

EE Test ID: 4211

TarGATE'14

www.gateforum.com

1

Answer Keys

1	С	2	В	3	Α	4	В	5	С	6	А	7	В
8	D	9	С	10	С	11	С	12	В	13	В	14	Α
15	Α	16	С	17	В	18	5.56	19	0.16	20	30	21	0.3
22	-0.25	23	D	24	D	25	В	26	В	27	Α	28	В
29	Α	30	С	31	В	32	D	33	D	34	Α	35	Α
36	10	37	2.828	38	360	39	99.8	40	С	41	D	42	В
43	Α	44	В	45	D	46	1.142	47	0.125	48	628	49	0.0209
50	0.095	51	435	52	D	53	С	54	D	55	В	56	С
57	С	58	D	59	В	60	С	61	D	62	С	63	С
64	Α	65	Α										

Explanations:-

- 2. -Power transformer(s) are found at generating stations.
 - -A very important feature of distribution transformer is all-day efficiency.
 - -Pulse transformer is used for thyristor firing.
 - -Isolation transformer generally has turns ratio 1:1.

3.
$$r_2 = 0.018 \Omega / ph$$

$$x_2 = 0.08 \Omega / ph$$

$$S_{e} = 0.04$$

$$N_r = N_s(1-s) = 0.96 N_s$$

at halffull load speed,
$$\frac{N_r}{2} = 0.48 \, N_s = N_s (1-s) \rightarrow s = 0.52$$

$$T_{\text{efl}} = \left(\frac{3V^2}{\omega s}\right) \frac{1}{\left[\left(\frac{r_2}{s}\right) + x_2^2\right]} \left(\frac{r_2}{s}\right)$$

$$\left[V_1^2\right] \left[\frac{1}{\left(\frac{0.018}{0.04}\right)^2 + (0.08)^2}\right] \frac{0.018}{0.4} = V_2^2 \frac{1}{\left[\left(\frac{0.018}{0.52}\right)^2 + (0.08)^2\right]} \frac{0.018}{0.52}$$

$$2.154V_1^2 = 4.55V_2^2$$

$$1.466V_1 = 2.13V_2$$

$$\frac{V_1}{V_2} = 1.4526; \frac{V_2}{V_1} = 0.688$$

% reduction =
$$\frac{V_1 - V_2}{V_1} = 1 - \frac{V_2}{V_1} = 1 - 0.688 = 31.15\%$$

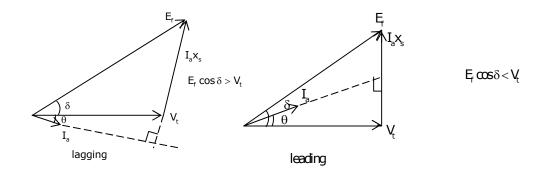
| EE | Test ID: 4211

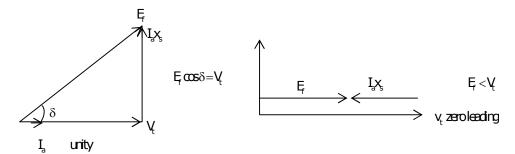
TarGATE'14

www.gateforum.com

4.
$$L_{eq} = 4 + 8 + 6 - (2 \times 2) + (2 \times 4) = 22H$$

6.
$$T_1 = \begin{bmatrix} A & B \\ C & D \end{bmatrix} ; T_2 = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$


$$T_1 \qquad T_2 \qquad T_2 \qquad T_3 \qquad T_4 \qquad T_5 \qquad T_5 \qquad T_6 \qquad T_7 \qquad T_8 \qquad T_7 \qquad T_8 \qquad T_8 \qquad T_9 \qquad T_9$$


- 8. Error = 0 as simpon's rule gives exact value for polynomials whose degree ≤ 3
- 9. $f(z) = \frac{z \sin z}{z^2} = \frac{z}{3!} \frac{z^3}{5!} + \dots$

 \therefore Re sidue of f(z) at z = 0 is 0

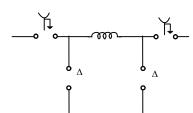
$$\therefore \oint \frac{z - \sin z}{z^2} dz = 0$$

