CHEMICAL SCIENCES

This Test Booklet will contain 120 (20 Part ' A'+ 40 Part ' B' + 60 Part 'C') Multiple Choice Questions (MCQs). Candidates will be required to answer 15 in part ' A ', 35 in Part ' B ' and 25 questions in Parts ' C ' respectively (No. of question to attempt may vary from exam to exam). In case any candidate answers more than 15, 35 and 25 questions in Parts A, B and C respectively only first 15, 35 and 25 questions in Parts A, B and C respectively will be evaluated. Questions in Parts 'A' and ' B ' carry two marks each and Part ' C ' questions carry four marks each. There will be negative marking @ 25% for each wrong answer. Below each question, four alternatives or responses are given. Only one of these alternatives is the CORRECT answer to the question.

MODEL QUESTION PAPER

PART A

May be viewed under heading "General Science"

PART B

21. $\left[\mathrm{CoCl}_{4}\right]^{2-}$-shows a deep blue colour because of
22. metal to ligand charge transfer transition
23. ligand to metal charge transfer transition
24. spin allowed and Laporte forbidden d-d transition
25. spin allowed and Laporte allowed d-d transition
26. The violet colour of iodine vapour is due to
27. $n \rightarrow n^{*}$ transition
28. $\pi \rightarrow \pi^{*}$ transition
29. $n \rightarrow \sigma^{*}$ transition
30. $\sigma \rightarrow \pi^{*}$ transition
31. Choose the correct statement among the following
32. diamond has lower thermal and electrical conductivities compared to graphite
33. diamond has similar thermal and electrical conductivities compared to graphite
34. diamond has higher thermal conductivity but lower electrical conductivity compared to graphite
35. diamond has the same thermal but lower electrical conductivity compared to graphite
36. Which of the following is a nido-borane?
37. $\mathrm{B}_{4} \mathrm{H}_{10}$
38. $\mathrm{B}_{5} \mathrm{H}_{9}$
39. $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2-}$
40. $\mathrm{B}_{5} \mathrm{H}_{11}$
41. Among the three types of orbital $s p, d$, and f,
42. both p and f orbitals have centre of symmetry
43. both p and d orbitals have centre of symmetry
44. only d orbitals have centre of symmetry
45. f orbitals alone have centre of symmetry
46. The absorbance of solution having 20% transmittance is
47. 0.301
48. 0.699
49. 1.301
50. 1.699
51. The active site of enzyme nitrogenise contains
52. Mo
53. Mn
54. Fe
55. Cu
56. Which one of the following is a free radical?
57. CO
58. CN^{-}
59. NO
60. CS
61. Choose the $16 \mathrm{e}^{-}$complex from the following:
62. $\mathrm{Ni}(\mathrm{CO})_{4}$
63. $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$
64. $\mathrm{Fe}(\mathrm{CO})_{5}$
65. $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Cr}$
66. The species having metal-metal bond is:
67. $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$
68. $\mathrm{Al}_{2}\left(\mathrm{CH}_{3}\right)_{6}$
69. $\mathrm{V}_{2}(\mathrm{CO})_{12}$
70. $\mathrm{Al}_{2}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{12}$
71. The only molecule having bridging oxygen is
72. Phosphorus trioxide
73. Phosphorus pentoxide
74. Cyclic tetraphosphate
75. Pyrophosphate
76. The coordination number of phosphorus in $\left[\mathrm{PMo}_{12} \mathrm{O}_{40}\right]^{3-}$ is
77. 2
78. 4
79. 5
80. 6
81. Using phenolphthalein as the indicator, which of the following titration is possible:
82. acetic acid with pyridine
83. oxalic acid with sodium hydroxide
84. hydrochloric acid with aniline
85. sulphuric acid with aqueous ammonia
86. Which of the following species is ESR-active?
87. VOSO_{4}
88. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
89. KMnO_{4}
90. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
91. Large deviation from Trouton's rule is observed for systems which are
92. having more ordered structure
93. having more disordered structure
94. having low melting points
95. having low boiling points
96. The concentration of a reactant decreases linearly with time. What is the order of the reaction?

