(2)

B.Tech 3rd Semester Exam., 2017

Code: 041301

BASIC ELECTRONICS

Time: 3 hours Full Marks: 70

Instructions:

(i) The marks are indicated in the right-hand margin.

- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer the following questions (any seven):

 $2 \times 7 = 14$

- (a) State the most important SCR parameters for high-current devices.
- (b) State Fermi energy level (E_F) of an intrinsic semiconductor.
- (c) Define base width modulation.
- (d) Differentiate between drift current and diffusion current.
- (e) Define avalanche multiplication.
- (f) Define peak point current of a UJT.

(Turn Over)

- (g) State the definition of threshold voltage of a MOSFET.
- (h) Define CMRR of an op-amp.
- (i) State the applications of photodiode.
- (j) Why are PIV of bridge and centretapped full-wave rectifier not same?
- 2. (a) Accurately analyze the collector-to-base bias circuit is shown in figure 1 to determine the I_B , I_C and V_{CE} , when

(i) $\beta = 50$;

8AK/19

(ii) $\beta = 200$.

Assume $V_{BE} = 0.7 \text{ V}$.

Fig. 1

(b) With the help of a neat diagram, explain the input and output characteristics of common-collector (CC) configuration.

8+6=14

(Continued)

8AK/19

3)

- With the help of band and bond models, explain both N-type and P-type extrinsic silicons.
 - A silicon p-n diode has a doping of $N_D = 8 \times 10^{15} \text{ cm}^{-3} \text{ and } N_A = 2 \times 10^{16} \text{ cm}^{-3}$ (for Si: $n_i = 1.5 \times 10^{10}$ cm⁻³, $\epsilon_r = 11.9$).
 - (i) Determine the depletion width in the n-region.
 - (ii) Determine the built-in potential at 300 K.
 - (iii) Calculate the depletion width when it biased to 0.5 V. 8+6=14
- 4. What do you mean by rectification? Explain the working of a half-wave rectifier circuit with resistive load. With sinusoidal input, derive the expressions for the following:

4+4+4+2=14

- Average output voltage and current
- RMS load current and voltage
- Form factor and ripple factor
- Efficiency
- Draw the circuit of a UJT relaxation oscillator with provision for frequency adjustment and spike waveform. Show all waveforms, and explain the circuit operation.

8AK/19

(4)

- Draw the circuit diagram to show how an SCR can be triggered by the application of a pulse to gate terminal. Sketch the circuit waveforms 8+6=14 explain its operation.
- and 6. (a) Explain the construction characteristics of n-channel JFET.
 - The FET circuit is shown in figure 2 $R_2 = 1.5 \text{ M}\Omega$ $R_1 = 3.5 \text{ M}\Omega$ $R_s = 2 \text{ k}\Omega$, $R_L = 20 \text{ k}\Omega$, $r_d = 40 \text{ k}\Omega$ and $g_m = 2.5$ mA/V. Find its input impedance and output impedance and voltage gain. 8+6=14

- Given $I_E = 2.5$ mA, $h_{fe} = 140,$ $h_{oe} = 20 \,\mu\text{s}$ and $h_{ob} = 0.5 \,\mu\text{s}$, determine the common-emitter hybrid equivalent circuit;
 - (ii) the common-base re-model.

8AK/19

(Continued)

(5)

- (b) Compare the advantages and disadvantages of biasing schemes in BJT. 8+6=14
- 8. (a) Draw the circuit diagram of a practical voltage series feedback amplifier and derive the expressions for input resistance, output resistance, voltage gain and current gain.
 - (b) Explain the operation and characteristics of photodiode. 8+6=14
- (a) Explain the summing and differential amplifiers using op-amp with derivation of output voltage.
 - (b) Calculate the output voltages V₂ and V₃ in the circuit of the following figure 3:

8+6=14

Fig. 3

8AK-2280/19

Code: 041301