Page 1

| For 2019 (IES, GATE & PSUs)

Strength of Materials

IContents

Chapter — 1: Stress and Strain

Chapter - 2 : Principal Stress and Strain
Chapter - 3 : Moment of Inertia and
Centroid

Chapter - 4 : Bending Moment and Shear
Force Diagram

Chapter - 5 : Deflection of Beam

Chapter - 6 : Bending Stress in Beam

Chapter - 7 : Shear Stress in Beam

S K Mondal

Chapter - 8 : Fixed and Continuous Beam
Chapter - 9 : Torsion

Chapter-10 : Thin Cylinder

Chapter-11 : Thick Cylinder

Chapter-12 : Spring

Chapter-13 : Theories of Column
Chapter-14 : Strain Energy Method
Chapter-15 : Theories of Failure

S K Mondal

IES Officer (Railway), GATE topper, NTPC ET-2003 batch,
15 years teaching experienced, Author of Hydro Power
Familiarization (NTPC Ltd)

For-2019 (IES, GATE & PSUs) Page 1 of 480 Rev.0



Page 2

Note

“Asked Objective Questions” is the total collection of questions from:-
27 yrs 1IES (2018-1992) [Engineering Service Examination]

27 yrs. GATE (2018-1992) [Mechanical Engineering]

16 yrs. GATE (2018-2003) [Civil Engineering]

and 14 yrs. 1AS (Prelim.) [Civil Service Preliminary]

Copyright © 2007 S K Mondal

Every effort has been made to see that there are no errors (typographical or otherwise) in the
material presented. However, it is still possible that there are a few errors (serious or
otherwise). I would be thankful to the readers if they are brought to my attention at the

following e-mail address: swapan_mondal_01@yahoo.co.in

S K Mondal

For-2019 (IES, GATE & PSUs) Page 2 of 480 Rev.0




Page 3

1. Stress and Strain

Theory at a Glance (for IES, GATE, PSU)
1.1 Stress (0)

When a material is subjected to an external force, a resisting force is set up within the component. The
internal resistanceforce per unit area acting on a material or intensity of the forces distributed over a given

section 1s called the stress at a point.

® It uses original cross section area of the specimen and also known as engineering stress or

conventional stress.

Therefore, 0 = —
A

® P is expressed in Newton(N) and A, original area,in square meters (m2), the stress o will be

expresses in N/ m2. This unit is called Pascal (Pa).

® As Pascal is a small quantity, in practice, multiples of this unit is used.

1 kPa =103 Pa = 103 N/ m2 (kPa = Kilo Pascal)
1 MPa =106 Pa = 108N/ m2 = 1 N/mm?2 (MPa = Mega Pascal)
1 GPa =109 Pa =109 N/ m2 (GPa = Giga Pascal)

Let us take an example: A rod 10 mm X10 mm cross-section is carrying an axial tensile load 10 kN. In

this rod the tensile stress developed is given by

3
(o) - 10KV _ 1010V 4 00Njmm? = 100MPa

A (10mmx10mm) 100 mm?

The resultant of the internal forces for an axially loaded member is

normal to a section cut perpendicular to the member axis.

® The force intensity on the shown section is defined as the normal stress.

= lim ﬁ and =—
7= AA-0 AA Tavg =

® Stresses are not vectors because they do not follow vector laws of
addition. They are Tensors.Stress, Strain and Moment of Inertia are
second order tensors.

e Tensile stress (o) m i P

If 0 > 0 the stress is tensile. 1.e. The fibres of the component T
tend to elongate due to the external force. A member P e ‘i
subjected to an external force tensile P and tensile stress b

distribution due to the force is shown in the given figure.
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® Compressive stress (o) l
If 0 < 0 the stress is compressive. i.e. The fibres of the
component tend to shorten due to the external force. A Hl

member subjected to an external compressive force P and

compressive stress distribution due to the force is shown in .
the given figure. T l.‘
® Shear stress (7)

When forces are transmitted from one part of a body to other, the stresses

developed in a plane parallel to the applied force are the shear stress. Shear

stress acts parallel to plane of interest. Forces P is applied

transversely to the member AB as shown. The corresponding

internal forces act in the plane of section C and are called shearing l T

7) P —

forces. The corresponding average shear stress = A
rea

—

1.2 Strain (g)

Thedisplacement per unit length (dimensionless) is

known as strain.

