it is fed from a 600 V battery, with 120° conduction of solid-state device, the power consumed by the load, in kW , is

(A) 12
(B) 18
(C) 24
(D) 8

Ans: (B)

Sol: RMS value of phase voltage for 120° conduction mode is
$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{Ph}}=\frac{\mathrm{V}_{\mathrm{dc}}}{\sqrt{2}}=\frac{600}{\sqrt{2}} \mathrm{~V}$
Power delivered to load

$$
P_{o}=3 \times \frac{V_{p h}^{2}}{R}=3 \times \frac{(600 / \sqrt{2})^{2}}{30}=18 \mathrm{~kW}
$$

10. Resonance will occur in the circuit shown only when

(A) $\mathrm{R}>1000 \Omega$
(B) $\mathrm{R}<1000 \Omega$
(C) $\mathrm{R}>2000 \Omega$
(D) $\mathrm{R}<2000 \Omega$

Ans: (B)

Sol: As resonance frequency

$$
\mathrm{f}_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \sqrt{1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{~L}}}
$$

Resonance will occur in circuit only when

$$
\begin{aligned}
& 1-\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{~L}}>0,1>\frac{\mathrm{R}^{2} \mathrm{C}}{\mathrm{~L}}, \mathrm{R}^{2}<\frac{\mathrm{L}}{\mathrm{C}} \\
& \mathrm{R}<\sqrt{\frac{\mathrm{L}}{\mathrm{C}}} \\
& \mathrm{R}<\sqrt{\frac{25 \times 10^{-3}}{0.025 \times 10^{-6}}}=1000 \Omega
\end{aligned}
$$

11. The resistance between terminals A, B is
\qquad Ω.

Ans: 0.8 (Range: 0.75 to 0.85)

Sol: Joints nodes which one of same potential by mirror image symmetry

Mirror image
Delta-to star

$$
\mathrm{R}_{\mathrm{AB}}=2 / / \frac{4}{3}=\frac{\frac{8}{3}}{\frac{10}{3}}=\frac{4}{5}=0.8 \Omega
$$

12. An electric field $\left(x^{2} a_{x}+y a_{y}+2 z^{3} a_{z}\right) N / C$ exists in free space. Corresponding charge density at the origin is \qquad $\mathrm{pC} / \mathrm{m}^{3}$. (rounded off to two decimal places).

Ans: 8.85 (Range: 8.84 to 8.86)

Sol: It is useful to check that the given vector field $\overline{\mathrm{E}}$ is indeed a static electric field (static because t does not appear in the field expression). Find $\nabla \times \overline{\mathrm{E}}$. Is it zero? Then $\overline{\mathrm{E}}$ is indeed a static electric field. (Otherwise the problem is wrongly framed).

$$
\nabla \times \overline{\mathrm{E}}=\left|\begin{array}{ccc}
\mathrm{a}_{\mathrm{x}} & \mathrm{a}_{\mathrm{y}} & \mathrm{a}_{\mathrm{z}} \\
\frac{\partial}{\partial \mathrm{x}} & \frac{\partial}{\partial \mathrm{y}} & \frac{\partial}{\partial \mathrm{z}} \\
\mathrm{x}^{2} & \mathrm{y} & 2 \mathrm{z}^{3}
\end{array}\right|
$$

$$
\begin{aligned}
=a_{x}\left\{\frac{\partial}{\partial y}\left(2 z^{3}\right)\right. & \left.-\frac{\partial}{\partial z}(y)\right\}+a_{y}\left\{\frac{\partial}{\partial z}\left(x^{2}\right)-\frac{\partial}{\partial x}\left(2 z^{3}\right)\right\} \\
& +a_{z}\left\{\frac{\partial}{\partial x}(y)-\frac{\partial}{\partial y}\left(x^{2}\right)\right\} \\
= & 0
\end{aligned}
$$

$\overline{\mathrm{E}}$ is a static electric field.
Then, $\nabla \cdot \overline{\mathrm{E}}=\frac{\rho}{\varepsilon_{0}}$ (Gauss;s law)
But,

$$
\begin{aligned}
\Delta . \overline{\mathrm{E}} & =\left(\frac{\partial}{\partial \mathrm{x}} \mathrm{a}_{x}+\frac{\partial}{\partial y} a_{y}+\frac{\partial}{\partial z} a_{z}\right) \cdot\left(\mathrm{x}^{2} \mathbf{a}_{x}+y \mathrm{a}_{y}+2 z^{3} a_{z}\right) \\
& =2 x+1+6 z^{2}
\end{aligned}
$$

At origin $(0,0,0), \nabla \cdot \overline{\mathrm{E}}=1$.

$$
\therefore \quad \frac{\rho_{(0,0,0)}}{\varepsilon_{0}}=1
$$

$\therefore \rho_{(0,0,0)}=\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C} / \mathrm{m}^{3} \cap \mathrm{WW}$
13. Negative feedback is employed in a control system then which one of the following statement (s) is/are true.

1. Gain increases

2. Bandwidth increases
3. Sensitivity of the output with respect to parameter changes in the forward path decreases.
4. Time constant of the system decreases
(A) 1, 2, 3, 4
(B) Only 2, 3, 4
(C) Only 3, 4
(D) Only 2,4

Ans: (B)

Sol:

CLTF $=\frac{\mathrm{G}(\mathrm{s})}{1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})}$
Negative feedback reduces gain of system
$\mathrm{S}_{\mathrm{G}}^{\mathrm{M}}=\frac{1}{1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})}$ is less than unity
i.e., less sensitive to the forward path parameter variations.
Bandwidth increases hence rise time decreases, speed increases, time constant decreases.
14. State space representation of a system is given as
$\dot{x}(t)=\left[\begin{array}{cc}-2 & 0 \\ 0 & -4\end{array}\right] x(t)+\left[\begin{array}{c}1 \\ -1\end{array}\right] u(t), y(t)=\left[\begin{array}{ll}1 & 1\end{array}\right] x(t)$ Where $y(t)$ is the output and $u(t)$ is the input. Then the undamped natural frequency of the system is \qquad $\mathrm{rad} / \mathrm{sec}$. (round up to two decimal places).

Ans: 2.83 (Range 2.8 to 2.9)

Sol: Characteristic equation $(\mathrm{s}+2)(\mathrm{s}+4)=0$
$s^{2}+6 s+8=0$
$\omega_{\mathrm{n}}^{2}=8$
$\omega_{\mathrm{n}}=2 \sqrt{2} \mathrm{rad} / \mathrm{sec}=2.83 \mathrm{rad} / \mathrm{sec}$
15. The circuit shown used to provide regulated output voltage of 6 V across $1 \mathrm{k} \Omega$ resistor. Assume $\mathrm{V}_{\mathrm{z}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{z}}$ (knee) $=4 \mathrm{~mA}$. The input voltage may vary by 10% from normal value of 10 V . The required value of R for the satisfactory operation of the circuit is
\qquad Ω

Ans: 300
Sol: Given that $\mathrm{V}_{\mathrm{z}}=6 \mathrm{~V}=\mathrm{V}_{0}$
I_{z} knee $=\mathrm{I}_{\mathrm{z}} \min =4 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{i}}=(10 \pm 10 \%) \mathrm{V}$
V_{i} range is 9 V to 11 V
$\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{0}}{\mathrm{R}_{\mathrm{L}}}=6 \mathrm{~mA}$
As V_{i} varies, $\mathrm{I} \rightarrow$ varies
$\mathrm{I}_{\text {min }}=\mathrm{I}_{\mathrm{z}(\min)}+\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}$
$\frac{\mathrm{V}_{\mathrm{i}(\min)}-\mathrm{V}_{\mathrm{z}}}{\mathrm{R}}=10 \times 10^{-3}$
$\Rightarrow \mathrm{R}=\frac{9-6}{10 \times 10^{-3}}=300 \Omega$

16. A, B, and C are Input bits and ' Y ' is the output bit in the circuit shown below. If the output ' Y ' is set to logic ' 1 ', which of the following option can satisfies the input binary combinations.

(A)Two (or) more number of input's A, B, and C are ' 0 '
(B) Two (or) more number of input's A, B, and C , are ' 1 '
(C) $\mathrm{A}=\mathrm{B} \neq \mathrm{C}$ (or) $\mathrm{A}=\mathrm{C} \neq \mathrm{B}$
(D) $A=B=C$

Ans: (B)

Sol:

$$
\begin{aligned}
& \mathrm{Y}=\overline{\overline{\mathrm{C}(\mathrm{~A} \oplus \mathrm{~B}) \cdot \overline{\mathrm{AB}}}} \\
& \mathrm{Y}=\mathrm{C}(\overline{\mathrm{AB}}+\mathrm{AB} \overline{\mathrm{~B}})+\mathrm{AB} \\
& =\overline{\mathrm{ABC}}+\mathrm{AB} \overline{\mathrm{~B}}+\mathrm{AB}(\mathrm{C}+\overline{\mathrm{C}}) \\
& =\underset{\downarrow}{\overline{\mathrm{A}}{ }_{\downarrow} \mathrm{C}}+\underset{\downarrow}{\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}}+\underset{\downarrow}{\mathrm{AB}}{ }_{\mathrm{m}}^{\mathrm{C}}+\underset{\downarrow}{\mathrm{m}}+\underset{\downarrow}{\mathrm{ABC}}
\end{aligned}
$$ Hyderabad | Ahmedabad | Kothapet | Kukatpally | Delhi | Pune | Bhubaneswar | Lucknow | Bengaluru | Chennai | Vijayawada | Vizag | Tirupathi | Kolkata