10. The phasor diagrm for alternator

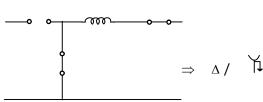
EE | Test ID: 4211

TarGATE'14

www.gateforum.com


3

11. $m = 5_{gm} = 0.005 \text{kg}$; $E_g = mc^2 = 0.005 \times (3 \times 10^2)^2$ $E = 4.5 \times 10^{14}$ joules or watt – sec $= \frac{4.5 \times 10^4}{1000 \times 3600} = 12.5 \times 10^7 \text{ kWh}$


12. The zero sequence Network of Transformer representation

Y Means connect →series Y means opened series

Δ means closed →shunt

Here

13. $X(s) = \frac{4}{(s+2)(s+4)} = \frac{2}{s+2} - \frac{2}{s+4} \Rightarrow Poles s=-2, -4$

Given that ROC lies between lines passing through s=-2 and s=-4.

Hence x(t) will be two sided signal.

$$x(t) = -2e^{-2t}.u(-t) - 2e^{-4t}u(t)$$

at pole s=-2, $Re[s] < -2 \implies Left$ side

at pole $s=-4 \text{ Re}[s] > -4 \Rightarrow \text{ Right side}$

14. $V_0 = V \sin \omega t$

$$\frac{dv_o}{dt} = V\omega \cos \omega t$$

 $max\,imum\,output = V\omega = 10\times 10^6$

$$V = \frac{10 \times 10^6}{2 \times \pi \times 2 \times 10^6} = 0.8V$$

15. The closest scale marking w.r.t to the measured length is chosen. Here it is 231 cm (L).

Now with absolute certainty we can say that L \pm 0.1 cm. since 0.1 cm is the smallest measurement quantity in this scale.

16. P [neither selected] = $\left(1 - \frac{8}{9}\right)\left(1 - \frac{5}{8}\right) = \frac{1}{24}$

| EE | Test ID: 4211

TarGATE'14

www.gateforum.com

4

17. We know that

$$\begin{split} M &= \frac{SH}{\pi f} & \implies H \ \alpha \ \frac{1}{s} \\ \frac{H_{old}}{H_{new}} &= \frac{S_{new}}{S_{old}} \end{split}$$

Machine
$$-1$$
 Machine -2
$$\frac{5}{H_{\text{new}}} = \frac{100}{400}$$

$$\frac{5}{H_{\text{new}}} = \frac{100}{200}$$

$$H_{\text{new}} = 20 \text{ MJ/MVA}$$

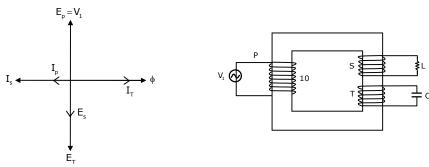
$$H_{2 \text{ new}} = 10 \text{ MJ/MVA}$$

$$\therefore~H_{\text{eq}}\,=\,20\,+\,10\,=\,30\,$$
 MJ / MVA

19.
$$W_n = \sqrt{25} = 5 \text{ rad / sec}; \ 2\xi W_n = 4 \Rightarrow \xi = \frac{4}{10} = 0.4$$

Damping ratio with derivative feedback control is $\xi' = \xi + \frac{w_n k_t}{2}$

$$0.8 = 0.4 + \frac{5.k_t}{2} \Rightarrow k_t = 0.16$$


GATEFORUM Engineering Success

| EE | **Test ID: 4211**

TarGATE'14

www.gateforum.com

20. Neglecting the magnetizing and loss components (as it is ideal transformer) the phasor diagram is

 E_s = induced voltage in secondary

 E_{τ} = induced in tertiary

 $\rm I_s$ will lag $\rm E_s$ by 90° (load induction)

 $I_{\scriptscriptstyle T}$ will lead $E_{\scriptscriptstyle T}$ by 90° (load capacitive)

Secondary AT = $10 \times 50 = 500$ AT

Tertiary AT = $20 \times 40 = 800$ AT

Resultant load mmf = (800-500) AT = 300 AT

As the primary should neutralize load mmf so primary current = $\frac{300}{10}$ = 30A

21. Overall $\eta = \frac{\text{Electrical o / p in heat units}}{\text{Heat of combustion}} = 28.66\%$

Heat equal of 1 kWh = 860 Kcal.