97. $1^{\text {st }}$ order
98. Fractional order
99. $2^{\text {nd }}$ order
100. Zero order
101. The point group symmetry of the molecule cis- $\mathrm{ML}_{4} \mathrm{X}_{2}$ is
102. $\mathrm{C}_{4 v}$
103. $\mathrm{D}_{4 h}$
104. $\mathrm{C}_{2 h}$
105. $\mathrm{C}_{2 v}$
106. The number of rotational degrees of freedom of CO_{2} is
107. one
108. two
109. three
110. four
111. The magnitude of the nuclear spin angular momentum of a nuclei is $\sqrt{15} / 2 \hbar$ units. The value of 1 is
112. $5 / 2$
113. $1 / 2$
114. 1
115. $3 / 2$
116. Which of the following transitions in the electronic spectrum of a homonuclear diatomic molecule is forbidden
117. $\sum_{u}^{+} \rightarrow \sum_{g}^{+}$
118. $\sum_{g}^{+} \rightarrow \prod_{u}$
119. $\sum_{u}^{+} \rightarrow \Pi_{g}$
120. $\sum_{g}^{+} \rightarrow \Delta_{u}$
121. The diffraction pattern of a cubic solid has an intense 110 Bragg reflection, but the 100 and 111 Bragg reflections are absent. The structure of the solid is
122. Body-centered cubic
123. Primitive cubic
124. Face-centered cubic
125. Edge-centered cubic
126. The logarithmic conductivity of a crystalline solid shows a linear variation with inverse temperature ($1 / \mathrm{T}$). The band gap may be obtained from
127. slope of the plot.
128. intercept on the conductivity axis.
129. intercept on the temperature axis.
130. inverse slope
131. The molar masses of monodisperse and polydisperse polymers obey respectively the conditions: ($\bar{M}_{n}=$ Number average molecular weight and $\bar{M}_{w}=$ Weight average molecular weight).
132. $\bar{M}_{n}>\bar{M}_{w}$ and $\bar{M}_{n}<\bar{M}_{w}$
133. $\bar{M}_{n}=\bar{M}_{w}$ and $\bar{M}_{n}<\bar{M}_{w}$
134. $\bar{M}_{n}<\bar{M}_{w}$ and $\bar{M}_{n}<\bar{M}_{w}$
135. $\bar{M}_{n}=\bar{M}_{w}$ and $\bar{M}_{n}=\bar{M}_{w}$
136. The spatial part of hydrogen molecular wave function in the simplest molecular orbital theory is given by σ_{g}^{2} where σ_{g} is a normalized linear combination of two hydrogen 1 s orbitals. Which of the following is true about the above wave function?
137. It contains only covalent terms.
138. It includes only a small amount of ionic terms.
139. It contains only ionic terms.
140. It over estimates the ionic terms.
141. A $2 p_{z}$ orbital of hydrogen atom is an eigenfunction of
142. H only.
143. H and L^{2} only
144. $\mathrm{H}, \mathrm{L}^{2}$ and L_{z} only
145. H, L^{2}, L_{z} and L_{x}
146. By a reversible process, we mean one that always
147. takes infinite time for completion
148. satisfies $\Delta \mathrm{S}$ (universe) $=0$
149. satisfies $\Delta \mathrm{G}=0$.
150. gives the minimum work
151. A hydrogenic 3 p orbital has the following form of the radial wavefunction $\left(\alpha_{i}=\right.$ constant):
152. $r\left(\alpha_{1}-r\right) e^{-\alpha_{2} r}$
153. $r e^{-\alpha_{3} r}$
154. $r\left(\alpha_{4}-r\right)\left(\alpha_{5}-r\right) e^{-\alpha_{6} r}$
155. $r^{3} e^{-\alpha_{3} r}$
156. IUPAC name for the compound given below is

157. E-5-ethylhept-5-en-2-one
158. Z-5-ethylhept-5-en-2-one
159. E-3-ethylhept-2-en-6-one
160. Z-3-ethylhept-2-en-6-one
161. The most suitable reagent for the following transformation is

162. NaBH_{4}
163. $\mathrm{B}_{2} \mathrm{H}_{6}$
164. $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
165. $\mathrm{NH}_{2} \mathrm{NH}_{2} / \mathrm{HCl}$
166. The major product formed in the reaction of 2-methyl but-3-en-2-ol with HBr is
1 .