\square
 $25^{\text {th }}$ FEB 2020 $19^{\text {nh }}$ JAN 2020 20 25 FEB 2020

Streams Offered : EC I EE I ME I CEI CSIT I IN \& PI 1* RANKS IN GATE 1* RANKS IN ESE
 \title{
ESE/ /Giti / PSUS
 \title{
ESE/ /Giti / PSUS LONG TERM PROGRAN LONG TERM PROGRAN

 Batches Start From
}

 Batches Start From
}

COURSES OFFERED:

Calassroom Coaching
Ξ Postal Coaching
O Online Test Series
O Interview Guidance

New Batches for

ESE + CATE + PSUs - 2022 GATE + PSUs - 2022

Starts from:
19 ${ }^{\text {th }}$ JAN 2020 $25^{\text {th }}$ FEB 2020

Heanty, Comgratulations to om ESE 2019 Top Rankers

ABIDS
〔 040-23234418,19,20, 040-24750437

KUKATPALLY ₹ 040 -40199966, 9347699966

New Batches for
ESE + CATE + PSUs - 2021
Morning Batches @ Abids
$28^{\text {th }}$ DEC $\& 19^{\text {th }}$ JAN 2020

Scan QR CODE for
New Batch Details
17. Ans: (A)

Sol: Given $\bar{A} B+A \bar{B}$

$$
\begin{aligned}
\mathrm{f}_{\text {compt }} & =(\mathrm{A}+\overline{\mathrm{B}}) \cdot(\overline{\mathrm{A}}+\mathrm{B}) \\
& =\mathrm{A} \overline{\mathrm{~A}}+\mathrm{AB}+\overline{\mathrm{B}} \overline{\mathrm{~A}}+\overline{\mathrm{B}} \mathrm{~B} \\
& =0+\mathrm{AB}+\overline{\mathrm{A}} \overline{\mathrm{~B}}+0 \\
\mathrm{f}_{\text {compt }} & =\mathrm{AB}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \\
\text { Given } \mathrm{f} & =\overline{\mathrm{A}} \mathrm{~B}+\mathrm{A} \overline{\mathrm{~B}} \\
\mathrm{f}_{\text {dual }} & =(\overline{\mathrm{A}}+\mathrm{B})(\mathrm{A}+\overline{\mathrm{B}}) \\
& =0+\overline{\mathrm{A}} \overline{\mathrm{~B}}+\mathrm{BA}+0 \\
\mathrm{f}_{\text {dual }} & =\mathrm{AB}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \\
\therefore \mathrm{f}_{\text {compt }} & =\mathrm{f}_{\text {dual }}
\end{aligned}
$$

18. The below program is stored from Address 0101H

LXI H, 7788 H
MOV A, L
ANA H
JPO SKIP
ADD L
SKIP: MOV H,A
DAD H
SHLD 1234H

PCHL

From which address next instruction will be fetched?
(A) 0110 H
(B) 1111 H
(C) 1110 H
(D) 1234 H

Ans: (C)

Sol: * (HL) $=7788 \mathrm{H}$

* $\quad(\mathrm{A}) \leftarrow(\mathrm{L})=88 \mathrm{H}$

$$
\Rightarrow(\mathrm{A})=88 \mathrm{H}
$$

$$
*(\mathrm{~A})=88 \mathrm{H}=10001000
$$

$$
\underline{\wedge}(\mathrm{H})=\underline{77 \mathrm{H}}=\underline{01110111}
$$

(A) $=\underline{00 \mathrm{H}}=\underline{00000000}$

$$
\mathrm{CY}=\mathrm{O}, \mathrm{P}=1, \mathrm{AC}=1, \mathrm{Z}=1, \mathrm{~S}=0
$$

* JPO means Jump if parity odd
i.e., test for $\mathrm{P}=0$

This test fails as $\mathrm{P}=1$ because of ANA H Therefore, $\mu \mathrm{p}$ does not jump but continues with next instruction.
$*(\mathrm{~A}) \leftarrow(\mathrm{A})+(\mathrm{L})$

* $(\mathrm{A})=00 \mathrm{H}=0000 \quad 0000$
$\underline{+(\mathrm{L})}=\underline{+88 \mathrm{H}}=\underline{10001000}$
(A) $=\underline{88 \mathrm{H}}=\underline{1000 \quad 1000}$
$*(\mathrm{H}) \leftarrow(\mathrm{A})=88 \mathrm{H}$
$\Rightarrow(\mathrm{H})=88 \mathrm{H}$
$(\mathrm{HL})=8888 \mathrm{H}=1000100010001000$
$+(\mathrm{HL})=\underline{8888 \mathrm{H}}=\underline{1000100010001000}$
$(\mathrm{HL}) \quad=\underline{1110 \mathrm{H}}=\underline{0001 \quad 000100010000}$
* $(\mathrm{HL})=1110 \mathrm{H}$ stored into 2 locations 1234H

1235H

* $(\mathrm{HL})=1110 \mathrm{H} \quad$ copied into P.C

$$
\Rightarrow(\mathrm{P} . \mathrm{C})=1110 \mathrm{H}
$$

$\therefore 8085 \mu \mathrm{P}$ fetches next instruction from Address 1110 H Shared On WW
19. An LTT system with impulse response
$\mathrm{h}(\mathrm{t})=\frac{1}{\sqrt{\mathrm{t}+2}} \mathrm{u}(\mathrm{t}+1)$ is
\qquad
(A) Causal \& Stable
(B) Causal \& Unstable
(C) Unstable \& Non causal
(D) Non causal \& Stable

Ans: (D)

Sol: $h(t)=\frac{1}{\sqrt{t+2}} u(t+1)$
Because the signal (IR) starts at $t=-1 \Rightarrow$ Non causal.

For the stability $\int_{-\infty}^{\infty}|\mathrm{h}(\mathrm{t})| \mathrm{dt}<\infty$
$\int_{-1}^{\infty} \frac{1}{\sqrt{\mathrm{t}+2}} \mathrm{dt}<\infty \quad \therefore$ Stability
\therefore The system is stable \& NC
20. An FIR system with input $x(n)$ and output $\mathrm{y}(\mathrm{n})$ related as $\mathrm{y}(\mathrm{n})=0.2 \mathrm{x}(\mathrm{n})-0.5 \mathrm{x}(\mathrm{n}-2)+$ $0.4 x(n-3)$. If the input $x(n)=\{-1,1,0,1\}$ is applied then the output at $\mathrm{n}=2$ is

Ans: 0.5
Sol: $\mathrm{y}(\mathrm{n})=0.2 \mathrm{x}(\mathrm{n})-0.5 \mathrm{x}(\mathrm{n}-2)+0.4 \mathrm{x}(\mathrm{n}-3)$ $y(2)=0.2 x(2)-0.5 x(0)+0.4 x(-1) \ldots . .(1)$ $x(n)=\{-1,1,0,1\}$
$y=r^{x}(0)=1 ; x(1)=1 ; x(2)=0$

$$
x(3)=1
$$

Substituting in equation (1)

$$
\begin{aligned}
& y(2)=0.2(0)-0.5(-1)+0.4(0)=0.5 \\
& \therefore y(2)=0.5
\end{aligned}
$$

21. Two LTI systems with impulse response $\mathrm{h}_{1}(\mathrm{n})=\delta(\mathrm{n})$ and $\mathrm{h}_{2}(\mathrm{n})=\delta(\mathrm{n})-\delta(\mathrm{n}-2)$ are connected in cascade. If the input $x(n)=$ $u(n)$ is applied then the output is
(A) $\delta(\mathrm{n})$
(B) $\delta(\mathrm{n}-1)$
(C) $\delta(\mathrm{n})+\delta(\mathrm{n}-1)$
(D) $\delta(\mathrm{n}-1)+\delta$
($\mathrm{n}-2$)

Ans: (C)

Sol: Two systems are connected in cascade the
overall IR is

$$
\left.\left.\begin{array}{rl}
\mathrm{h}(\mathrm{n}) & =\mathrm{h}_{1}(\mathrm{n}) * \mathrm{~h}_{2}(\mathrm{n}) \\
\mathrm{h}(\mathrm{n}) & =\delta(\mathrm{n}) *[\delta(\mathrm{n})-\delta(\mathrm{n}-2)] \\
\mathrm{h}(\mathrm{n}) & =\delta(\mathrm{n})-\delta(\mathrm{n}-2) \\
\mathrm{y}(\mathrm{n}) & =\mathrm{x}(\mathrm{n}) * \mathrm{~h}(\mathrm{n}) \\
\mathrm{y}(\mathrm{n}) & =\mathrm{u}(\mathrm{n}) *[\delta(\mathrm{n})-\delta(\mathrm{n}-2)] \\
\mathrm{y}(\mathrm{n}) & =\mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}-2) \\
& =\{1, \quad 1\}
\end{array}\right\} \begin{array}{l}
\mathrm{y}(\mathrm{n})
\end{array}\right)=\delta(\mathrm{n})+\delta(\mathrm{n}-1) \quad \$ \mathrm{l}
$$

22. For the function $f(x, y)=x^{2}-y^{2}$, the point $(0,0)$ is
(A) a local minimum
(B) a saddle point
(C) a local maximum
(D) not a stationary point

Ans: (B)

Sol: Given $f(x, y)=x^{2}-y^{2}$
$\Rightarrow \mathrm{f}_{\mathrm{x}}=2 \mathrm{x}, \mathrm{f}_{\mathrm{y}}=-2 \mathrm{y}$ and

$$
\mathrm{f}_{\mathrm{xx}}=2, \mathrm{f}_{\mathrm{xy}}=0, \mathrm{f}_{\mathrm{yy}}=-2
$$