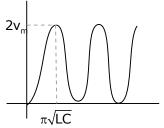
∴ Heat of combustion = $\frac{860}{0.2866}$ = 3000.69 \approx 3000 Kcal

∴ Fuel consumption = $\frac{\text{Heat produced}}{\text{calorific value}} = \frac{3000}{10000} = 0.3 \text{ kg / kWh}$

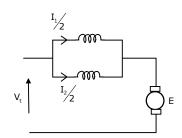
22. $X(z) = \left(\frac{0.5}{1 - 2z^{-1}}\right)z^{-1}$; ROC includes unit circle \Rightarrow Left handed system

 $X(n) = -0.5(2)^{n-1}u(-n); X(0) = -\frac{1}{4} = -0.25$

GATEFORUM Engineering Success


| EE | **Test ID: 4211**

TarGATE'14


www.gateforum.com

6

23. Restriking Voltage $v(t) = V\left(1 - \cos\frac{t}{\sqrt{LC}}\right)$

∴ Peak value = $2V_m$; Time = $\pi\sqrt{LC}$ sec

- 25. Since, A is real involutary matrix
 - ∴ A⁻¹ exists
 - .. The equations have unique solution.
- 26. The power delivered to the load is = $20 \times 0.8 \text{ kW} = 16 \text{kW}$

The transformation ratio of auto transformer $k = \frac{200}{250} = \frac{4}{5}$

We know inductionally delivered power = $(1-k) \times total$ power delivered =3.2kW

Conductionally delivered power = $k \times total$ power delivered

= 12.8kW

EE Test ID: 4211

TarGATE'14

www.gateforum.com

27. Annual fixed charges = $95 \times 10^5 \times 10\% = 9.5 \times 10^5$

Total running charges = $(9 \times 10^5 + 6 \times 10^5) = 15 \times 10^5$

Total annual cost = $\left(9.5 \times 10^5 + 15 \times 10^5\right) = 24.5 \times 10^5$

Annual load factor = $\frac{\text{No. of units delivered}}{\text{max.demand} \times 8760}$

- \therefore No.of units delivered = $0.5 \times 40000 \times 8760 = 17.52 \times 10^7$
- $\therefore \text{ cost per unit } = \frac{\text{Total annual cost}}{\text{No.of units delivered}} = \frac{24.5 \times 10^5}{17.52 \times 10^7} = 100 = 1.398 \text{ paise}$
- 28. Poles f(z)=tanz are given by $z = (2n+1)\frac{\pi}{2}$, n is integer and each (simple pole) denoted by 'a'.

$$\therefore \operatorname{Resf}(z) = \frac{\sin a}{-\sin a} = -1$$

$$z = a$$

- 29. Necessary condition for the system to be linear is if $x(t) = 0 \implies y(t = 0)$ but in y(t) = 2x(t) + 4.5 above condition is not satisfied . Hence the system is non-linear.
- 30. Slots per pole per phase q=3

Slots per pole = $3 \times 3 = 9$

So slot pitch
$$\gamma = \frac{180^{\circ}}{9} = 20^{\circ}$$

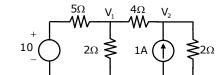
coil span = $8 \times 20^{\circ} = 160^{\circ}$

Coil is short pitched by $20^{\circ}\,$

distribution factor

$$K_{d} = \frac{\sin\frac{q\gamma}{2}}{q\sin\frac{\gamma}{2}} = \frac{\sin\frac{3\times20^{\circ}}{2}}{3\sin\frac{20^{\circ}}{2}} = 0.959$$

pitch factor $k_p = \cos \frac{\epsilon}{2} = \cos \frac{20^{\circ}}{2} = 0.98$


windng factor $k_w = k_d.k_p = 0.94$

31. Applying KCL at V_1 and V_2

$$\frac{V_1 - 10}{5} + \frac{V_1}{2} + \frac{V_1 - V_2}{4} = 0$$

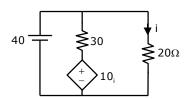
....

