

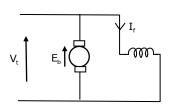
EE Test ID:41212

TarGATE'14

www.gateforum.com

Answer Keys

1	D	2	В	3	Α	4	D	5	Α	6	D	7	В
8	В	9	С	10	4	11	3.33	12	С	13	С	14	Α
15	D	16	В	17	D	18	Α	19	D	20	225	21	76.4
22	С	23	В	24	50	25	Α	26	С	27	В	28	D
29	98.8	30	78	31	84	32	0.448	33	99.4	34	В	35	В
36	Α	37	В	38	Α	39	D	40	С	41	С	42	Α
43	40	44	300	45	С	46	D	47	Α	48	2	49	2.666
50	2500	51	7.5	52	С	53	D	54	Α	55	D	56	С
57	D	58	Α	59	С	60	Α	61	D	62	В	63	С
64	D	65	D										


Explanations:-

1.
$$z = \frac{10|0}{5|-30} = 2|30; 10\cos \omega t + 30^{\circ} = 10\sin 90 - \omega t - 30^{\circ} = 10\sin 60 - \omega t$$
$$= -10\sin \omega t - 60 = -10|-60V, I = \frac{V}{Z} = \frac{-10|-60}{2|30} = -5|-90 = 5|90$$
$$= 5\sin \omega t + 90 = 5\cos \omega t \text{ A}$$

2.
$$x = \lim_{s \to \infty} sx = \lim_{s \to \infty} \frac{3 + \frac{4}{s}}{\frac{1}{s} + 1 + s + 2^2} = 0$$

4. With losses neglected $V_t = E_b$ When V_t is halved, E_b is halved. Now for constant power E_b I_a = constant so I_a is doubled. Again , with V_t halved, I_f is halved, so is ϕ $E_b = \omega \phi$ E_b and ϕ are halved, ω = constant

 $\boldsymbol{T}_{\!\omega} = \text{constant}$ so, \boldsymbol{T} is constant

1

7. Since rank = 2

$$\Rightarrow \begin{vmatrix} A \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} k & -1 & 0 \\ 0 & k & -1 \\ -1 & 0 & k \end{vmatrix} = 0 \Rightarrow k = 1$$

TarGATE'14

www.gateforum.com

2

8. we have
$$\int_{a}^{b} \frac{f x}{f x + f a + b - x} dx = \frac{b - a}{2}$$

$$\therefore \int_{2}^{4} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{6 - x}} dx = \frac{4 - 2}{2} = 1$$

9.
$$\frac{ds}{dt} = 32t - 2$$

$$\Rightarrow ds = (32t - 2)dt$$

$$\Rightarrow \int ds = \int (32t - 2)dt$$

$$\Rightarrow s = 32\frac{t^2}{2} - 2t + c \dots (1)$$
given $s\left(\frac{1}{2}\right) = t$

$$\Rightarrow when $t = \frac{1}{2}, s = 4$

$$from(1), 4 = 16\left(\frac{1}{2}\right)^2 - 2\left(\frac{1}{2}\right) + c$$

$$\Rightarrow c = 1$$

$$\therefore s = 16t^2 - 2t + 1$$$$

10.
$$f_1 = 20$$
Hz; $f_2 = 30$ Hz;
Analog frequencies, Digital frequencies are $F_1 = \frac{20}{75} = \frac{4}{15} = \frac{K_1}{N_1}$
 $F_2 = \frac{30}{75} = \frac{2}{5} = \frac{K_2}{N_2}$; $\therefore N_1 = 15$, $N_2 = 5$; $K_1 = 4$, $K_2 = 2$

11.
$$L_1=1H, \qquad L_2=2H$$

$$i(0^+)=\frac{L_1}{L_1+L_2}i\ 0^-=\frac{1}{3}\times 10=\frac{10}{3}\,A=3.33\,A$$