Consider $\mathrm{f}_{\mathrm{x}}=0$ and $\mathrm{f}_{\mathrm{y}}=0$
$\Rightarrow 2 \mathrm{x}=0$ and $-2 \mathrm{y}=0$
$\Rightarrow(0,0)$ is a stationary point
$\operatorname{At}(0,0), \mathrm{f}_{\mathrm{xx}} \mathrm{f}_{\mathrm{yy}}-\left(\mathrm{f}_{\mathrm{xy}}\right)^{2}=-4<0$
$\therefore \mathrm{f}(\mathrm{x}, \mathrm{y})$ has neither a maximum nor minimum at $(0,0)$.
23. If directional derivative of $\phi=2 x z-y^{2}$, at the point $(1,3,2)$ becomes maximum in the direction of \bar{a}, then magnitude of \bar{a} is
\qquad . (Give upto two decimal place)
Ans: $7.48 \quad$ (Range 7.45 to 7.50)
Sol: Given $\phi=2 x z-y^{2}$

$$
\begin{aligned}
\nabla \phi & =\frac{\partial \phi}{\partial \mathrm{x}} \overline{\mathrm{i}}+\frac{\partial \phi}{\partial \mathrm{y}} \overline{\mathrm{j}}+\frac{\partial \phi}{\partial \mathrm{z}} \overline{\mathrm{k}} \\
& =2 \mathrm{z} \overline{\mathrm{i}}-2 \mathrm{y} \overline{\mathrm{j}}+2 \mathrm{x} \overline{\mathrm{k}}
\end{aligned}
$$

\therefore Required direction vector $=\bar{a}=(\nabla \phi)$ at $(1,3,2)=(4 \overline{\mathrm{i}}-6 \overline{\mathrm{j}}+2 \overline{\mathrm{k}})$

Magnitude of $\bar{a}=\sqrt{16+36+4}=\sqrt{56}$

$$
=7.48
$$

24. A continuous random variable X has a V. . probability density function

$$
f(x)=e^{-x}, 0<x<\infty \text {. Then } P(X>2) \text { is }
$$

(A) 0.1353
(B) 0.2354
(C) 0.2343
(D) 1.1353

Ans: (A)

Sol: $\mathrm{P}(\mathrm{X}>2)=\int_{2}^{\infty} f(x) \cdot d x$

$$
\begin{aligned}
& =\int_{2}^{\infty} e^{-x} d x \\
& =\left.\frac{e^{-x}}{-1}\right|_{2} ^{\infty} \\
& =e^{-2}=0.1353
\end{aligned}
$$

HYDERABAD I DELHI | VIJAYAWADA | TIRUPATI I PUNE \| BHUBANESWAR \| BENGALURU I LUCKNOW | CHENNAI | VIZAG | KOLKATA | AHMEDABAD

ADMISSIONS ARE OPEN FOR ESE | GATE | PSUs - 2021 \& 2022 @ DELHI

Streams: CE | ME I EC | EE | CS | IT | IN | P|
WEEKEND BATCHES START FROM
of $11^{\text {th }}$ JAN 2020
30
$8^{\text {th }}==32020$

Special Discounts for Weekend Batches @ DELHI

Colleges	Individual Discounts	Group Discounts (Minimum 10 Students)	College/Branch Topper Rank1\&2	
IIT	4	45%	50%	
NIT/DTU/NSUT IIIT/IGDTUW	$30 \begin{gathered} \% \\ \text { on Tuition Fee } \end{gathered}$	25% 35 off on Tuition Fee	4	
JMI/USICT YMCA/DCRUST UIET (MDUz kuk)	20% on Tuition Fee	25%	$30 \begin{gathered} \% \\ 0 F F \\ \text { on Tuition Fee } \end{gathered}$	
Other Govt. Engg. Colleges	$\begin{gathered} 1 \% \\ 0 \% \\ \text { on Tuition Fee } \end{gathered}$	20% on Tuition Fee	$25 \text { \% }$ on Tuition Fee	Also, Special Discounts for Previously Qualified ESE (Prelims/Mains)
$\begin{gathered} \text { IPU/AKTU } \\ \text { MDU/KUK } \\ \text { Affiliated Colleges } \end{gathered}$			$\because 0 \begin{aligned} & \% \\ & 0 F F \end{aligned}$	/ GATE Students for more details visit our website:

25. The solution to $x^{2} y^{11}+x y^{1}-y=0$ is
(A) $y=C_{1} x^{2}+C_{2} x^{-3}$
(B) $y=C_{1}+C_{2} x^{-2}$
(C) $y=C_{1} x+\frac{C_{2}}{x}$
(D) $y=C_{1} x+C_{2} x^{4}$

Ans: (C)

Sol: Put $\ln \mathrm{x}=\mathrm{t}$ so that $\mathrm{x}=\mathrm{e}^{\mathrm{t}}$ and
Let $x \frac{d y}{d x}=D y, x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y$
Where $\mathrm{D}=\frac{\mathrm{d}}{\mathrm{dt}}$
Given differential equation is

$$
\begin{array}{cc}
& x^{2} y^{11}+x y^{1}-y=0 \\
\Rightarrow & D(D-1) y+D y-y=0 \\
\Rightarrow & \left(D^{2}-1\right) y \text { y-0 ared on WW }
\end{array}
$$

Consider Auxiliary equation $\mathrm{f}(\mathrm{D})=0$
$\Rightarrow \mathrm{D}^{2}-1=0$
$\Rightarrow \mathrm{D}=1,-1$ are different real roots
\therefore The general solution of given equation is

$$
\begin{aligned}
y & =c_{1} e^{t}+c_{2} e^{-t} \\
& =c_{1} x+\frac{c_{2}}{x}
\end{aligned}
$$

Q. 26 - Q. 55 carry TWO marks each.
26. Three identical 2-winding single-phase transformers are connected as shown in fig. 1.

Fig. 1
The two possible values for V_{s} are,
(A) $3 \mathrm{~V}, \mathrm{~V}$
(B) $0,2 \mathrm{~V}$
(C) $0, \mathrm{~V}$
(D) $0,2 \mathrm{~V} \angle-60^{\circ}$.

26. Ans: (B)

Sol: Fig. 1 of the question does not give any information about the relative polarities of the primary and secondary voltages. (This information is usually given by placing dots at the two windings of each of the transformers as per the dot convention. Such dots are not placed any where).

One meaning of dots (which is needed for this problem) is as follows:

Fig. 2
(A) Let the dots be located as shown in fig. 3.

The terminals $1 \& 2$ can now be safely joined
Together to make a $\Delta-\Delta$ transformer
Fig. 3
(B) Let the dots be located as shown in fig. 4.

(1)
(2)
(3)

Fig. 4
$\mathrm{V}_{\mathrm{s}} \angle \theta$ is determined in the phasor diagram of fig. 4.

Terminals 1 and 2 of fig. 4 should not be joined

There are several other ways of connecting the three secondaries. Everyone of them leads to either $\mathrm{V}_{\mathrm{s}}=0$ or $\mathrm{V}_{\mathrm{s}}=2 \mathrm{~V}$.

Thus there are only two possible values for V_{s} : Zero, and 2 V .
27. A 100 kW , belt-driven dc shunt generator is running at 300 rpm in the clockwise direction, delivering power to a 200 V bus. Now the belt breaks, but the machine continues to run, drawing 4 kW from the supply. Neglect armature reaction. Armature and field resistances are 0.1Ω and 100Ω respectively. Its speed and direction of rotation after the belt breaks are, respectively.
(A) 238, clockwise
(B) 238, anti clockwise
(C) 242, clockwise
(D) 242, anti clockwise

Ans: (A)

Sol: 1. Initial operation:

For a field current of 2 A , let the flux/pole be $\phi \mathrm{Wb}$.
$\mathrm{k} \phi\left(300 \times \frac{2 \pi}{60}\right)=250.2 \Rightarrow \mathrm{k} \phi=\frac{25.02}{\pi}$.
The armature is given to be rotating in the cw direction.

2. Direction of developed torque during the initial operation:

With the armature and field currents directed as shown in fig.1, the developed torque in the machine must be in the anti clock wise direction. This is because the prime mover, in driving the armature in the clock wise direction, has to do mechanical work against the developed torque, which work is converted into electrical energy and losses by the machine.

3. Operation after the belt breaks:

Steady state conditions after the belt breaks are specified the problem. Corresponding circuit is as shown in fig. 2.

Fig. 2
With field current unchanged, $\mathrm{k} \phi$ remains unchanged at $\frac{25.02}{\pi}$. (Since armature
reaction is neglected, change in armature current from 502 A to 18 A does not affect the flux/pole in any way).

$$
\begin{aligned}
& \left(\frac{25.02}{\pi}\right) \mathrm{N}\left(\frac{2 \pi}{60}\right)=198.2 \\
& \Rightarrow \mathrm{~N}=237.65 \mathrm{rpm} \approx 238 \mathrm{rpm}
\end{aligned}
$$

When belt breaks, there is no prime mover anymore. However, the stored kinetic energy in the rotor keeps the rotor running in the clock wise direction, but with decreasing speed. The machine is in regenerative braking mode, which continues as long as E in fig. 1 is greater than 200 V , and I_{a} of fig. 1 is positive (developed torque will be in acw direction, it opposes motion and causes speed to fall). When E becomes less than 200 V , as in fig. 2 , I_{a} reverses. With I_{f} continuing to be in the original direction, T_{d} is now in the clock wise direction, and drives the machine in the clock wise direction as a motor.