2

3

4

167. Among dimethylcyclobutanes, which one can exhibit optical activity?
168. cis-1,2-dimethylcyclobutane
169. trans-1,2-dimethylcyclobutane
170. cis-1,3-dimethylcyclobutane
171. trans-1,3-dimethylcyclobutane
172. The monomer of biopolymer DNA is a
173. nucleotide
174. aminoacid
175. disaccharide
176. fatty acid
177. The order of chemical shifts (δ value) in the ${ }^{1} \mathrm{H}$ NMR spectrum of crotonaldehyde is
178. olefinic $>\mathrm{CHO}>\mathrm{Me}$
179. $\mathrm{CHO}>\mathrm{Me}>$ olefinic
180. $\mathrm{CHO}>$ olefinic $>\mathrm{Me}$
181. olefinic $>\mathrm{Me}>\mathrm{CHO}$
182. The product formed in the reaction given below is

183.

2.

3.

4.

55. The major product formed in the reaction given below is

1.

2.

3.

4.
56. The conversion of excited singlet state $\left(S_{1}\right)$ of a molecule to triplet state $\left(T_{1}\right)$ is known as 1. fluorescence
2. phosphorescence
3. intersystem crossing
4. internal conversion
57. The decreasing order of stability of the free radicals \mathbf{A}, \mathbf{B} and \mathbf{C} is

A

B

C

1. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
2. $C>A>B$
3. $\mathrm{B}>\mathrm{A}>\mathrm{C}$
4. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
5. The major product formed in the reaction given below:

1

2

3

6. The rates of keto-enol tautomerism in the ketones A-C, given below are in the order

7. $\mathrm{A}>\mathrm{B}>\mathrm{C}$
8. $\mathrm{A}>\mathrm{C}>\mathrm{B}$
9. $C>A>B$
10. $\mathrm{C}>\mathrm{B}>\mathrm{A}$
11. The reaction given below is an example of

12. aldol condensation
13. Knoevenagel condensation
14. Dieckmann condensation
15. acyloin condensation

PART C

61. The covalent radii vary gradually in the Periodic Table. From the orders given below for such radii, the correct ones are
(a) $\mathrm{Ce}>\mathrm{Lu}$, (b) $\mathrm{Co}>\mathrm{Ti}$,(c) $\mathrm{Sr}>\mathrm{Ca},(\mathrm{d}) \mathrm{I}>\mathrm{Se}$
62. (a) and (b) only
63. (a) and (c) only
64. (a), (c) and (d) only
65. (b), (c) and (d) only
66. The pair of gaseous molecules/ions having tetrahedral structure is
67. $\mathrm{SnCL}_{4}, \mathrm{PH}_{4}^{+}$
68. $\mathrm{SnCL}_{4}, \mathrm{XeF}_{4}$
69. $\mathrm{ICl}_{4}^{-}, \mathrm{PH}_{4}^{+}$
70. $\mathrm{SnCL}_{4}, \mathrm{ICl}_{4}^{-}$
71. Consider the following

Volumetric method for $\mathbf{A g}(\mathrm{I})$
(a). Fajan method
(b). Mohr's method
(c). Vohlard method