$$\frac{V_2 - V_1}{4} + \frac{V_2}{2} = 1 \qquad \dots$$

7

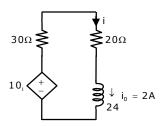
By solving (1) and (2), we will get

$$V_1 = 2.7V$$
, $V_2 = 2.23V$


| EE | Test ID: 4211

TarGATE'14

www.gateforum.com


8

32. $t = 0^ \therefore i(0) = \frac{40}{20} = 2A$

at $t = 0^+$ the circuit becomes

10
$$i(t) = 30i(t) + 20i(t) + 2\frac{di}{dt}$$

2 $\frac{di}{dt} + 40 i(t) = 0$
 $i(t) = k e^{-20t}$
 $i(t) = 2e^{-20t}$ $i(0) = 2A$

33. Time period T=t_{on}+t_{off}= (1+1.5)=2.5msec, Duty cycle $\alpha = \frac{T_{on}}{T} = \frac{1}{2.5} = 0.4$

$$\text{Form-factor (FF)} = \frac{\text{RMS Value}}{\text{Average Value}} = \frac{\sqrt{\alpha}.\text{E}_{\text{dc}}}{\alpha.\text{E}_{\text{dc}}} = \frac{1}{\sqrt{\alpha}} = \frac{1}{\sqrt{0.4}} = 1.58$$

Ripple factor (RF) =
$$\sqrt{(FF)^2 - 1} = \sqrt{\frac{1}{\alpha} - 1} = \sqrt{\frac{1 - \alpha}{\alpha}} = \sqrt{\frac{1 - 0.4}{0.4}} = 1.23$$

34. Using Green's theorem,

$$\oint x dy - y dx = 2 \times \text{area of the ellipse } 3x^2 + 2y^2 = 1 = \sqrt{\frac{2}{3}} \ \pi$$

35. $2y \frac{dx}{dy} = 2 - x \implies \frac{dx}{dy} + \frac{1}{2y}x = \frac{1}{y}$ is a linear equation

$$\text{LF} = e^{\int \frac{1}{2y} dy} = \sqrt{y} \text{ ...solution is x..} \sqrt{y} = \int \frac{1}{y} \sqrt{y} dy + c$$

$$=2\sqrt{y}+c$$
(1), pas sing through (0,1) gives $c=-2$ $\therefore x\sqrt{y}=2\sqrt{y}-2$

EE Test ID: 4211

TarGATE'14

www.gateforum.com

- 36. 10 bit Ring counter = Mod 10 counter
 - 4 bit parallel counter ≡ Mod 16 counter

Mod - 25 Ripple counter = Mod - 25 counter

4 - bit Johnson counter = Mod - 8 counter

$$\therefore x_1 = 320 \text{ KHz} / 10 = 32 \text{ KHz}; x_2 = 32 / 16 = 2 \text{ KHz}$$

$$x_3 = 2 \,\text{KHz} / 25 = 80 \,\text{Hz}; \ x_4 = 80 \,\text{Hz} / 8 = 10 \,\text{Hz}$$

37.
$$T(s) = \frac{C(s)}{R(s)} = \frac{16}{16 + s(s+4)};$$

$$T\left(J\omega\right) = \frac{16}{16 - \omega^2 + 4J\omega} = \frac{16}{\sqrt{\left(16 - \omega^2\right)^2 + \left(4\omega\right)^2}} \left[-\tan^{-1}\left(\frac{4\omega}{16 - \omega^2}\right) \right]$$

$$\frac{d}{d\omega}\sqrt{\left(16-\omega^2\right)^2+\left(4\omega\right)^2}\ =0 \Rightarrow \frac{d}{d\omega}\sqrt{\omega^4-16\omega^2+256}\ =0$$

$$4\omega^3 - 32\omega = 0 \rightarrow \omega = \sqrt{8} = 2\sqrt{2}\text{rad} / \text{sec} = 2.828\text{rad} / \text{sec}$$

38. For Inductor
$$Q_{sh} = \frac{V^2}{\omega L_{ph}}$$

$$\therefore Q_{sh} \alpha V^2$$

$$\frac{Q_{sh1}}{Q_{sh2}} = \left(\frac{V_1}{V_2}\right)^2 = \frac{50}{40.5} = \left(\frac{400/\sqrt{3}}{V_2/Ph}\right)^2$$

$$\Rightarrow \frac{V_2}{ph} = 207.84 \,\text{kV}; \ V_2 = \sqrt{3} \times 207.8 = 360 \,\text{kV}$$