238 rpm, clock wise; is the correct answer.
28. A squirrel cage induction motor has slip of 4% at full load. Its starting current is five times the full load current. The stator impedance and magnetizing current may be neglected, the rotor resistance is assumed constant. The percentage of slip at which maximum torque occurs is \qquad .

Ans: 20 (No range)
Sol: We have
$\mathrm{T}_{\mathrm{em}}=\mathrm{KI}_{2}^{2} \frac{\mathrm{R}_{2}}{\mathrm{~s}}$
From eq. (1)
$\mathrm{T}_{\mathrm{st}}=\mathrm{KI}_{\mathrm{st}}{ }^{2} \frac{\mathrm{R}_{2}}{1}$
$\mathrm{T}_{\mathrm{fl}}=\mathrm{KI}_{\mathrm{fl}}^{2} \frac{\mathrm{R}_{2}}{\mathrm{~s}_{\mathrm{fl}}}$
$\frac{T_{s t}}{T_{f 1}}=\left(\frac{I_{s t}}{I_{f l}}\right)^{2} s_{f 1}$
Also we have

$$
\begin{equation*}
\frac{\mathrm{T}_{\mathrm{st}}}{\mathrm{~T}_{\mathrm{fl}}}=\frac{\mathrm{s}_{\mathrm{T} \text { max }}^{2}+\mathrm{s}_{\mathrm{ff}}^{2}}{\left(\mathrm{~s}_{\mathrm{T} \text { max }}^{2}+1\right) \mathrm{s}_{\mathrm{fl}}} \tag{3}
\end{equation*}
$$

From (2) \& (3)
$\left(\frac{I_{s t}}{I_{f 1}}\right)^{2} \mathrm{~s}_{\mathrm{fl}}=\frac{\mathrm{s}_{\mathrm{T}_{\text {max }}}^{2}+\mathrm{s}_{\mathrm{f}}^{2}}{\mathrm{~s}_{\mathrm{fl}}\left(\mathrm{s}_{\mathrm{T} \text { max }}^{2}+1\right)}$ ared on WWW
Given $\mathrm{I}_{\mathrm{st}}=5 \mathrm{I}_{\mathrm{fl}}$
$\left(\frac{\mathrm{I}_{\mathrm{st}}}{\mathrm{I}_{\mathrm{fl}}}\right)^{2}=\frac{\mathrm{s}_{\mathrm{T} \text { max }}^{2}+\mathrm{s}_{\mathrm{fl}}^{2}}{\mathrm{~s}_{\mathrm{fl}}^{2}\left(\mathrm{~s}_{\mathrm{T} \text { max }}^{2}+1\right)}$
$\Rightarrow\left(\frac{5 \mathrm{I}_{\mathrm{fl}}}{\mathrm{I}_{\mathrm{fl}}}\right)^{2}=\frac{\mathrm{s}_{\mathrm{T} \text { max }}^{2}+0.04^{2}}{0.04^{2}\left(\mathrm{~s}_{\mathrm{T} \text { max }}^{2}+1\right)}$
$\Rightarrow 25=\frac{\mathrm{s}_{\mathrm{T} \max }^{2}+0.04^{2}}{0.04^{2}\left(\mathrm{~s}_{\mathrm{T} \text { max }}^{2}+1\right)}$
Solving for
$S_{\text {Tmax }}=0.2$ or 20%
29. Consider the following single line diagram in which an alternator with emf of 15 kV supplying 150 MW real power to infinite
bus of 400 kV voltage. The ratings of apparatus are given as

Generator (G): $11 \mathrm{kV}, 200 \mathrm{MVA}, \mathrm{X}_{\mathrm{d}}=0.5$ p.u,

Transformer (T): $11 \mathrm{kV} / 400 \mathrm{kV}, 200$ MVA, $\mathrm{X}_{\mathrm{t}}=0.15 \mathrm{p} . \mathrm{u}$,

Transmission line: $\mathrm{X}=40 \Omega, \mathrm{R}=0,400 \mathrm{kV}$

The stable angle made by rotor of alternator with respect to infinite bus is \qquad electrical degrees
Ans: 22.64 (Range: 21.0 to 24.0)
Sol:
V.ErF $=(11 \mathrm{kV} \mathrm{Mn}, 200 \mathrm{MVV}$
$200 \mathrm{MVA} \quad 11 \mathrm{kV} / 400 \mathrm{kV}$

Let us choose common base as $11 \mathrm{kV}, 200$ MVA at 'G' location.

Line: $\quad X_{\ell}=40 \Omega$

$$
\mathrm{Z}_{\text {base }}=\frac{(400 \mathrm{k})^{2}}{200 \mathrm{M}}=800 \Omega
$$

$$
\underset{(\text { p.u) }}{\mathrm{X}_{\ell}}=\frac{40}{800}=0.05 \mathrm{p.u}
$$

G: $\quad \mathrm{E}_{\mathrm{p} . \mathrm{u}}=\frac{15}{11}=1.3636 \mathrm{p} . \mathrm{u}$

HYDERABAD | TIRUPATI | DELHI | PUNE | BHUBANESWAR | BENGALURU | LUCKNOW | CHENNAI | VIJAYAWADA | VIZAG | KOLKATA | AHMEDABAD

DIGITAL CLASSES

for

ESE

GATE CS \& IT

\title{

250+

Hours of Classes with Quizzes

450+

450+

Hours of Classes
with Quizzes

Launching STonl for ECEI EEE | MECH | CEIIN

Call: 040-23234418/19/20 | web: www.aceenggacademy.com

Infinite bus: $\mathrm{V}_{\mathrm{p} . \mathrm{u}}=\frac{400}{400}=1 \mathrm{p} . \mathrm{u}$
The per phase equivalent circuit is given as,

Real power flow, $\mathrm{P}=150 \mathrm{MW}$
$P_{(\text {p.u })}=\frac{P}{S_{\text {base }}}=\frac{150}{200}=0.75$ p.u
$\mathrm{P}=\frac{|\mathrm{E}||\mathrm{V}|}{\mathrm{X}_{\mathrm{eq}}} \cdot \sin \delta$
Where $\mathrm{X}_{\mathrm{eq}}=\mathrm{X}_{\mathrm{d}}+\mathrm{X}_{\mathrm{t}}+\mathrm{X}_{\ell}=0.7 \mathrm{p} . \mathrm{u}$
$0.75=\frac{1.3636 \times 1}{0.7} \sin \delta \Rightarrow \delta=22.64^{\circ}$
30. A 3- ϕ loss less transmission line has the propagation constant $\gamma=0+\mathrm{j} 1.06 \times 10^{-3}$ radians per km. The transmission line is represented in its equivalent π model as shown in the figure.

The approximate length of transmission line is \qquad km.

Ans: 300 (Range: 295 km to $\mathbf{3 0 5}$ km)
Sol: Equivalent- π model,

Parameter $\mathrm{A}=1+\frac{\mathrm{z}^{\prime} \mathrm{y}^{\prime}}{2}$
For transmission line, $\mathrm{A}=\cos \beta \ell$
$\therefore \cos \beta \ell=1+\frac{\mathrm{z}^{\prime} \mathrm{y}^{\prime}}{2}$

$$
\begin{aligned}
& \quad=1+\left(\mathrm{j} 87.5 \times \mathrm{j} 574 \times 10^{-6}\right) \\
& =0.9498 \\
& \beta \ell=\cos ^{-1}(0.9498) \\
& \beta \ell=0.31828 \text { radians } \\
& \text { Where } \beta=1.06 \times 10^{-3} \mathrm{rad} / \mathrm{km} \\
& \therefore \ell=\frac{0.31828}{1.06 \times 10^{-3}} \mathrm{~km}=300 \mathrm{~km}
\end{aligned}
$$

31. A transmission line of length 200 km with series reactance per km as 0.4Ω is supplied by a source of 220 kV (LL) with source reactance of 20Ω. The line is protected by a over current relay (R) with relay setting 80% and associated with a CT of ratio 2000/5A.

The relay will provide protection for
\qquad length of transmission line for three phase fault on transmission line.

(A) 175 km
(B) 198.5 km
(C) 148.5 km
(D) 108.77 km

Ans: (C)
Sol: CT ratio : 2000A/5A
Relay setting $=0.8$
Pickup current on primary side of CT

$$
\begin{aligned}
& =0.8 \times 2000 \\
& =1600 \mathrm{~A}
\end{aligned}
$$

The per phase model onto a 3- ϕ fault on transmission line

Let X_{RF} is the portion of line reactance upto which the relay can identify the fault.
For verge of operation, $\mathrm{I}_{\mathrm{f}}=1600 \mathrm{~A}$
$\frac{\mathrm{V}_{\mathrm{S}(\mathrm{ph})}}{\mathrm{X}_{\mathrm{S}}+\mathrm{X}_{\mathrm{RF}}}=1600$
$\frac{\frac{220}{\sqrt{3}} \times 10^{3}}{20+\mathrm{X}_{\mathrm{RF}}}=1600$
$\mathrm{X}_{\mathrm{RF}}=59.388 \Omega$
Line reactance, $\mathrm{X}_{l}=0.4 \Omega / \mathrm{km}$
The length of line protected by relay

$$
=\frac{59.388}{0.4} \mathrm{~km}
$$

$$
=148.47 \mathrm{~km}
$$

32. A solidly grounded neutral Y-connected alternator rated for $11 \mathrm{kV}, 80 \mathrm{MVA}$ has the resistance and reactances as $\mathrm{R}_{\mathrm{a}}=0.1 \mathrm{pu}$, $X_{d}^{\prime \prime}=0.2 \mathrm{pu}, \mathrm{X}_{\mathrm{d}}^{\prime}=0.4 \mathrm{pu}, \mathrm{X}_{\mathrm{d}}=0.8 \mathrm{pu}, \mathrm{X}_{2}=$ $0.2 \mathrm{pu}, \mathrm{X}_{0}=0.05 \mathrm{pu}$. The open circuit voltage of alternator is $14 \mathrm{kV}(\mathrm{LL})$. A single phase load of impedance $1.5+\mathrm{j} 0 \Omega$ is connected at the terminals of alternator. The load current is
(A) 4.23 kA
(B) 4.66 kA
(C) 4.85 kA
(D) 5.39 kA