13. Reactive power
$$Q = \frac{E_f V_t}{X_d} \cos \delta - \frac{V_t^2}{X_d} - V_t^2 \left(\frac{1}{x_q} - \frac{1}{x_d} \right) \sin^2 \delta$$

$$V_t^2 \left(\frac{1}{x_q} - \frac{1}{x_d} \right) \sin^2 \delta \text{ is always positive, so for maximum } Q,$$

$$\cos \delta \text{ needs to be maximum}$$

$$\sin^2 \delta \text{ needs to be minimum}$$

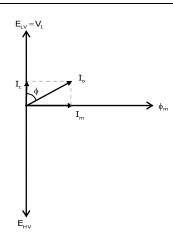
So Q_{max} occurs at $\delta = 0$

EE Test ID:41212

TarGATE'14

www.gateforum.com

3


14. $I_0 = 6A$

The low voltage side of transformer is excited. So, care-loss component of no load current

$$I_{\rm C} = \frac{250}{200} = 1.25A$$

Magnetizing component $I_{m} = \sqrt{I_{o}^{2} - I_{c}^{2}} = 5.87A$

No-load p.f. =
$$\cos \phi = \frac{I_c}{I_o} = 0.208$$

16.
$$y = G_2 \times [X \times + X \times G_1 \times + Y \times G_1 \times]$$

$$= [G_2 \times + G_1 \times G_2 \times]X \times + Y \times G_1 \times G_2 \times$$

17. The expression is simply

Answer =
$$\bar{x} \pm \sigma_{x}$$

 σ_x is the standard deviation = 0.2 sec

 \bar{x} is the mean = 3.6 secs

$$\begin{array}{ll} 18. & D_s = 0.7788 \, r = 0.233 \, cm \\ & GMD = D_m = \sqrt[3]{D_{ab}D_{bc}D_{ca}} = 2.29 m \\ & L = \frac{\mu_o}{2\pi} \, ln \, \frac{D_m}{D_s} \, = \, 1.38 \times 10^{-6} \, H/m = 1.38 \, mH/km \\ & L = 1.38 \times 10^{-3} \times 125 \, = \, 0.1725 \, H \\ & X_L = \omega L = 2 \, x \, \pi \, x \, f \, x \, L = 2 \, x \, \pi \, x \, 50 \, x \, 0.1725 = 54.19 \Omega \end{array}$$

19. We have

Res f(z) =
$$\lim_{z \to x} \left\{ \frac{1}{n-1} \cdot \frac{d^{n-1}}{d2^{n-1}} \left[(z-a)^n f(z) \right] \right\}$$

at z = a

$$\Rightarrow \text{Re s } f(z) \text{ at } z = -1 = \lim_{z \to -1} \left\{ \frac{1}{2-1} \cdot \frac{d^{2-1}}{dz^{2-1}} \left[(z+1)^2 \cdot \frac{2}{(z-1)(z+1)^2} \right] \right\} = \lim_{z \to -1} \frac{d}{dz} \left(\frac{z}{z-1} \right)$$

$$\text{at } z = a \qquad \qquad = \lim_{z \to -1} \left\{ \frac{(z-1) \times (1) - z \times (1)}{(z-1)^2} \right\} = \lim_{z \to -1} \frac{z-1-z}{(-1-1)^2} = -\frac{1}{4}$$

TarGATE'14

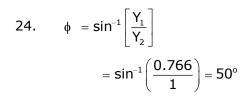
www.gateforum.com

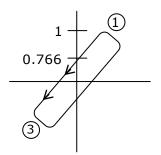
4

20. Utilization factor =
$$\frac{\text{capacity factor}}{\text{Load factor}} = \frac{0.750}{0.65} = 0.7692$$

∴ Plant capacity =
$$\frac{\text{Maximum demand}}{\text{utilization factor}} = \frac{750}{0.7692} = 975.039 \text{ MW} \approx 975 \text{MW}$$

Reserve capacity = Plant capicity - max.demand = 975 - 750 = 225 MW


- 21. Number of parallel paths = 6
 - \Rightarrow Number of series devices = $\frac{60}{6}$ = 10