39. voltmeter resistance

$$R_v = V_{FSD} \times sensitivity = 10 \times 10 = 100 \Omega$$

$$R_m = 0.2 \Omega$$

$$R_s = 100 - 0.2 = 99.8 \Omega$$

- 40. The pole zero pattern given in the figure is an all pass filter
- 41. $k_a \cdot \frac{d\phi}{dt} = c(t)$ Taking Laplace transform $E(s) = k_a s \phi(s) \Rightarrow \frac{E(s)}{\phi(s)} = k_a \cdot s$

| EE | Test ID: 4211

TarGATE'14

www.gateforum.com

42.
$$p = \frac{1}{100}$$
, $n = 15$ and $\lambda = \frac{15}{100} = 0.15$

P[atmost one defective tyre] = P(X = 0) + P(X = 1)

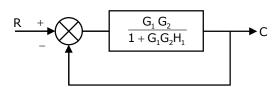
$$= e^{-0.15}(1 + 0.15)$$
 (u singpoisson distribution)

$$= e^{-0.15}(1.15)$$

Approximate number of lots containing atmost one deective tyre

$$=100 \times e^{-0.15}(1.15) = 69.75 \approx 70$$

43. Nullity of $A=1 \Rightarrow rank of A=2$


$$\Rightarrow |A| = 0 \Rightarrow k = 4$$

44. $I = \int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-x}}{x} dxdy$

 $\Rightarrow I = \int_{0}^{\infty} \int_{0}^{x} \frac{e^{-x}}{x} dy dx \text{ (using change of order of integration)}$

$$=\int\limits_{0}^{\infty}e^{-x}\ dx=1$$

45.

$$\frac{C}{R} = \frac{G_1 \, G_2}{1 + G_1 \, G_2 H_1 \, + G_1 \, G_2}$$

46. When fault occurs, the line is isolated, after sometime by auto reclosing the breaker is closed (from data)

$$\begin{aligned} P_{\text{max}} &= \frac{\text{EV}}{\text{X}_{\text{eq}}} \\ \text{X}_{\text{eq}} &= 0.25 + \left(0.4 \parallel 0.04\right) + 0.6 \\ &= 0.25 + 0.2 + 0.6 = 1.05 \\ P_{\text{max}} &= \frac{1.2 \times 1.0}{1.05} = 1.142 \end{aligned}$$

$$47. \qquad \text{Method} - 1 \quad \Delta I = \frac{V_s D(1-D)}{f_l} = \frac{100 \times 0.5 \times 0.5}{1000 \times 20 \times 10^{-3}} = 0.125 A$$

Method-2

TarGATE'14

www.gateforum.com

11

$$I_{\text{max}} = \frac{V_{\text{s}}}{R} \left[\frac{1 - e^{\frac{-tan}{T_{a}}}}{1 - e^{\frac{-T}{T_{a}}}} \right] = 20 \left[\frac{1 - e^{-0.0125}}{1 - e^{-0.025}} \right] = 10.062499$$

$$V_{s} = 100$$

$$R = 50$$

$$T_a = \frac{L}{R} = \frac{0.2}{5} = \frac{1}{25}$$

$$t_{op} = 500 \times 10^{-6}$$

$$\frac{t_{on}}{T_a} = \frac{500 \times 10^{-6}}{\frac{1}{25}} = 0.0125$$

$$\frac{T}{T_a} = \frac{10^{-3}}{\frac{1}{25}} = 0.025$$

48. Efficiency
$$\eta = \frac{V_2 I_2 \cos \theta_2}{V_2 I_2 \cos \theta_2 + P_c + P_{cu}}$$

At rated condition

$$V_2I_2 = 30 \, KVA$$

$$\therefore \ 0.95 = \frac{30 \times 0.8}{30 \times 0.8 + P_c + P_{cu}} \quad \text{and} \quad 0.95 = \frac{30 \times \frac{1}{2} \times 1}{30 \times \frac{1}{2} \times 1 + P_c + \left(\frac{1}{2}\right)^2 P_{cu}}$$