Ans: (B)

Load impedance in per unit, $\mathrm{Z}_{l \text { pu }}=\frac{\mathrm{Z}_{\ell}(\Omega)}{\mathrm{Z}_{\text {base }}}$

$$
=\frac{1.5}{1.5125}=0.9917 \mathrm{pu}
$$

Open circuit voltage (or) internal unit of alternator, $\mathrm{E}_{\mathrm{a} 1}(\mathrm{LL})=14 \mathrm{kV}$

ACE Engineering Academy
$\mathrm{E}_{\mathrm{al}(\mathrm{pu})}=\frac{14}{11}=1.2727 \mathrm{pu}$
Load current, $\mathrm{I}_{\mathrm{a}}=\frac{3 \mathrm{E}_{\mathrm{a} 1}}{\mathrm{Z}_{1}+\mathrm{Z}_{2}+\mathrm{Z}_{0}+3 \mathrm{Z}_{\ell}}$

$$
=\frac{3 \times 1.2727}{0.3+\mathrm{j} 1.05+2.975}
$$

$$
=\frac{3.8181}{3.275+\mathrm{j} 1.05}
$$

$$
\left|\mathrm{I}_{\mathrm{a}}\right|=1.11 \mathrm{pu}
$$

$$
\begin{aligned}
\mathrm{I}_{\mathrm{a}}(\mathrm{kA}) & =\mathrm{I}_{\mathrm{a}}(\mathrm{p} . \mathrm{u}) \times \mathrm{I}_{\text {base }} \\
& =1.11 \times \frac{80}{\sqrt{3} \times 11} \mathrm{kA}=4.66 \mathrm{kA}
\end{aligned}
$$

33. The resistance values of the bridge circuit shown in the figure are $R_{1}=R_{2}=R_{3}=10 \Omega$ and R_{4} is 20Ω. The bridge is balanced by introducing a voltage ?source of $/{ }^{\circ} \mathrm{V} \cdot \mathrm{N}$ as shown in figure.

The value of voltage source is \qquad volts.

Ans: - 2.5 (No range)

Sol:

$$
\mathrm{I}_{2} \times 20=5
$$

$$
\mathrm{I}_{2}=\frac{5}{20}=0.25 \mathrm{~A}
$$

$$
\begin{aligned}
\mathrm{I}_{2}(10)-\mathrm{V} & =5 \\
0.25 \times 10-\mathrm{V} & =5 \\
2.5-\mathrm{V} & =5 \\
\mathrm{~V} & =-2.5 \mathrm{~V}
\end{aligned}
$$

34. ${ }^{2}$ A time varying voltage signal $\mathrm{V}(\mathrm{t})=\mathrm{X}+$ Ysinωt is measured by a single channel Analog CRO (operated with coupling mode set to DC) and also by Dual slope integrating DMM (operated with voltage Range set to AC). After measurement, DMM and CRO will display respectively are
(A) $\sqrt{\left(\frac{X}{\sqrt{2}}\right)^{2}+\left(\frac{Y}{\sqrt{2}}\right)^{2}} \& X+Y \sin \omega t$
(B) $\mathrm{X} \& \mathrm{X}+\mathrm{Y} \sin \omega \mathrm{t}$
(C) $\sqrt{X^{2}+\left(\frac{Y}{\sqrt{2}}\right)^{2}} \& Y \sin \omega t$
(D) $X \& Y \sin \omega t$

Ans: (B)

Sol: DMM measures average value. Therefore displays X

In DC coupling, the sensed signal as it is reaches to Y-input of CRO and hence displayed as $\mathrm{X}+\mathrm{Y} \sin \omega \mathrm{t}$.
35. A Buck-Boost converter is shown in figure. Assume that inductor and capacitor are large enough to treat i_{L} and V_{0} are ripple free. MOSFET has ON resistance of 0.5Ω during its conduction. To maintain output voltage of 400 V at 10 A to the load, the duty cycle ratio of converter will be \qquad (Give upto two decimal place)

Ans: 0.58 (Range: 0.56 to 0.60)
Sol: During MOSFET ON:

During MOSFET OFF:

$\mathrm{KVL}: \mathrm{R}_{\mathrm{on}} \mathrm{i}_{\mathrm{L}}+\mathrm{L} \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}}=\mathrm{V}_{\mathrm{dc}} \ldots \ldots$
$\mathrm{KVL}: L \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}}=-\mathrm{V}_{0} \ldots \ldots$ (1)
$\mathrm{KCL}: \mathrm{C} \frac{\mathrm{d} v_{0}}{\mathrm{dt}}+\frac{v_{0}}{\mathrm{R}}=0$

$$
\mathrm{KCL}: \mathrm{C} \frac{\mathrm{~d} v_{0}}{\mathrm{dt}}+\frac{v_{0}}{\mathrm{R}}=\mathrm{i}_{\mathrm{L}} .
$$

Flux balance equation from KVL

$$
\begin{equation*}
\Rightarrow \mathrm{R}_{\mathrm{on}} \cdot \mathrm{I}_{\mathrm{L}} \cdot \mathrm{D}+0=\mathrm{D} \cdot \mathrm{~V}_{\mathrm{dc}}-\mathrm{V}_{0}(1-\mathrm{D}) \tag{1}
\end{equation*}
$$

Charge balance equation from

$$
\begin{equation*}
\mathrm{KCL} \Rightarrow \frac{\mathrm{~V}_{0}}{\mathrm{R}}=\mathrm{I}_{\mathrm{L}}(1-\mathrm{D}) \tag{2}
\end{equation*}
$$

By substituting I_{L} value from equation (2) into equation (1), we will get

$$
\begin{aligned}
& \Rightarrow \mathrm{R}_{\text {on }} \cdot \frac{\mathrm{V}_{0}}{\mathrm{R}(1-\mathrm{D})} \mathrm{D}+\mathrm{V}_{0}(1-\mathrm{D})=\mathrm{D} \cdot \mathrm{~V}_{\mathrm{dc}} \\
& \Rightarrow \mathrm{~V}_{0}\left[\frac{\mathrm{R}_{\text {on }}}{\mathrm{R}} \times \frac{\mathrm{D}}{1-\mathrm{D}}+(1-\mathrm{D})\right]=\mathrm{DV} \mathrm{~V}_{\mathrm{dc}} \\
& \Rightarrow \frac{\mathrm{~V}_{0}}{\mathrm{~V}_{\mathrm{dc}}}=\frac{\mathrm{D}}{\frac{\mathrm{R}_{\mathrm{on}}}{\mathrm{R}} \cdot \frac{\mathrm{D}}{1-\mathrm{D}}+(1-\mathrm{D})}
\end{aligned}
$$

Now, substitute the given data

$$
\begin{aligned}
& \frac{400}{300}=\frac{\mathrm{D}}{\frac{0.5}{40} \times \frac{\mathrm{D}}{1-\mathrm{D}}+(1-\mathrm{D})} \\
& \Rightarrow 560 \mathrm{D}^{2}-876 \mathrm{D}+320=0 \\
& \Rightarrow \mathrm{D}=0.983 \text { (or) } 0.5813
\end{aligned}
$$

If D is near to unity, buck-boost converter will be unstable. Hence choose, 0.5813 .
36. A single phase full wave half controlled rectifier is supplying an inductive load and assume current is ripple free at 10 A . It has been operated with firing angle delay of 45° then power factor on the AC supply lines is
(A) 0.9238
(B) 0.8869
(C) 0.707
(D) 0.52

Ans: (B)

Sol: Single phase full wave half controlled rectifier is a semi converter.
Power factor $=$ C.D.F \times D.F
C.D.F $=\frac{I_{\mathrm{Sl}}}{\mathrm{I}_{\mathrm{Sr}}}$
$I_{S 1}=\frac{2 \sqrt{2}}{\pi} I_{o} \cos \frac{\alpha}{2}$
$=0.9 \mathrm{I}_{\mathrm{o}} \cos \frac{45^{\circ}}{2}=8.315 \mathrm{~A}$
$\mathrm{I}_{\mathrm{Sr}}=\mathrm{I}_{0} \sqrt{\frac{\pi-\alpha}{\pi}}$
$=10 \sqrt{\frac{180-45}{180}}=8.66 \mathrm{~A}$
C.D.F $=\frac{8.315}{8.66}=0.96$
D. $\mathrm{F}=\cos \frac{\alpha}{2}=\cos \frac{45^{\circ}}{2}=0.9238$

Power factor $=0.96 \times 0.9238=0.8869$
37. A single phase $230 \mathrm{~V}, 50 \mathrm{~Hz}$ full wave rectifier consists of three diodes and one thyristor and supplying a resistive load of 10 Ω. The firing angle delay is so selected that
the average output current 20.7 A , then the peak value of fundamental supply current is
\qquad A (Give upto two decimal places)

Ans: 32.52 (Range: 32 to 33)