∴ series string efficiency =
$$\frac{\text{Final rating}}{\text{Number of devices } \times \text{device rating}}$$
$$= \frac{10 \times 10^3}{10 \times 1.2 \times 10^3} = 0.833$$

Parallel string efficiency = $\frac{5.5}{6x1}$ = 0.9167

- : totalstringefficiency = $0.833 \times 0.9167 = 0.76385$
- ∴ % efficiency = 76.4%

$$\begin{aligned} 22. \qquad &8V = 1600I_D + V_{DS} + 400I_D, &8 = 2000I_D + V_{DS}; &2000I_D = 8 - V_{DS} \\ &I_D = \frac{8}{2000} - \frac{V_{DS}}{2000} = \left(\frac{-1}{2000}\right)V_{DS} + \left(\frac{8}{2000}\right), &m = \frac{-1}{2000}; &y = I_D; &x = V_{DS} \end{aligned}$$

GATEFORUM Engineering Success | EE | Test ID:41212 TarGATE'14

www.gateforum.com

25.
$$f' = x'y'z' + x'y'z + x'yz' + x'yz + xy'z' + xy'z + xyz$$

х	у	Z	f′
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	1	1	1
1	0	0	0
1	1	1	1

26. After closing the switch,

$$V_{+} = Ve^{-t/\tau} = 100e^{-1000t}, V_{-} = V 1 - e^{-t/\tau} = 100 1 - e^{-100t}$$

$$V_x = 0 \Rightarrow V_+ = V_-; \ 100e^{-1000t} = 100 \ 1 - e^{-100t} \ , 2e^{-1000t} = e^{1000t} = 2,$$

t = In 2 msec = 0.693msec

- When $V_i = +1V$, $\frac{V_o}{V_i} = -2$; $V_o = -2V$, When $V_i = -1V$, $\frac{V_o}{V_i} = -4$; $V_o = 4V$ 27.
- Characteristic equation of 'A' is $|A \lambda I| = 0$ 28.

$$\Rightarrow \begin{vmatrix} 1 - \lambda & 2 \\ -1 & 3 - \lambda \end{vmatrix} = 0$$
$$\Rightarrow \lambda^2 - 4\lambda + 5 = 0$$

By Hamliton theorem $\Rightarrow A^2 - 4A + 5I = 0$

$$\Rightarrow A^2 = 4A - 5I \qquad \dots (1)$$

$$\Rightarrow$$
 A(A²) = A(4A – 5I)

⇒
$$A^{(4)} = A(4A - 51)$$

⇒ $A^{3} = 4A^{2} - 5A$ (2)
⇒ $A^{4} = 4A^{3} - 5A^{2}$ (3)
⇒ $A^{5} = 4A^{4} - 5A^{3}$ (4)

$$\Rightarrow A^4 = 4A^3 - 5A^2 \qquad \dots (3)$$

$$\Rightarrow A^5 = 4A^4 - 5A^3 \qquad \dots (4)$$

$$\Rightarrow A^6 = 4A^5 - 5A^4 \qquad(5)$$

Now $A^6 - 4A^5 + 8A^4 - 12A^3 + 14A^2$

$$=4A^{5}-5A^{4}-4\big(4A^{4}-5A^{3}\big)+8\big(4A^{3}-5A^{2}\big)-12\big(4A^{2}-5A\big)+14\big(14A-5I\big)$$

= -4A + 5I (: by applying equations (1), (2), (3), (4) & (5))