Indicator used

Chromate
Fluorescein
ferric salt

The method and indicator matches correctly in

1. (a) and (b) only
2. (b) and (c) only
3. (c) only
4. (b)only
5. An unknown lead solution has diffusion current of $1.0 \mu \mathrm{~A}$. To a 10 ml of this solution 0.5 ml of 0.04 M lead solution is added. The diffusion current of the spiked solution is 1.50 $\mu \mathrm{A}$. The concentration of the unknown lead solution is
6. 0.0020 M
7. 0.0050 M
8. 0.0035 M
9. 0.0010 M
10. The ${ }^{32}$ Pradio isotope, used in leukaemia therapy, has $\mathrm{t}_{1 / 2}=14.26$ days. What $\%$ of ${ }^{32}$ P remains after35 days?
11. 30%
12. 8%
13. 81.7%
14. 18.3%
15. On a 30 cm column, the t_{R} of \mathbf{A} and \mathbf{B} respectively are 16.40 and 17.63 minutes. The t_{0} of the column is 1.30 minutes. The peak width at base lines for \mathbf{A} and \mathbf{B} are 1.11 and 1.21 minutes respectively. The column resolution R_{S} is
16. 1.06
17. 1.23
18. 2.12
19. 2.23
20. Which one of the following pairs of electronic configurations of high-spin transition metal ions (3d) in an octahedral field undergoes a substantial Jahn-Teller distortion:
21. d^{3}, d^{9}
22. d^{4}, d^{9}
23. d^{5}, d^{9}
24. d^{6}, d^{9}
25. Which one of the following pairs consists of a good oxidizing and a good reducing agent respectively:
26. $\mathrm{Ce}(\mathrm{IV}), \mathrm{Ln}(\mathrm{III})$
27. $\mathrm{Ln}(\mathrm{III}), \mathrm{Eu}(\mathrm{II})$
28. $\mathrm{Ce}(\mathrm{IV}), \mathrm{Eu}(\mathrm{II})$
29. $\operatorname{Ln}(\mathrm{III}), \mathrm{Ce}(\mathrm{III})$
30. Which one of the pairs of following statements about reduction of $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ $\mathrm{By} \mathrm{Cr}(\mathrm{II})$ is correct:
(A). Reactant $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ has non-labile coordination sphere
(B). Reaction proceeds by outer-sphere mechanism
(C). Reactant $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ has labile coordination sphere
(D). Reaction proceeds by inner-sphere mechanism
31. (A) and (B)
32. (A) and (D)
33. (C) and (B)
34. (C) and (D)
35. Hemocyanin contains
36. a dinuclear copper core and binds dioxygen in the cuprous state.
37. a dinuclear copper core and binds dioxygen in the cupric state.
38. a mononuclear copper core and binds dioxygen in the cuprous state
39. a mononuclear copper core and binds dioxygen in the cupric state.
40. The ${ }^{31} \mathrm{PNMR}$ spectrum of $\mathrm{PF}_{4} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$ at room temperature and low temperature (173K) respectively shows (assume that N and H do not couple):
41. triplet and quintet
42. quintet and triplet
43. quintet and triplet of triplets
44. triplet and triplet of triplets
45. The number of hyperfine lines in the EPR spectrum of a one electron reduced product of [$\left.\mathrm{Co}_{3}(\mathrm{CO})_{9} \mathrm{Se}\right](\mathrm{I}=7 / 2$ for Co nucleus) is:
46. 8
47. 15
48. 22
49. 1
50. The highest oxidation state of a metal in the following compounds is:
$\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2} \mathrm{Cr}, \mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Cl}, \mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CO})_{4}\right], \mathrm{K}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]$ and $\mathrm{K}\left[\mathrm{Mo}(\mathrm{CO})_{5} \mathrm{Br}\right]$
51. 1
52. 2
53. -1
54. -2
55. The maximum number of valence electrons of a metal in these complexes are: $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{Cl},\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ni}$, and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl}_{2}$
56. 16
57. 18
58. 20
59. 22
60. Olefin hydrogenation using Wilkinson's catalyst initiates with:
61. olefin addition to $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$
62. olefin addition to $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$
63. a phosphine dissociation from $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$
64. a phosphine addition to $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$
65. Although Fe (III) is a better Lewis acid compared to $\mathrm{Zn}(\mathrm{II})$, most hydrolytic Enzymes contain Zn (II) at the active site because
66. Fe(III) is a redox active ion.
67. $\mathrm{Fe}(\mathrm{III})$ has less abundance compared to $\mathrm{Zn}(\mathrm{II})$.
68. Fe (III) generally makes octahedral complexes while Zn (II) makes tetrahedral complexes
69. $\mathrm{Zn}(\mathrm{II})$ makes kinetically labile complexes.
70. Considering the two complexes $(\mathrm{A})\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $(\mathrm{B})\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$, the right statement is
71. Complex (A) is diamagnetic and complex (B) is paramagnetic
72. Complex (A) is paramagnetic and complex (B)is diamagnetic
73. Both are paramagnetic
74. Both are diamagnetic
75. Unlike d-d transitions, the f-f transitions
76. do not change much with change in ligand
77. change significantly with change in ligand
78. appear at low energies i.e., at the near-IR region
79. appear as broad bands
80. Strongest super acid among the following is a
81. solution of HNO_{3} in $\mathrm{H}_{2} \mathrm{SO}_{4}$
82. solution of HClO_{4} in $\mathrm{H}_{2} \mathrm{SO}_{4}$
83. solution of SbF_{5} in HF
84. solution of SbCl_{5} in HCl
85. Consider the following statements regarding borazine,
A. It is isoelectronic with benzene
B. Each nitrogen receives more σ-electron density from neighbouring boron than it gives away as a π-donor
C. It does not undergo addition reactions
D. Nitrogen retains its basicity and boron its acidity.