Sol: A single phase full wave rectifier consists of three diodes and one thyristor and supplying a resistive load, then
$\mathrm{V}_{0}=\frac{\mathrm{V}_{\mathrm{m}}}{2 \pi}[3+\cos \alpha]$
$\mathrm{I}_{0}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{m}}}{2 \pi \mathrm{R}}[3+\cos \alpha]$
$\Rightarrow 20.7=\frac{230 \times \sqrt{2}}{2 \pi \times 10}[3+\cos \alpha]$
$\Rightarrow \cos \alpha=1$
$\Rightarrow \alpha=0$
V. Eif $\alpha=0$, then the shape of the supply current is pure sinusoidal.
Peak value of the fundamental current component, $\mathrm{I}_{\mathrm{S} 1}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{R}}=\frac{230 \times \sqrt{2}}{10}$

$$
=32.52 \mathrm{~A}
$$

38. Obtain Thevinin's equivalent at terminals a -b

$\mathrm{V}_{\mathrm{Th}}=240-144=96$ volts

(B)

(C)

(D)

Ans: (C)

Sol: V_{Th} :

KVL:
$-240+12[0.05][240]+\mathrm{V}_{\mathrm{Th}}=0$
(A) 8.57 A
(B) 6.06 A
(C) 2.4 A
(D) 1.69 A

Ans: (B)

Sol: Mesh analysis

$$
\begin{aligned}
& -[24 \angle 0]+\mathrm{j} 4 \mathrm{I}_{1}+\mathrm{j} 8\left[\mathrm{I}_{1}-\mathrm{I}_{2}\right]+\mathrm{j} 2\left[\mathrm{I}_{1}-\mathrm{I}_{2}\right]+\mathrm{j} 2 \mathrm{I}_{1} \\
& =0
\end{aligned}
$$

$$
\begin{align*}
& \mathrm{j} 16 \mathrm{I}_{1}-{\mathrm{j} 10 \mathrm{I}_{2}}=24 \\
& \mathrm{j} 8 \mathrm{I}_{1}-\mathrm{j} 5 \mathrm{I}_{2}=12 \ldots \tag{1}\\
& \mathrm{j} 8\left[\mathrm{I}_{2}-\mathrm{I}_{1}\right]-\mathrm{j} 2\left[\mathrm{I}_{1}\right]=0
\end{align*}
$$

$$
\begin{equation*}
4 \mathrm{I}_{2}=5 \mathrm{I}_{1} \tag{2}
\end{equation*}
$$

Substitute (2) in (1) and solve for I_{2}
$\mathrm{I}_{2}\left[\mathrm{j} 8\left(\frac{4}{5}\right)-\mathrm{j} 5\right]$ stared on WW
$I_{2}\left[\frac{\mathrm{j} 7}{5}\right]=12$
$\mathrm{I}_{2}=\frac{60}{7 \mathrm{j}}=8.57 \angle-90^{\circ}$
$\mathrm{I}_{2}=8.57 \cos (4 \mathrm{t}-90)$
$\mathrm{I}_{2}=\frac{8.57}{\sqrt{2}}=6.06=\mathrm{I}_{\mathrm{SC}}$
40. The time constant of current ' I ' in the circuit shown is

(A) 1 sec
(B) 0.166 sec
(C) 0.2855 sec
(D) 0.1 sec
40. Ans: (A)

Sol: Use Laplace

Mesh equations

$$
\begin{gather*}
-\mathrm{V}_{\mathrm{s}}(\mathrm{~s})+\mathrm{I}_{1}(\mathrm{~s}) 2+\mathrm{s}\left[\mathrm{I}_{1}(\mathrm{~s})-\mathrm{I}_{2}(\mathrm{~s})\right]=0 \\
(\mathrm{~s}+2) \mathrm{I}_{1}(\mathrm{~s})-\mathrm{sI}_{2}(\mathrm{~s})=\mathrm{V}_{\mathrm{S}}(\mathrm{~s}) \ldots \ldots \ldots \tag{1}\\
\mathrm{s}\left[\mathrm{I}_{2}(\mathrm{~s})-\mathrm{I}_{1}(\mathrm{~s})\right]+(\mathrm{s}+3) \mathrm{I}_{2}(\mathrm{~s})=0 \\
\mathrm{sI} \mathrm{I}_{1}(\mathrm{~s})=(2 \mathrm{~s}+3) \mathrm{I}_{2}(\mathrm{~s}) \ldots \ldots \ldots \ldots \ldots \tag{2}
\end{gather*}
$$

Substitute (2) in (1)

$$
\mathrm{I}_{2}(\mathrm{~s})\left[(\mathrm{s}+2)\left(\frac{2 \mathrm{~s}+3}{\mathrm{~s}}\right)-\mathrm{s}\right]=\mathrm{V}_{2}(\mathrm{~s})
$$

Transfer function, $\frac{\mathrm{I}_{2}(\mathrm{~s})}{\mathrm{V}_{2}(\mathrm{~s})}=\frac{\mathrm{s}}{\mathrm{s}^{2}+7 \mathrm{~s}+6}$
Roots of characteristic equation
$s_{1} s_{2}=\frac{-7 \pm \sqrt{49-4(6)}}{2(1)}=\frac{-7 \pm \sqrt{25}}{2}=$ $\frac{-7 \pm 5}{2}$
$\mathrm{s}_{1} \mathrm{~s}_{2}=-1,-6$
Roots are-ve, Real, unequal.
So, over damped response
So, $\mathrm{T}=\frac{-1}{\text { Domin ant pole }}$

$$
\mathrm{T}=-\frac{1}{(-1)}=1 \text { second. }
$$

41.

A system has transmission matrix $\left[\begin{array}{cc}2 & 1+j \\ 1 & 1+\frac{j}{2}\end{array}\right]$
If input voltage is 50 V (RMS) the maximum power transferred to the load is
\qquad W.

41. Ans: 312.5 (Range: 310 to 315)

Sol: $\mathrm{V}_{\mathrm{Th}}=\frac{\mathrm{V}_{\text {in }}}{\mathrm{A}}=\frac{50}{2}=25 \mathrm{~V}(\mathrm{RMS})$

$$
\mathrm{Z}_{\mathrm{Th}}=\frac{\mathrm{B}}{\mathrm{~A}}=\left[\frac{1+\mathrm{j}}{2}\right] \Omega
$$

For $\mathrm{P}_{\text {max }} \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{Th}}^{*}$

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{L}} & =\left[\frac{1-\mathrm{j}}{2}\right] \Omega \\
\mathrm{P}_{\max }=\frac{\mathrm{V}_{\mathrm{Th}}^{2}}{4 \mathrm{R}_{\mathrm{Th}}} & =\frac{(25)^{2}}{4\left(\frac{1}{2}\right)} \\
& =\frac{(25)(25)}{2} \\
& =312.5 \mathrm{~W}
\end{aligned}
$$

42. Choosing infinity as the reference point, the electric potential (in Joules/coulomb) at the origin considering only the electric field in the region outside $\left(r=r_{2}\right)$ is

Fig. 1: Charge distribution in free space.

A \& B: Spherical surfaces with radii as shown.
(A) 0
(B) $\frac{\mathrm{K}}{2 \varepsilon_{0}} \frac{\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)}{\mathrm{r}_{2}}$
(C) or min, Net
(D) $\frac{\mathrm{K}}{6 \varepsilon_{0}} \frac{\mathrm{r}_{2}^{3}-\mathrm{r}_{1}^{3}}{\mathrm{r}_{2}^{2}}$

Ans: (B)

Sol: i). Regions (1), (2) and (3) are shown in fig. 2. In each region, we can find the electric field. But in this problem, we need the field in region (1) only.

Fig. 2

Since charge density varies only with r , the problem has spherical symmetry and hence

Gauss's law methods can be used advantageously.

Region (1): Consider a spherical Gaussian surface (imaginary, closed) with center at O (origin) and radius $r>r_{2}$, as shown in fig. 2 .
Total charge enclosed by this surface $=$

$$
\begin{aligned}
\int_{\mathrm{r}=\mathrm{r}_{1}, \theta=0, \phi=0}^{\mathrm{r}_{2}, \pi, 2 \pi} & \frac{\mathrm{~K}}{\mathrm{r}} \mathrm{r}^{2} \sin \theta \mathrm{dr} \mathrm{~d} \theta \mathrm{~d} \phi \\
& =4 \pi \mathrm{~K} \int_{\mathrm{r}=\mathrm{r}_{1}}^{\mathrm{r} 2} \mathrm{rdr}=2 \pi \mathrm{~K}\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right) \mathrm{C}
\end{aligned}
$$

To any point on this Gaussian surface, this charge appears as a point charge at the origin. Hence electric field at a point (r, θ,
$\phi)$ in region- $1=\frac{2 \pi K\left(r_{2}^{2}-r_{1}^{2}\right)}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} a_{\mathrm{r}} \mathrm{N} / \mathrm{C}$
Potential at the origin, with infinity as reference is
$\mathrm{V}_{0}=-\int_{\mathrm{r}=\infty, \theta=0, \phi=0}^{\mathrm{r}_{2}, \pi, 2 \pi} \frac{2 \pi \mathrm{~K}\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} \mathrm{a}_{\mathrm{r}} \cdot\left(\mathrm{dr} \mathrm{a}_{\mathrm{r}}+\mathrm{rd} \mathrm{\theta}\right.$

$$
\begin{equation*}
\left.\mathrm{a}_{\theta}+\mathrm{r} \sin \theta \mathrm{~d} \phi \mathrm{a}_{\phi}\right) . \tag{1}
\end{equation*}
$$

(Upper limit for r is r_{2} because we are considering field in region-1 only).