TarGATE'14

www.gateforum.com

6

29. Full load current =
$$\frac{100(10^3)}{\sqrt{3} \times 440}$$
 = 131.2A

Field loss =
$$\frac{200^2}{150}$$
 w = 267 w

Armature loss =
$$3 \times \left(\frac{131.2}{2}\right)^2 \times 0.02$$

= 258 W

$$Losses = \left(\frac{1}{\eta} - 1\right) output$$

$$1304.87 = \left(\frac{1}{\eta} - 1\right)100 kw$$

$$\eta = 98.8\%$$

or

Input =
$$100 + 1304.87 = 101304.87$$

$$\therefore \eta = \frac{100}{101304.87} = 98.8\%$$

$$I_{\text{base}} = \frac{100 \,\text{MVA}}{11 \,\text{K}} = 9.09 \,\text{KA}$$

$$\begin{split} &I_{_{f}} = 3I_{_{R0}} = \frac{3E_{_{R1}}}{X_{_{1eq}} + X_{_{2eq}} + X_{_{0eq}}} \\ &= \frac{3 \times 1.0}{0.15 + 0.15 + 0.05} = \frac{3}{0.35} = 8.57 \; PU \end{split}$$

$$I_{_f}$$
 in KA $\,=\,$ IPU \times $I_{_{base}}$ $\,=\,$ 8.57 \times 9.09 $\,=\,$ 78 KA

31. Given
$$f_1 = 1MHz$$
; $c_1 = 420 PF$

$$f_2 = 1.5MHz$$
; $c_2 = 140 PF$

$$c_d = \frac{n^2 c_2 - c_1}{1 - n^2}$$
; $n = \frac{f_2}{f_1} = \frac{1.5}{1} = 1.5$

$$\Rightarrow c_d = \frac{420 \times 2.25(140)}{2.25 - 1} = 84 \text{ PF}$$

TarGATE'14

www.gateforum.com

32.

The turn on loss =
$$\frac{1}{6} \times v_{dc} \times I_o \times T_{on}$$

$$\therefore$$
 Turn on energy loss = $\frac{1}{6} \times V_{dc} \times I_{o} \times T_{on}$

Turnoff energy loss =
$$\frac{1}{6} \times v_{dc} \times I_o \times T_{off}$$

$$\therefore \text{ Swtching loss } = \frac{1}{6} \times 100 \times 20 \times 0.1 \times 10^{-6} + \frac{1}{6} \times 100 \times 20 \times 0.1 \times 10^{-6} = 66.67 \times 10^{-6} \text{ J}$$

conduction energy loss =
$$v_o \times I_o + I_o^2 \times R_d \times 0.1 \times 10^{-3}$$

$$= [1x20 + (20)^2 xR_d]x10^{-4}$$

$$\therefore \text{ Avergage power loss} = \underbrace{\frac{\left(6.67 \times 10^{-6} + \left[20 + 400R_d\right] \times 10^{-4}\right)}{0.2 \times 10^{-3}}}_{\theta_{JC}} = \underbrace{\frac{\Delta T}{\theta_{JC}}}_{\theta_{JC}}$$

$$\Rightarrow 66.674 \times 10^{-6} + 20 \times 10^{-4} + 400 R_d \times 10^{-4} = 100 \times 0.2 \times 10^{-3} \Rightarrow R_d = 0.448 \Omega$$

33. Ohmic loss at $\frac{5}{4}^{th}$ loading is 100 W, so ohmic-loss at rated condition (S.C. loss)

$$P_{sc} = 100 \times \left(\frac{4}{5}\right)^2 = 64 \, W \ .$$

Let maximum efficiency occurs at 'x' th loading.

For maximum efficiency

Variable loss = fixed loss

ohmic loss = core-loss

$$\Rightarrow$$
 x².64 = 50

$$x = 0.88$$

so,
$$\eta_{\text{max}} = \frac{20 \times 1 \times 0.88}{20 \times 1 \times 0.88 + 0.05 + 0.064 \times 0.88^2} = 0.994 = 99.4\%$$

34. Given $\cos \phi = 0.3 \Rightarrow \phi = 1.266$

$$R_{_{D}}=2500\,\Omega;~L=20\,mH;~V=120V;~I=10A$$

Power consumed by load, $P_T = VI\cos\phi = 120 \times 10 \times 0.3 = 360W$

$$\beta = tan^{-1} \left(\frac{X_L}{R_n} \right) = tan^{-1} \left(\frac{2\pi fL}{R_n} \right) = tan^{-1} \left(\frac{2\pi \times 50 \times 20 \times 10^{-3}}{2500} \right) = 0.00251 \text{ rad}$$