The true statements among the above are

1. A, C and D
2. A, B and D
3. A and C only
4. B, C, and D
5. For a diffusion-controlled bimolecular reaction, the rate constant $\left(\mathrm{k}_{\mathrm{D}}\right)$ is proportional to ($\mathrm{T}=$ temperature; η = coefficient of viscosity of medium).
6. ηT
7. $\frac{1}{\eta T}$
8. $\frac{T}{\sqrt{\eta}}$
9. $\frac{T}{\eta}$
10. Consider the unimolecular reaction
$\mathrm{A}(\mathrm{g}) \rightarrow$ products
For which the following remarks were made.
A. The reaction is second order at low pressure and becomes first order at high pressure.
B. The reaction is first order at low pressure and becomes second order at high pressure.
C. The reaction is zero order

Which of these is/are correct?

1. A and B
2. B and C
3. Only C
4. Only A
5. A random distribution of errors obeys the Gaussian form $\left.\sqrt{A / \pi} \exp \mp-A x^{2}\right]$. The mean and standard deviation of this distribution obeys
6. $\langle x\rangle=0$ and $\sigma_{x}=\sqrt{2 A}$
7. $\langle x\rangle \neq 0$ and $\sigma_{x}=1 / \sqrt{2 A}$
8. $\langle x\rangle=0$ and $\sigma_{x}=\sqrt{A}$
9. $\langle x\rangle=0$ and $\sigma_{x}=A$
10. The function $\sin ^{-1} \mathrm{X}$ is not an acceptable wave function because
11. it is not differentiable
12. its first derivative is not continuous
13. it does not cover the entire space
14. it is not a single-valued function
15. The first-order correction to energy for the ground state of a particle-in-a-box due to a perturbation λx would be
16. $\lambda \mathrm{L} / 2$
17. $\lambda \mathrm{L}$
18. $2 \lambda \mathrm{~L}$
19. 2
20. Characters of a few symmetry operations are given below. Identify the character of the irreducible representation $A_{2 g}^{\prime}$

	E	C_{n}	C_{2}	i	σ_{h}
1	1	1	1	-1	-1
2	1	1	-1	1	1
3	1	-1	-1	1	1
4	1	1	-1	-1	1

87. The character of the irreducible representation A_{1} in $C_{3 v}$ point group is given below

	E	$2 \mathrm{C}_{3}$	$3 \mathrm{\sigma}_{\mathrm{V}}$
A_{1}	1	1	1

Identify one irreducible representation orthogonal to A_{1} among the following.

	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$
Γ_{1}	1	-1	1
Γ_{2}	2	-1	0
Γ_{3}	2	0	-1
Γ_{4}	1	-1	-1