$$
\begin{aligned}
& =-\int_{\mathrm{r}=\infty}^{\mathrm{r}_{2}} \frac{2 \pi \mathrm{~K}\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} \mathrm{dr} \\
& \left.=\frac{2 \pi \mathrm{~K}}{4 \pi \varepsilon_{0}}\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right) \frac{1}{\mathrm{r}}\right]_{\infty}^{\mathrm{r}_{2}} \\
& =\frac{\mathrm{K}\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)}{2 \varepsilon_{0} \mathrm{r}_{2}}
\end{aligned}
$$

43. The root loci diagram of a system is given below

What is the value of ' k ' to obtain a maximum peak overshoot to a unit step input
(A) $\mathrm{k}=1$
(B) $\mathrm{k}=3$
(C) $k=5$
(D) $k=9$

Ans: (B)
Sol:
At this point peak

$$
\text { Centre of circle }=(-4,0)
$$

Break points, $\frac{\mathrm{dk}}{\mathrm{ds}}=0$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\mathrm{~s}(\mathrm{~s}+3)}{(\mathrm{s}+4)}\right)=0 \\
& \mathrm{~s}^{2}+8 \mathrm{~s}+12=0 \\
& \mathrm{~s}=-2,-6 \\
& \text { Radius }=\frac{6-2}{2}=2 \\
& \quad \omega_{\mathrm{n}}=\sqrt{4^{2}-2^{2}}=\sqrt{12} \\
& \mathrm{CE}=\mathrm{s}(\mathrm{~s}+3)+\mathrm{k}(\mathrm{~s}+4)=0
\end{aligned}
$$

$s^{2}+3 s+k s+4 k=0$
$s^{2}+(k+3) s+4 k=0$
$\omega_{\mathrm{n}}^{2}=4 \mathrm{k}=12$
$\mathrm{k}=3$
44. Consider the control system shown in figure below.

The minimum steady state error to a unit step input is
(A) 0.35
(B) 0.54
(C) 0.09
(D) 0.1
44. Ans: (C)

Sol: $\mathrm{CE}=1+\frac{\mathrm{k}}{(\mathrm{s}+1)(\mathrm{s}+2)(\mathrm{s}+3)}=0$
$s^{3}+6 s^{2}+11 s+6+k=0$
(11) $(6)=6+\mathrm{k}$
$\mathrm{k}=60$
maximum value of ' k ' for stability

$$
=59.9999=60
$$

Steady state error $\mathrm{e}_{\mathrm{ss}}=\frac{1}{1+\mathrm{k}_{\mathrm{p}}}$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{p}}=\operatorname{Lt}_{\mathrm{s} \rightarrow 0} \frac{\mathrm{k}}{(\mathrm{~s}+1)(\mathrm{s}+2)(\mathrm{s}+3)}=\frac{\mathrm{k}}{6} \\
& \mathrm{e}_{\mathrm{ss}}=\frac{1}{1+\frac{\mathrm{k}}{6}}
\end{aligned}
$$

To obtain minimum $\mathrm{e}_{\mathrm{ss}}, \mathrm{k}=60$

$$
\therefore \mathrm{e}_{\mathrm{ss}}=\frac{1}{1+\frac{60}{6}}=0.09
$$

45. Consider the feedback control system shown in figure below.

where $\mathrm{G}(\mathrm{s})=\frac{\mathrm{k}}{\mathrm{s}\left(1+\mathrm{sT}_{1}\right)\left(1+\mathrm{sT}_{2}\right)\left(1+\mathrm{sT}_{3}\right)}$,
whose Bode plot is given below.

Then the maximum value of ' k ' for stability of the system is \qquad .
45. Ans: 4 (Range 3.9 to 4.1)

Sol: For maximum value of k, system should be marginally stable. So, $\mathrm{GM}=0 \mathrm{~dB}$.
\Rightarrow Magnitude plot has to shift up by +20 dB $20 \log \mathrm{k}-\left.20 \log \omega\right|_{\omega=0.1}=12+20=32 \mathrm{~dB}$

Hearty Congratulations to our GATE-2019 Top Rankers

and many more...

$20 \log \mathrm{k}=12 \mathrm{~dB}$
$\mathrm{k}=4$
46. Assume diodes are ideal in the circuit shown. Find the UTP and LTP values of the circuit shown in figure.

(A) $-9.8 \mathrm{~V}, 11.3 \mathrm{~V}$
(B) $11.3 \mathrm{~V}, 9.8 \mathrm{~V}$
(C) $11.3 \mathrm{~V},-9.8 \mathrm{~V}$
(D) $13.8 \mathrm{~V},-7.3 \mathrm{~V}$
46. Ans: (C)

Sol: When op-amp operated in positive saturation region, the potential at noninverting terminal is called UTP voltage and D_{1}-OFF - O.C

$$
\mathrm{D}_{2}-\mathrm{ON}-\mathrm{S} . \mathrm{C}
$$

$$
\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{UTP}}=\mathrm{V}_{\mathrm{R}}+\left(\mathrm{V}_{\text {sat }}-\mathrm{V}_{\mathrm{R}}\right) \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

$$
\begin{aligned}
& =2+(15-2)\left(\frac{6 \mathrm{k}}{8.4 \mathrm{k}}\right) \\
& =2+13\left(\frac{6}{8.4}\right)=11.28 \mathrm{~V} \approx 11.3 \mathrm{~V}
\end{aligned}
$$

When the op-amp operated in negative saturation region, the voltage at noninverting terminal is called LTP voltage. V_{0} $=-15 \mathrm{~V} . \mathrm{D}_{1}-\mathrm{ON}-(\mathrm{SC})$

$$
\mathrm{D}_{2}-\mathrm{OFF}-(\mathrm{OC})
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{LTP}} & =\mathrm{V}_{\mathrm{R}}+\left(-\mathrm{V}_{\text {sat }}-\mathrm{V}_{\mathrm{R}}\right) \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\
& =2+(-15-2)\left(\frac{6 \mathrm{k}}{8.66 \mathrm{k}}\right) \\
& \approx-9.8 \mathrm{~V}
\end{aligned}
$$

Therefore, $\mathrm{V}_{\mathrm{UTP}}=11.3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{LTP}}=-9.8$ V
47. For the ' Si ' transistor circuit shown, $\mathrm{V}_{\mathrm{T}}=$ $26 \mathrm{mV}, \mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ and β is very high, then the magnitude of voltage gain $|\mathrm{A}|=\left(\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{i}}}\right)$
$\mathrm{A}_{\mathrm{I}}=-\beta \rightarrow$ very large,
$Z_{i}=\beta r_{e} \rightarrow$ very large

$$
\begin{aligned}
Z_{L}=\frac{R_{c}\left(R_{B}-r_{e}\right)}{R_{C}+R_{B}} & =\frac{3 \times 180}{183} \times 10^{3} \\
& =2.9508 \mathrm{k} \Omega
\end{aligned}
$$

$$
\begin{aligned}
A_{V} & =\frac{A_{I} \cdot Z_{L}}{Z_{i}} \\
& =\frac{-2950.8}{9.3975} \Rightarrow A_{V}=-314
\end{aligned}
$$

$$
\mathrm{Z}_{\mathrm{i}}^{\prime}=\mathrm{Z}_{\mathrm{i}} / / \mathrm{R}_{\mathrm{Mi}}
$$

$$
\mathrm{R}_{\mathrm{Mi}}=\frac{\mathrm{R}_{\mathrm{B}}}{1-\mathrm{A}_{\mathrm{V}}}
$$

Then $r_{e}=\frac{V_{T}}{\mathrm{I}_{\mathrm{E}}}=\frac{26}{2.766}=9.3975 \Omega$
Now apply AC analysis
is \qquad .

$$
|\mathrm{A}| \approx 69.77
$$

Ans: 69.77 (Range 68 to 71)

Sol: Apply DC analysis to calculate r_{e} value As $\beta \rightarrow$ Very high, $\mathrm{I}_{\mathrm{B}} \approx 0$
$\mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{\mathrm{C}}=\frac{9-0.7}{3 \mathrm{k}}=2.766 \mathrm{~mA}$

$$
\begin{aligned}
& =\frac{180 \times 10^{3}}{315}=571.428 \\
& \mathrm{Z}_{\mathrm{i}}^{\prime} \approx \mathrm{R}_{\mathrm{Mi}} \\
& \text {, Erfor'inn.Net. } \\
& A_{v s}=A=\frac{V_{0}}{V_{i}}=A_{v}\left(\frac{Z_{i}^{\prime}}{Z_{i}^{\prime}+R_{s}}\right) \\
& \begin{array}{l}
=-314\left(\frac{571.428}{2571.428}\right) \\
=-69.77
\end{array}
\end{aligned}
$$

48. In the circuit shown, the input clock frequency is 9.7 MHz , the propagation delay of the logic gates and flip-flop's are 0 sec . Initially Q_{0} is cleared to ' 0 ' and simultaneously the input ' K ' is also cleared to ' 0 '(with the help of push button toggle switch). The frequency of the wave form at ' Y_{0} ' is \qquad (Hz)

Ans: 0
Sol:

Observe the binary on the circuit as per given data

From the given data $\mathrm{K}=0$ (reset)
So NAND gate 1 , output $\mathrm{J}=1$
Initially: $\mathrm{J}=1, \mathrm{~K}=0$
$\mathrm{Q}_{0}=0, \mathrm{Y}_{0}=1$