Actual wattmeter reading = = $[1 + tan \phi \ tan \beta]$ true power

$$= [1 + tan 72.54^{\circ} tan 0.143^{\circ}]360 = 362.87 w$$

Power loss,
$$P_L = \frac{V^2}{R_m} = \frac{120^2}{2500} = 5.76W$$

Total wattmeter reading = 362.84 + 5.76 = 368.63 W

$$\therefore \ \%Error = \frac{P_w - P_T}{P_T} \times 100 = \frac{368.63 - 360}{360} \times 100 = 2.397\%$$

TarGATE'14

www.gateforum.com

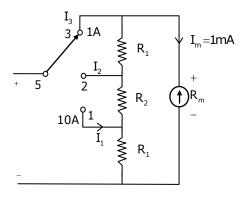
8

36. (A) Given
$$P(A) = \frac{20}{100} = \frac{1}{5}$$
, $P(B) = \frac{30}{100} = \frac{3}{10}$, $P(C) = \frac{50}{100} = \frac{1}{2}$
Let 'D' denote that the bolt is defective

Given
$$P(D / A) = \frac{6}{100} = \frac{3}{50}$$
, $P(D / B) = \frac{3}{100}$, $P(D / C) = \frac{2}{100} = \frac{1}{50}$

$$\therefore \text{ By Bayes's theorem } P(C / D) = \frac{P(C)P(D / C)}{P(A)P(D / A) + P(B).P(D / B) + P(C)P(D / C)}$$

$$= \frac{\frac{1}{2} \cdot \frac{1}{50}}{\frac{1}{5} \cdot \frac{3}{50} + \frac{3}{10} \cdot \frac{3}{100} + \frac{1}{2} \cdot \frac{1}{50}} = \frac{10}{31}$$


37.
$$A_v = \frac{-h_{fe}R_c}{hie + 1 + h_{fe}R_e} = -20$$

| EE | Test ID:41212

TarGATE'14

www.gateforum.com

38.

In position 1, R_1 is in shunt with $R_2 + R_3 + R_m$

$$I_1R_1 = I_m R_2 + R_2 + R_3$$

Given $I_1 = 10A$

$$I_m = 1mA$$

$$R_m = 50\Omega$$

$$\therefore \ 10 \, R_1 \, = \, 1 \times 10^{-3} \, \left\lceil R_2 + R_3 + 50 \right\rceil \ \, \Rightarrow \ \, R_1 \, = \, 10^{-4} \, \left\lceil R_2 + R_3 + 50 \right\rceil$$

In position 2, $R_1 + R_2$ is in shunt with $R_3 + R_m$

$$I_2 R_1 + R_2 = I_m R_3 + R_m$$

1

$$5A \ 5 \ R_1 + R_2 = I_m \ R_3 + R_m$$

$$5 R_1 + R_2 = 1 \times 10^{-3} [R_3 + 50]$$

$$\therefore \ R_1 + R_2 \ = \ 1 \times 10^{-3} \left[R_3 + 50 \right] \ \Rightarrow \ R_1 + R_2 \ = \ 2 \times 10^{-4} \left[R_3 + 50 \right]$$