1. Γ_{1}
2. Γ_{2}
3. Γ_{3}
4. Γ_{4}
5. The energy levels of cyclopropene are $\alpha+2 \beta, \alpha-\beta$, and $\alpha-\beta$. The delocalization energy in $\mathrm{C}_{3} \mathrm{H}_{3}{ }^{-}$is
6. 2β
7. 0
8. β
9. 3β
10. The rotational constant (B) of $\mathrm{H}^{35} \mathrm{Cl}, \mathrm{H}^{37} \mathrm{Cl}$ and $\mathrm{D}^{35} \mathrm{Cl}$ follow the order
11. $\mathrm{H}^{35} \mathrm{Cl}>\mathrm{D}^{35} \mathrm{Cl}>\mathrm{H}^{37} \mathrm{Cl}$
12. $\mathrm{H}^{35} \mathrm{Cl}>\mathrm{H}^{37} \mathrm{Cl}>\mathrm{D}^{35} \mathrm{Cl}$
13. $\mathrm{D}^{35} \mathrm{Cl}>\mathrm{H}^{35} \mathrm{Cl}>\mathrm{H}^{37} \mathrm{Cl}$
14. $\mathrm{H}^{37} \mathrm{Cl}>\mathrm{H}^{35} \mathrm{Cl}>\mathrm{D}^{35} \mathrm{Cl}$
15. In a crystal, atom A is at the corners of the unit cell, B is at the centre of the cell and the oxygen atoms are at the face-centred positions. What is the formula per unit cell?
16. $\mathrm{A}_{8} \mathrm{BO}_{6}$
17. ABO_{6}
18. $\mathrm{A}_{8} \mathrm{BO}_{3}$
19. ABO_{3}
20. On mixing 100 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 50 mL of 0.1 M NaOH , the pH of the solution will be
21. $\mathrm{pk}_{\mathrm{a}}+0.301$
22. pk_{a}
23. $\mathrm{pk}_{\mathrm{a}}-0.301$
24. $\mathrm{pk}_{\mathrm{a}}+0.477$
25. Using the fundamental equation $\mathrm{dA}=-\mathrm{SdT}-\mathrm{PdV}$, the Maxwell relation is
26. $\left(\frac{\partial S}{\partial P}\right)_{T}=\left(\frac{\partial V}{\partial S}\right)_{V}$
27. $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$
28. $\left(\frac{\partial T}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial S}\right)_{T}$
29. $\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$
30. The relationship between mean ionic activity coefficient for $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and its ions is given by
31. $\gamma_{ \pm}=\gamma_{+}^{3} \gamma_{-}^{2}$
32. $\gamma_{ \pm}=\gamma_{+}^{2} \gamma_{-}^{3}$
33. $\gamma_{ \pm}^{5}=\gamma_{+}^{3} \gamma_{-}^{2}$
34. $\gamma_{ \pm}^{5}=\gamma_{+}^{2} \gamma_{-}^{3}$
35. Assuming that $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{X}$ bond lengths in

are nearly equal, the molar residual entropy at 0 K is
36. 0
37. Rln 2
38. Rln 3
39. Rln 6
40. The contributions to the molar entropy by translational (tr), rotational (rot), vibrational (vib) and electronic (ele) degrees of freedom is in order
41. tr> rot $>$ vib>ele
42. rot $>$ vib $>$ tr>ele
43. ele>vib>rot>tr
44. vib>rot $>$ tr $>$ ele
45. A binary mixture of A_{2} and B_{2} will show negative deviation from Raoult's law when
46. $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ interactions are stronger than $\mathrm{A}-\mathrm{B}$
47. $A-A$ and $B-B$ interactions are weaker than $A-B$
48. Both $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ interactions are equal to $\mathrm{A}-\mathrm{B}$
49. Either $\mathrm{A}-\mathrm{A}$ or $\mathrm{B}-\mathrm{B}$ interactions is equal to $\mathrm{A}-\mathrm{B}$
50. In the presence of external magnetic field the transition ${ }^{3} D_{1} \rightarrow{ }^{3} P_{1}$ splits into
51. 3
52. 5
53. 7
54. 9
55. Ionic equivalent conductance value for Ca^{2+} is $0.0119\left(\mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}\right)$ and for Cl^{-}is $0.0076\left(\mathrm{Sm}^{2} \mathrm{~mol}^{-1}\right)$. The correct expected molar conductivity at infinite dilution for CaCl_{2} is
56. $0.0195 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
57. $0.0271 \mathrm{~s} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
58. $\quad 0.0542 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
59. $0.01355 \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1}$
60. The term symbol for the ground state configuration of NO is
61. ${ }^{2} \Pi_{u}$
62. ${ }^{2} \Pi_{g}$
63. ${ }^{1} \Pi_{u}$
64. ${ }^{1} \Pi_{g}$
65. The kinetic chain length (v) is a measure of chain propagation. If the rates of consumption are denoted by R_{c} and rates of production by $\mathrm{R}_{\mathrm{p}} ; \mathrm{M}$ and M^{\bullet} denote the monomer and the active center, respectively. The correct definition of v is
66. $R_{c}(M) / R_{p}\left(M^{*}\right)$
67. $R_{p}\left(M^{\bullet}\right) / R_{c}(M)$
68. $\mathrm{R}_{\mathrm{c}}\left(\mathrm{M}^{\circ}\right) / \mathrm{R}_{\mathrm{p}}(\mathrm{M})$
69. $R_{c}(M) / R_{c}\left(M^{\circ}\right)$
70. 4-tert-Butylcyclohexanoneon reduction gives two isomeric alcohols which are
71. Enantiomers
72. Diasteromers
73. Rotamers
74. Homomers
75. For the following compounds \mathbf{A} and \mathbf{B} the correct statement is

A

B
76. \mathbf{A} is aromatic and \mathbf{B} is antiaromatic
77. \mathbf{A} is antiaromatic and B is non-aromatic
78. \mathbf{A} and \mathbf{B} are both aromatic
79. \mathbf{A} and \mathbf{B} are both non-aromatic
80. Identify the product formed in the following transformations

81.