® Tensile strain (€ 1)

EANNNRNNN

r
[=]

The elongation per unit length as shown in the
figure is known as tensile strain. L

et = AL/ Lo

It is engineering strain or conventional strain.

Here we divide the elongation to original length

not actual length (Lo + A L)

L N N

| L=Lo +AL

Sometimes strain is expressed in microstrain. (1 pstrain = 10-6) eg. a strain of 0.001 = 1000 pstrain)

Let us take an example: A rod 100 mm in original length. When we apply an axial tensile load 10 kN the

final length of the rod after application of the load is 100.1 mm. So in this rod tensile strain is developed

and is given by

(€t)=£= L—-L, _ 100.1mm —100mm _ 0.1mm
L, L, 100mm 100mm

=0.001 (Dimensionless) Tensile

® Compressive strain (< ()

If the applied force is compressive then the reduction of length per unit length is known as
compressive strain. It is negative. Then €. = (-AL)/ L,
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® Shear Strain (7Y):When a

force P is applied tangentially to
the element shown. Its edge

displaced to dotted line. Where

0 is the lateral displacement of
the upper face

of the element relative to the lower face and L is the distance between these faces.

6

Then the shear strain is = —

1.3 True stress and True Strain

The true stress is defined as the ratio of the load to the cross section area at any instant.

Where 0O and € is the engineering stress and engineering strain respectively.

® True strain

or engineering strain (€ ) =e" -1

The volume of the specimen is assumed to be constant during plastic deformation. [
AL, =AL]ltis valid till the neck formation.
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e Comparison of engineering and the true stress-strain curves shown below

® The true stress-strain curve is also known as
the flow curve.

True Sreess - sleai curve

. i
—
e

® True stress-strain curve gives a true indication
of deformation characteristics because it is
based on the instantaneous dimension of
the specimen.

~Cerrecred for
necking

Engneenng
SIESS=SHham Cuve

Stress

® In engineering stress-strain curve, stress drops
down after necking since it is based on the
original area.

& Max { ood
n Fraetire

o Strain

® In true stress-strain curve, the stress however increases after necking since the cross-
sectional area of the specimen decreases rapidly after necking.

® The flow curve of many metals in the region of uniform plastic deformation can be expressed by
the simple power law.
or = K(er)» Where K is the strength coefficient
n is the strain hardening exponent
n = 0 perfectly plastic solid
n = 1 elastic solid

For most metals, 0.1<n < 0.5

o Relation between the ultimate tensile strength and true stress at maximum load

. . L, :
The ultimate tensile strength (au) = —max P— A, — P
b ] A J—=>
The true stress at maximum load (O'U> = —nax L
T A
And true strain at maximum load (E) =In i or i =e7
T A A
C P P .
Eliminating Pmax we get (O’u) = max _ _max i =o€
T A A, A
Where Puax = maximum force and A, = Original cross section area
A = Instantaneous cross section area
Let us take two examples: L, .
(I.) Only elongation no neck formation = A, > P
In the tension test of a rod shown initially it was A, < A  —

=50 mm? and L, = 100 mm. After the application of
load it’'s A = 40 mm?2 and L = 125 mm.
Determine the true strain using changes in both

length and area.

Answer: First of all we have to check that does the
member forms neck or not? For that check AL, =AL
or not?

Here 50 X 100 = 40 X 125 so no neck formation is

there. Therefore true strain
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1.4 Hook’s law

According to Hook’s law the stress is directly proportional to strain i.e. normal stress (0) & normal strain
(e) and shearing stress (7 ) « shearing strain ().
0=Ee and7 =Gy

The co-efficient E is called the modulus of elasticity i.e. its resistance to elastic strain. The co-efficient G is

called the shearmodulus of elasticity or modulus of rigidity.

1.6 Young’s modulus or Modulus of elasticity (E) = i—I;):E
1.7 Modulus of rigidity or Shear modulus of elasticity (G) =£==%
e
. _ Ap Ap
1.8 Bulk Modulus or Volume modulus of elasticity (K =~ "R
v R
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1.10 Relationship between the elastic constants E, G, K, p

Where K = Bulk Modulus, p = Poisson’s Ratio, E= Young’s modulus, G= Modulus of rigidity

® For a linearly elastic, isotropic and homogeneous material, the number of elastic constants required

to relate stress and strain is two. 1.e. any two of the four must be known.