In position 3, $R_1 + R_2 + R_3$ is in shunt with R_m

$$I_3 R_1 + R_2 + R_3 = I_m R_m$$

 \downarrow

$$1A \ \ \dot{.} \ R_1 + R_2 + R_3 \ = \ 1 \times 10^{-3} \times 50 = 0.05$$

$$R_1 + R_2 + R_3 = 0.05$$

$$R_1 + R_2 = 2 \times 10^{-4} \left\lceil R_3 + 50 \right\rceil \ \, \Rightarrow \ \, R_3 = 0.0399 \, \Omega$$

$$R_1 + R_2 = 0.01$$
, $R_2 = 0.01 - R_1$

$$R_1 = 10^{-4} R_2 + R_3 + 50$$

$$R_1 = 10^{-4} \lceil 0.01 - R_1 + 0.0399 + 50 \rceil$$

$$\therefore \ R_1 = 0.005 \Omega, \quad R_2 = 0.005 \Omega$$

TarGATE'14

www.gateforum.com

By Stoke's theorem, we have

$$\int_{C} \overline{F}.d\overline{r} = \int_{S} \text{curl } \overline{F}.\overline{N} \text{ ds}$$

Finding curl
$$\vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & xz & xy \end{vmatrix} = 0$$

$$\Rightarrow \int_{S} curl \; \overline{F} . \; \overline{N} \; ds = 0 \; \Rightarrow \int_{C} \; \overline{F} \; . \; d\overline{r} = 0$$

40. Given c = 25nF

When device is off

The voltage across capacitor $C = V_c = -V_s.e^{-\frac{1}{R}C^t} + V_s$

$$V_s = 100V \Rightarrow V_c = -100 \times e^{-1/\!\!/RC^{\cdot t}} + 100$$

$$\therefore \frac{dV_c}{dt} = \frac{100}{RC}$$

Given minimum charging current 10mA = $C_{J} \times \left(\frac{dv_{C}}{dt}\right)$

$$\Rightarrow 10 \times 10^{-3} = \frac{100}{R \times C} \times C_{_{\mathrm{J}}} = \frac{100}{R \times 25 \times 10} \times 20 \times 10^{-12}$$

 \therefore minimum value of R = 8 Ω

TarGATE'14

www.gateforum.com

11

41. We have
$$\frac{dT}{dt} = -K(T - C)$$
 $T \rightarrow$ temperature at any time 't'

 $C \rightarrow Room temperature$

given
$$\frac{dT}{dt} = -15$$
; at $t = 0$, $T = 190$, $c = 70$

$$\Rightarrow -15 = -k(190 - 70)$$

$$\Rightarrow \boxed{k = 0.125}$$

$$\Rightarrow \frac{dT}{dt} = -0.125(T - 70)$$
; $T(0) = 190 \Rightarrow dT = -0.125(T - 70)dt$

$$\Rightarrow \int \frac{1}{T - 70} dT = \int -0.125 dt$$

$$\Rightarrow \log_{e}(T-70) = -0.125t + c$$

$$\Rightarrow$$
 T - 70 = $e^{-0.125+c}$ = $e^{-0.125}.e^{c}$

$$= e^{-0.125}$$
.a where $a = e^{c}$

$$\Rightarrow$$
 T = ae^{(-0.125)t} + 70

$$\Rightarrow$$
 T(t) = ae^{(-0.125)t} + 70

$$T(0) = 190$$

$$\Rightarrow$$
 T(0) = ae⁰ + 70

$$T(t) = 120 e^{-0.125t} + 70 \dots (1)$$

given
$$T(t) = 143^{\circ}F \Rightarrow t = ?$$

from (1),
$$t = 3.98 \text{ min}$$

42. For unit step input, Laplace Transform is
$$\frac{1}{s}$$
.

Taking iv option,
$$L[F t] = -\frac{0.1}{s} \frac{1}{s} = \frac{-0.1}{s^2}$$

Taking iii option,
$$L[f t] = \frac{-5}{-20s+1} \cdot \frac{1}{s}, \quad y = \frac{-5}{-20} \left[\frac{1}{s - \frac{1}{20}} \cdot \frac{1}{s} \right] = 5 e^{t/20} - 1$$

43.
$$t_c = \frac{CV_s}{I_o} = \frac{2 \times 10^{-6} \times 200}{10} = 40 \, \mu s$$

44. Internal voltage drop =
$$ZI = \frac{1200}{200} \times 50 = 300 \text{ V}$$

TarGATE'14

www.gateforum.com

 $h\lceil n \rceil = e^{2n}u\lceil n-1 \rceil$

For stability

$$\sum_{n=-\alpha}^{\infty}\left|h\ n\ \right|<\infty$$

$$\sum_{n=-\alpha}^{\infty} e^{2n} u \Big[n-1 \Big] = \sum_{n=1}^{\infty} e^{2n} \ = \sum_{n=1}^{\infty} \ e^{2}^{4}$$

 \therefore $e^2 > 1 \rightarrow \text{ as } n \rightarrow \infty$, summation tends to ∞ hence h n is unstable.