Solving 2 equations, core-loss $P_c = 0.632 k$

Ohmic-loss at rated condition $P_{cu} = 0.628 \text{kW}$

49. pu value of
$$r_e = \frac{\text{ohmic loss at rated condition}}{\text{Rated VA}}$$

$$= \frac{628}{30000} = 0.0209$$

50. Given
$$N_V=5.4$$
; $N_H=9.2$
$$\frac{\text{volt}}{\text{div}} = 50 \times 10^{-3} \text{ ; } \frac{\text{sec}}{\text{div}} = 1 \times 10^{-3}$$

$$V_{rms} = \frac{V_{p-p}}{2\sqrt{2}} \quad V_{p-p} = N_v \frac{\text{volt}}{\text{div}} = 5.4 \times 50 \times 10^{-3} = 0.27 \text{ V}$$

$$\therefore V_{rms} = \frac{0.27}{2\sqrt{2}} = 95.45 \text{ mv} = 0.0954 \text{ V}$$

| EE | **Test ID: 4211**

TarGATE'14

www.gateforum.com

51. Given $N_V = 5.4$; $N_H = 9.2$

$$\frac{volt}{div} = 50 \times 10^{-3}$$
 ; $\frac{sec}{div} = 1 \times 10^{-3}$

Frequeny,
$$f = \frac{1}{T_{1c}}$$

$$T_{2c} = N_H \frac{Time}{div} = 9.2 \times 1 \times 10^{-3} = 9.2 \text{ m sec}$$

$$T_{1c} = \frac{9.2}{4} = 2.3 \text{ m sec}$$

$$f = \frac{1}{2.3 \times 10^{-3}} = 434.78 = 435 \ Hz$$

52. Characteristic equation is

$$s^4 + 20s^3 + 15s^2 + 2s + k = 0$$

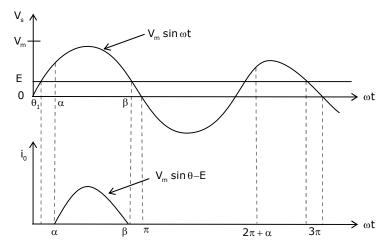
$$29.8 - 20k > 0 \Rightarrow k < \frac{29.8}{20} \Rightarrow k < 1.49$$

53. K = 1.49

Auxiliary equation becomes

$$\frac{298}{20}s^2+k=0 \Rightarrow 14.9s^2+1.49=0 \Rightarrow -\omega^214.9=-1.49 \Rightarrow \omega$$
 = $\sqrt{0.1}=0.316$ rad / sec

GATEFORUM Engineering Success


| EE | Test ID: 4211

TarGATE'14

www.gateforum.com

13

54 & 55.

Min firing angle to turn on SCR is Q₁

$$V_m \sin \theta_1 = E$$

$$(240\sqrt{2})\sin\theta_1 = 200 \rightarrow \theta_1 = 36.104^\circ$$

Max firing angle = $\beta = \pi - \theta_1 = 36.104^{\circ}$

Given firing angle α is 45° $(\alpha > \theta_1)$

The battery charging requires only the average current I_0

$$I_0 = \left(\frac{1}{R}\right) \frac{1}{2\pi} \int_{\alpha}^{\beta} \left[V_m \sin \theta - E \right] dQ = \frac{1}{2\pi R} \left[V_m \cos \theta \Big|_{\beta}^{\alpha} - E \left(-\alpha + \beta \right) \right]$$

$$I_0 = \frac{1}{2\pi R} \left[V_m \left(\cos \alpha - \cos \beta \right) - E \left(\beta - \alpha \right) \right]$$

$$\therefore \ I_0 = \frac{1}{2\pi \times 10} \left[240\sqrt{2} \left[\cos 45 - \cos 143.896 \right] - 200 \left[143.896 - 45 \right] \frac{\pi}{180} \right]$$