2.

3.

4.

104. Identify the product \mathbf{A} and \mathbf{B} in the following reaction sequence

1. \mathbf{A} is

and \mathbf{B} is

2.

A is

and \mathbf{B} is

3. \mathbf{A} is
 and B is

4. \mathbf{A} is

and \mathbf{B} is

105. Match the following:
A. Conversion of 1,7-octadiene to cyclohexene
i) Wacker Oxidation
B. Conversion of bromobenzene to ethylcinnamate
C. Conversion of 1-hexene to 2-hexanone
ii) Mc Murry Coupling
iii) Heck reaction
iv) Olefin Metathesis

1. A: iv; B: ii; C: iii
2. A: ii; B: iv; C: i
3. A: iv; B: iii; C: i
4. A: i; B: iii; C: iv
5. Reagents that can be used in the following conversion are

6. i) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, ii) HCN , iii) $\mathrm{H}_{3} \mathrm{O}^{+}$
7. i) $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{SH}$, ii) n-BuLi, iii) $\mathrm{BrCH}_{2} \mathrm{COOH}$
8. i) EtMgI , ii) KMnO_{4}
9. i) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CBr}_{4}$, ii) $\mathrm{n}-\mathrm{BuLi}$, iii) CO_{2}
10. In the following reaction, the structure of the major product is

COOET
2

3

4

108. The following reaction, the structure of the major product is

1

2

3
 $\because 0$

109. Identify the products \mathbf{A} and \mathbf{B} in the following reaction sequence.

1. \mathbf{A} is

B is

2. \mathbf{A} is

B is

3.

B is

4.

B is

110. Major product formed in the following reaction is

1

2

4

111. Product of Sharpless kinetic resolution of the following alcohol with (- -diethyl tartrate is

1.

2.

3.

Me

112. Select the product of the reaction of (Z)-(2-methoxyvinyl) benzene with dichloroacetylo chloride in presence of triethyl amine.

2

3

4

113. Identify the product formed in the following reaction

1.

2.

3.

4.

114. The compound formed in the following reaction sequence is

1 .

2

3.

4

115. Cholestanol on oxidation with chromium trioxide in acetic acid/pyridine gives a dicarboxylic acid, which on pyrolysis in the presence of a catalytic amount of barium hydroxide gives compound \mathbf{A} as the major product. The structure of \mathbf{A} is

1

2

3

4

116. Photolysis of 1, 4-dimethyl-1, 3-cyclohexadiene in presence of excess oxygen and catalytic amount of Rose Bengal followed by reduction with $\mathrm{H}_{2} / \mathrm{Pt}$ provides

4

117. In the following reaction sequence, the correct structures of the major products \mathbf{X} and \mathbf{Y} are

1. X is

2. \mathbf{X} is
 and \mathbf{Y} is

3. X is
 and \mathbf{Y} is

4. X is
 and \mathbf{Y} is

5. Structure of the \mathbf{X} and \mathbf{Y} in the reaction sequence of thiophene given below are

$1 \quad X$ is

and \mathbf{Y} is

2
x is

and \mathbf{Y} is

 and \mathbf{Y} is

4
X is

and \mathbf{Y} is

119. Identify the product of hydrogenation $\left(\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}\right)$ of the protected amino acid given below

1.

2.

3.

4.

120. In the proton NMR spectrum, an organic compound exhibited the following spectral data
$\delta 7.2(1 \mathrm{H}, \mathrm{dd}, J=8$ and 1.5 Hz$), 6.8(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 6.7(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8 \mathrm{~Hz})$,
$4.9(2 \mathrm{H}, \mathrm{s}), 3.9(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.5\left(1 \mathrm{H}\right.$, br s, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$
The compound among the choices given below is

1

2
HO

3

4