For causal

h n = 0 For n < 0

$$e^{2n}u\Big\lceil n-1\Big\rceil = \begin{cases} e^{2n} & n\geq 1\\ 0 & n<1 \end{cases}$$

:. Hence it is causal

For Memory system

Any system o/p depends upon present 1/p and past o/p and the past 1/p then that system is

memory system

$$\therefore h \lceil 3 \rceil = e^6 u \lceil 2 \rceil$$

.. It is memory system

47. Given $E_o = 5v$, $E_{dc(max)} = 13.5$, $E_{dc(min)} = 10 V$, $I_o = 10 A$, $\Delta I = 500 \text{ mA}$

From Equation,
$$\left(\alpha = \frac{E_o}{E_{dc}}\right) \therefore \frac{T_{oN}}{T} = \frac{E_o}{E_{dc}}$$

$$\therefore \, T_{\text{on(max)}} = \frac{E_{\text{o}}}{E_{\text{dC-In}}f} = \frac{5}{10 \times 50 \times 10^3} = 10 \, \mu \, \text{sec}$$

 \therefore Maximum period of conduction for switch = 10 μ sec

KCL across Loop 1, $\frac{10-V_1}{20} = i_1 + \frac{V_1}{20}$ 48.

$$V_2-V_1=1 \quad \text{and} \quad V_2=10i_1$$

$$\therefore \ V_1 \ = 2v$$

TarGATE'14

www.gateforum.com

$$49. \qquad \frac{10 - V_{th}}{20} = i_1$$

$$10i_1 - V_{th} = 1$$

$$i_1 = \frac{V_{th} + 1}{10}$$

$$\frac{10 - V_{th}}{20} = \frac{V_{th} + 1}{10}$$

$$10 - V_{th} = 2V_{th} + 2$$

$$3V_{th} = 8$$

$$V_{th} = \frac{8}{3} = 2.666$$

$$\begin{array}{lll} 50\&51. & Z_1 = 200\,\Omega & Z_2 = 500\,\Omega \\ & Z_3 = 1000\,\Omega & V_f = 2000\,v \\ & i_f + i_r = i_1 + i_2 \\ & \frac{V_f}{Z_1} - \frac{V_r}{Z_1} = \frac{V_t}{Z_2} + \frac{V_t}{Z_3} \\ & V_f - V_r = V_t \left[\frac{1}{Z_2} + \frac{1}{Z_3}\right] Z_1 = V_t \left[\frac{1}{500} + \frac{1}{1000}\right] 200 \\ & = V_t \left[\frac{3}{1000}\right] \times 200 = \left(\frac{3}{5}\right) V_t \\ & \text{Also } V_f + V_r = Vt \quad \Rightarrow \quad V_f - V_r = \frac{3}{5} V_t \\ & \text{Add } 2V_f = \frac{8}{5} V_t \quad \Rightarrow \quad V_f = \frac{4}{5} V_t \\ & 2000 = \frac{4}{5} V_t \quad V_f = 2000V \\ & V_t = 2500V \end{array}$$

Reflected voltage = $V_r = V_t - V_f = 2500 - 2000 = 500V$

Current transmitted in the 500 Ω line, $i_1 = \frac{V_t}{Z_2} = \frac{2500}{500} = 5A$

Current transmitted in the $1000\,\Omega$ line, $i_2=\frac{V_t}{Z_s}=\frac{2500}{1000}=2.5A$