After one clock edge

$\mathrm{Q}_{0}=1, \mathrm{Y}_{0}=0$

But still(from circuit) $\left\{\begin{array}{c}\mathrm{J}=1 \\ \mathrm{~K}=0\end{array}\right.$
Irrespective of number of clock pulses
$\mathrm{Q}_{0}=1, \mathrm{Y}_{0}=0$ (always)
$\mathrm{J}=1, \mathrm{~K}=0$
$\mathrm{Y}_{0}=0 \mathrm{~Hz}(\mathrm{DC}$ line with logic ' 0 ')
49. Let a signal $\mathrm{x}(\mathrm{t})$ be defined as $\mathrm{X}(\mathrm{t})=$ $e^{-\frac{t}{2}} u(t)$. Then the energy in the frequency band $-\pi / 8 \leq \omega \leq \pi / 8 \mathrm{rad} / \mathrm{sec}$ is
(A) $\frac{1}{\pi}$
(B) $\frac{1}{2 \pi}$
(C) $\frac{4}{\pi}$
(D) $\frac{2}{\pi}$

Ans: (D)
Sol: $x(t)=e^{-t / 2} u(t)$
According Parseval's Theorem $\mathrm{E}_{\mathrm{t}}=\mathrm{E}_{\omega}$
$E_{\omega}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega$
$E_{\omega}=\frac{1}{2 \pi} \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}}|X(\omega)|^{2} d \omega$
$E_{\omega}=\frac{1}{\frac{1}{2}+j \omega} \Rightarrow|X(\omega)|^{2}=\frac{1}{\frac{1}{4}+\omega^{2}}$
$\therefore \mathrm{E}_{\omega}=\frac{1}{2 \pi} \int_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \frac{1}{\frac{1}{4}+\omega^{2}} \mathrm{~d} \omega$

$$
\begin{aligned}
& =\frac{1}{2 \pi} \cdot \frac{1}{\left(\frac{1}{2}\right)} \tan ^{-1}\left(\frac{\omega}{\frac{1}{2}}\right)_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \\
& \quad=\frac{2}{2 \pi} \tan ^{-1}(2 \omega)_{-\frac{\pi}{8}}^{\frac{\pi}{8}} \\
& =\frac{1}{\pi}[1-(-1)]=\frac{2}{\pi}
\end{aligned}
$$

50. A discrete sequence $y(n)$ is defined as $y(n)=$ $x^{2}(n)$, where $x(n)$ is another discrete sequence $x(n)=\left(\frac{1}{8}\right)^{n} u(n)$, then the value of $y\left(\mathrm{e}^{\mathrm{j} \pi}\right)$ is \qquad (Give up to 2 decimal value).

Ans: 0.98 (Range 0.97 to 0.99)

Sol: $y(n)=x^{2}(n)=\left[\left(\frac{1}{8}\right)^{n h 2]^{2}} u(n)\right]^{2}=\left(\frac{1}{8}\right)^{2 n} u(n)$
$y(n)=\left(\frac{1}{64}\right)^{n} u(n)$
Applying Z-transform both sides
$y(z)=\frac{z}{z-\frac{1}{64}} \quad$ but $z=\left.e^{j \Omega}\right|_{r=1}$
$y\left(e^{j \Omega}\right)=\frac{e^{j \Omega}}{e^{j \Omega}-\frac{1}{64}}$
$y\left(e^{j \pi}\right)=\frac{e^{j \pi}}{e^{j \pi}-\frac{1}{64}}=\frac{-1}{-1-\frac{1}{64}}$
$y\left(e^{\mathrm{j} \pi}\right)=\frac{1}{1+\frac{1}{64}}=\frac{64}{65}$
$y\left(\mathrm{e}^{\mathrm{j} \pi}\right)=\frac{64}{65}=0.984$
51. Given matrix $[\mathrm{A}]=\left[\begin{array}{llll}4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1\end{array}\right]$, then the system AX $=\mathrm{O}$, where $\mathrm{X}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ has
(a) no solution
(b) a unique solution
(c) only one independent solution
(d) two linearly independent solutions

Ans: (d)

$$
\sim\left[\begin{array}{cccc}
4 & 2 & 1 & 3 \\
0 & 0 & 10 & 10 \\
0 & 0 & -1 & -1
\end{array}\right]
$$

$\mathrm{R}_{3} \rightarrow(10) \mathrm{R}_{3}+\mathrm{R}_{2}$

$$
\sim\left[\begin{array}{cccc}
4 & 2 & 1 & 3 \\
0 & 0 & 10 & 10 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\therefore \rho(\mathrm{A})=2$
\therefore Number of linearly independent solutions $=$ Number of variables - Rank of A

$$
=4-2=2
$$

52. The value of the double integral $\int_{0}^{8}\left(\int_{y / 2}^{(y / 2)+1}\left(\frac{2 x-y}{2}\right) d x\right) d y$, using the substitution $\mathrm{u}=\left(\frac{2 \mathrm{x}-\mathrm{y}}{2}\right)$ and $\mathrm{v}=\frac{\mathrm{y}}{2} \quad$ or otherwise is \qquad .
53. Ans: 4 (No range)

Sol: Given $u=\frac{2 x-y}{2}$ and $v=\frac{y}{2}$
$\Rightarrow d u=d x, d v=\frac{d y}{2}$ and $d y=2 d v$
If $\mathrm{x}=\frac{\mathrm{y}}{2} \quad$ then $\quad \mathrm{u}=0$
If $x=\frac{y}{2}+1 \quad$ then $\quad u=1$
If $y=0 \quad$ then $v=0$
If $y=8$
then $v=40$
$\int_{0}^{8}\left[\int_{\frac{y}{2}}^{\frac{y}{2}+1}\left(\frac{2 x-y}{2}\right) d x\right] d y=\int_{v=0}^{4} \int_{u=0}^{1} 2 u d u d v=4$
53. The surface integral $\iint_{s}(\bar{F} \cdot \bar{n}) d S$ over the surface S of the sphere $x^{2}+y^{2}+z^{2}=9$, where $\mathrm{F}=(\mathrm{x}+\mathrm{y}) \bar{i}+(\mathrm{x}+\mathrm{z}) \bar{j}+(\mathrm{y}+\mathrm{z}) \bar{k}$ and \bar{n} is the unit outward surface normal, yields
\qquad .
Ans: 226.08 (Range 225 to 227)
Sol: $\overrightarrow{\mathrm{F}}=(\mathrm{x}+\mathrm{y}) \overrightarrow{\mathrm{i}}+(\mathrm{x}+\mathrm{z}) \overrightarrow{\mathrm{j}}+(\mathrm{y}+\mathrm{z}) \overrightarrow{\mathrm{k}}$
$\operatorname{div} \overrightarrow{\mathrm{F}}=1+1=2$

$$
\iint_{\mathrm{S}} \overrightarrow{\mathrm{~F}} \cdot \overrightarrow{\mathrm{n}} \mathrm{dS}=\iiint_{\mathrm{V}} \operatorname{div} \overrightarrow{\mathrm{~F}} \mathrm{dx} \mathrm{dy} \mathrm{dz} \text { (By Gauss }
$$

divergence theorem)

$$
\begin{aligned}
& =\iiint 2 \mathrm{dx} \mathrm{dydz} \\
& =2
\end{aligned}
$$

(Volume of the sphere $x^{2}+y^{2}+z^{2}=9$)

$$
\begin{aligned}
& =2 \times \frac{4}{3} \pi(3)^{3}=72 \pi \\
& =226.08
\end{aligned}
$$

54. The annual precipitation data of a city is normally distributed with mean and standard deviation as 1000 mm and 200 mm , respectively. The probability that the annual precipitation will be more than 1200 mm is
(A) 0.1587
(B) 0.3174
(C) 0.3456
(D) 0.2345

Ans: (A)

Sol: Let $\mathrm{X}=$ annual precipitation
We know area under normal curve in the interval $(\mu-\sigma, \mu+\sigma)=0.6826$

Where μ is mean and σ is standard deviation
$\Rightarrow \mathrm{P}(800<\mathrm{X}<1200)=0.6826$
Required probability $=\mathrm{P}(\mathrm{X}>1200)$

$$
\begin{aligned}
& =\frac{1-0.6826}{2} \\
& =0.1587
\end{aligned}
$$

55. Consider the differential equation \quad Now, the general solution of (1) is
$\frac{d y}{d x}+2 x y=e^{-x^{2}}$ with initial condition $y(0)=1$. The value of $y(1)=$ \qquad .
56. Ans: 0.7357 (Range 0.73 to 0.74)

Sol: Given $\frac{d y}{d x}+2 x y=e^{-x^{2}}$
with $\quad y(0)=1$
\therefore I. F. $=\mathrm{e}^{\int 2 \mathrm{xdx}}=\mathrm{e}^{\mathrm{x}^{2}}$

$$
\begin{align*}
& \Rightarrow y \cdot \mathrm{e}^{\mathrm{x}^{2}}=\int \mathrm{e}^{\mathrm{x}^{2}} \cdot \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}+\mathrm{c} \\
& \Rightarrow \mathrm{y} \cdot \mathrm{e}^{\mathrm{x}^{2}}=\mathrm{x}+\mathrm{c} \quad \ldots \ldots \ldots \tag{3}
\end{align*}
$$

Using (2), (3) becomes
$\Rightarrow 1=0+\mathrm{c} \Rightarrow \mathrm{c}=1$
$y=x e^{-x^{2}}+e^{-x^{2}}$
$y=(x+1) e^{-x^{2}}$
$\therefore \mathrm{y}(1)=2 \times \mathrm{e}^{-1}=0.7357$

Hearty Congratulations to our ESE-2019 Top Rankers

and
many more...

Total Selections in Top 10: 33 | EE : $9 \mid$ E\&T : 8 | ME : 9 | CE : 7