$$=\frac{1}{20\pi} \Big[514.22 - 345.212 \Big] = 2.67 \, A$$

EE | **Test ID: 4211**

TarGATE'14

www.gateforum.com

$$\begin{split} &V_{s} = \frac{V_{m}}{\sqrt{2}}, \ V_{s}^{2} = \frac{V_{m}^{2}}{2} \\ &I_{or} = \frac{1}{2\pi} \int_{\alpha}^{\beta} \left(\frac{V_{m} \sin \theta - E}{R} \right)^{2} d\theta \\ &= \frac{1}{2\pi R^{2}} \left[\int_{\alpha}^{\beta} \left[V_{m}^{2} \sin^{2} \theta + E^{2} - 2V_{m} E \sin \theta \right] \right] d\theta \\ &= \frac{1}{2\pi R^{2}} \left[V_{s}^{2} \left(1 - \cos^{2} \theta \right) + E^{2} - 2V_{m} E \sin \theta \right] \\ &= \frac{1}{2\pi R^{2}} \left[V_{s}^{2} \left(\theta - \frac{\sin^{2} \theta}{2} \right) \Big|_{\alpha}^{\beta} + E^{2} \left(\beta - \alpha \right) - 2 V_{m} E \cos \theta \Big|_{\beta}^{\alpha} \right] \\ &= \frac{1}{2\pi R^{2}} \left[V_{s}^{2} \left(\beta - \alpha \right) - \frac{V_{s}^{2}}{2} \left[\sin 2\beta - \sin 2\alpha \right] - 2V_{m} E \left(\cos \alpha - \cos \beta \right) \right] \\ &= \frac{1}{2\pi (10)^{2}} \left[\left(240^{2} + 200^{2} \right) \frac{\left[143.9 - 45 \right]\pi}{180} - \frac{240^{2}}{2} \left[\sin \left(2 \times 143.9 \right) - \sin \left(2 \times 45 \right) \right] \\ &\quad - 2 \cdot \left(240\sqrt{2} \right) 200 \left[\cos 45 - \cos 143.9 \right] \right] \\ &= \frac{1}{200\pi} \left[168470.3495 + 56221.32 - 205696.34 \right] \quad \Rightarrow \quad I_{or} = \sqrt{30.23A} = 5.5A \end{split}$$

Power delivered to
$$R_L = EI_0 + I_{or}^2 R = 200 \times 2.67 + 5.5^2 \times 10 = 836.5W$$
 Supply p.f =
$$\frac{Power \, delivered \, to \, load}{\left\lceil Source \, voltage \, \, V_s \, \right\rceil \, \left\lceil RMS \, value \, of \, source \, current \, \, I_{0r} \, \right\rceil} = \frac{836.5}{240 \times 5.5} = 0.6337 \, lag$$

60. Possible cases:

1st Case: 2 men & 2 women 2nd case: 3 men & 1 women

3rd Case: 4 men only

Required number of ways = $6c_2 \times 5c_2 + 6c_3 \times 5c_1 + 6c_4$

62. Banti is 80% more efficient than Anand

Assume, Anand efficiency is 100 percent

Then, Banti is 180 (100+80) percent efficient

∴ Ratio of time taken by Anand and Banti = 180:100 = 9:5

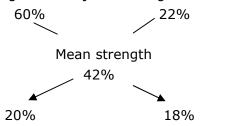
(Reciprocal to efficiencies)

Now, assume Banti takes x days

Given Anand does the job in 14 days

$$14: X:: 9:5 \Rightarrow 9x = 70$$

$$x = \frac{70}{9} = 7\frac{7}{9}$$


| EE | Test ID: 4211

TarGATE'14

www.gateforum.com

63. By the rule of alligation, we have

Strength of first jar Strength of second jar

Ratio = 20: 18 = 10: 9

 $\therefore \text{ Required quantity replaced} = \frac{9}{19}$

- 64. (x^n+1) is divisible by (x+1), when n is odd $(87^{65}+1)$ will be divisible by 88 $(87^{65}+1)+86$, when divided by 88 will give 86 as remainder
- 65. Number of males in U.P = $\left[\frac{3}{5} \text{ of } (15\% \text{ of N})\right] = \frac{3}{5} \times \frac{15}{100} \times \text{N} = \frac{9\text{N}}{100}$ Where N = 3276000

 Number of males in M.P = $\left[\frac{3}{4} \text{ of } (20\% \text{ of N})\right] = \frac{3}{4} \times \frac{20}{100} \times \text{N} = \frac{15\text{N}}{100}$ Number of males in Goa = $\left[\frac{3}{8} \text{ of } (12\% \text{ of N})\right] = \frac{3}{8} \times \frac{12}{100} \times \text{N} = \frac{4.5\text{N}}{100}$ Total males in these 3 states = $(9+5+4.5)\frac{\text{N}}{100} = \frac{28.5\text{N}}{100}$

Required % =
$$\left(\frac{28.5 \times \frac{N}{100} \times 100}{N}\right)$$
% = 28.5%