Current in cable = $i_1 + 1_2 = 5 + 2.5 = 7.5A$

TarGATE'14

www.gateforum.com

52.
$$x_1 = x_2 = 3r_1 = 3r_2$$

$$\begin{split} T_{e} &= \left(\frac{3V^{2}}{Cv_{s}}\right) \boxed{\frac{1}{\left(r_{1} + \frac{r_{2}}{s}\right)^{2} + x_{1} + x_{2}^{2}}} \boxed{\left(\frac{r_{2}}{s}\right)} \\ 425 &= \left(\frac{3V^{2}}{Cv_{s}}\right) \boxed{\frac{1}{\left(H\frac{1}{0.04}\right)^{2} + (3+3)}} \boxed{r_{2}} \boxed{\frac{r_{2}}{0.04}} \\ 425 &= \left(\frac{3v^{2}}{w_{s}}\right) \boxed{\frac{1}{28.48}} \\ \boxed{\frac{3v^{2}}{cv_{s}}} &= 12104 \\ Test &= \left(\frac{3v^{2}}{cv_{s}}\right) \boxed{\frac{1}{\left[(1+1)^{2} + (3+3)^{2}\right]r_{2}}} \boxed{\left(\frac{t_{2}}{1}\right)} \\ &= (12104) \left(\frac{1}{40}\right) = 302.6N - m \end{split}$$

$$\begin{split} \text{SmT} &= \frac{r_2}{\sqrt{r_1^2 + (x_1 + x_2)^2}} = \frac{1}{\sqrt{1^2 + (3+3)^2}} = 0.1643 \\ \text{Tem} &= \left(\frac{3v^2}{c_v s}\right) \boxed{\frac{1}{\left[\left(1 + \frac{1}{0.1643}\right)^3 + (3+3)^2\right] r_2} \times \left(\frac{r_2}{0.1643}\right)} \\ &= (12104) \frac{1}{14.16} = 854.8 \text{ Nm} \\ \frac{\text{Test}}{\text{Tem}} &= \frac{302.6}{854.8} = 0.354 \end{split}$$

54.
$$x t = 4 + 3e^{j2\pi t} + 3e^{-j2\pi t} + 5e^{j6\pi t} + 5e^{-j6\pi t}$$

$$x t = 4 + 6 \cos 2\pi t + 10 \cos 6\pi t$$

$$q t = 8 + 6 \cos 2\pi t$$

ng Success | EE | Test ID:41212

TarGATE'14

www.gateforum.com

15

55. DC value of y t

$$y t = H w DC value of g t$$

$$H \ W \ = \frac{1}{1 + j2\pi fRc}$$

$$RC = 1$$

$$\omega = 0$$

$$H 0 = 1$$

Y t
$$|_{Dc} = 8$$

- 60. S.I for 1 year = Rs. (900 800) = Rs.100 S.I for 4 years = Rs. (100×4) = Rs.400 Principal = Rs.400
- 62. Suppose X will cost 40 paisa more than Y after 2 years, then $4.20 + 0.40 \, Z 6.30 + 0.15 \, Z = 0.40$ $0.25 \, Z = 0.40 + 2.10 \implies Z = 10$ Re quired year = 2001 + 10 = 2011
- 63. C's 1 day of work $= \frac{1}{3} \left(\frac{1}{6} + \frac{1}{8}\right) = \frac{1}{24}$ A's wages: B's wages: C's wages $= \frac{1}{6} : \frac{1}{8} : \frac{1}{24} = 4:3:1$ C's share for 3 days $3 \times \frac{1}{24} \times 3200 = \text{Rs.}400$
- 64. Let the three integers be x, x + 2, x + 4 $3x = 2 x + 4 + 3 \implies x = 11$ Third integer = 11 + 4 = 15
- 65. From the data it is not given that percentage of proteins in skin is 16% Rather it is given that percentage entire human body is 16% Therefore, we should not do 16% of 1/10