® [f the material is non-isotropic (i.e. anisotropic), then the elastic modulii will vary with additional
stresses appearing since there is a coupling between shear stresses and normal stresses for an

anisotropic material. There are 21 independent elastic constants for anisotropic materials.

® [f there are axes of symmetry in 3 perpendicular directions, material is called

orthotropicmaterials. An orthotropic material has 9 independent elastic constants.

1.11 Poisson’s Ratio (p)
Initial shape

e

(Under unidirectional stress in x-direction)
® The theory of isotropic elasticity allows Poisson's ratios in the range from -1 to 1/2.

® We use cork in a bottle as the cork easily inserted and removed, yet it also withstand the pressure

from within the bottle. Cork with a Poisson's ratio of nearly zero, is ideal in this application.

® If a piece of material neither expands nor contracts in volume when subjected to stress,then the

Poisson’s ratio must be 1/2

® Poisson's ratio in various materials

Steel 0.25-10.33 Rubber 0.48-0.5
ClI 0.23 -0.27 Cork Nearly zero
Concrete | 0.2 Novel foam negative
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1.12 For bi-axial stretching of sheet

L
€= (A] L, - Original length

1

L
€,=In {ij L, -Final length
02
Initial thickness(t,)
eel X eez

Final thickness (t) =

1.13 Elongation

e A prismatic bar loaded in tension by an axial force P

For a prismatic bar loaded in tension by
an axial force P. The elongation of the bar
can be determined as

® Elongation of composite body

Elongation of a bar of varying cross section A1, As........... Anof lengths [;, Io.......Inrespectively.

P[Il , }
O=—|—+—">+————————— +-
ELA A A A,

40 mm? 20 mm* 30 mm?

le——300 mm —je——500 mm —————>{«—200 mm—»|
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® FElongation of atapered body
Elongation of a tapering rod of length ‘L.’ due to load ‘P’ at the end

(d1 and dz are the diameters of smaller & larger ends)

You may remember this in this way, 8= PL ie. PL
V4 EA
E| Zd,d, e
4
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Elongation of a body due to its self weight

(1) Elongation of a uniform rod of length ‘I’ due to its own weight ‘W’

The deformation of a bar under its own weight as compared to that when subjected to a
direct axial load equal to its own weight will be half.

(1) Total extension produced in rod of length ‘L.’ due to its own weight ‘w’ per with

ol’
length. o=
2EA
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(i11) Elongation of a conical bar due to its self weight
5= ,OgL2 WL
6E 2A . E

1.14 Structural members or machines must be designed such that the working stresses are less than the

ultimate strength of the material.

Working stress(o,, ) = % n=1.5to 2

factor of safety
=i -2t03
n‘I
O
=—F o, =Proof stress
n

o, 0r o, Ofr o

1.15 Factor of Safety: (n) =

Oy

1.16 Thermal or Temperature stress and strain
® When a material undergoes a change in temperature, it either elongates or contracts depending
upon whether temperature is increased or decreased of the material.

® [f the elongation or contraction is not restricted, 1. e. free then the material does not experience

any stress despite the fact that it undergoes a strain.

® The strain due to temperature change is called thermal strain and is expressed as,
£=a(AT)

® Where a is co-efficient of thermal expansion, a material property, and AT is the change in

temperature.

® The free expansion or contraction of materials, when restrained induces stress in the material
and it is referred to as thermal stress.
O-t =a E (AT ) Where, E = Modulus of elasticity
® Thermal stress produces the same effect in the material similar to that of mechanical stress. A

compressive stress will produce in the material with increase in temperature and the stress

developed is tensile stress with decrease in temperature.

Let us take an example: A rod consists of two parts that are made of steel and copper as shown in figure
below. The elastic modulus and coefficient of thermal expansion for steel are 200 GPa and 11.7 x 10-6 per °C
respectively and for copper 70 GPa and 21.6 X 10-6 per °C respectively. If the temperature of the rod is

raised by 50°C, determine the forces and stresses acting on the rod.
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0.5m 075m ‘ |._ 0.4

75 mm

( { 50 mm

Steel Cu

e

1.17 Thermal stress on Brass and Mild steel combination

A brass rod placed within a steel tube of exactly same length. The assembly is making in such a
way that elongation of the combination will be same. To calculate the stress induced in the brass

rod, steel tube when the combination is raised by t°C then the following analogy have to do.
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k|
o . Stmal
(a) Original bar before heating. Brass
3 Steel
A o Lt
- L - -
oLt
3
.. . Steel |E c
(b) Expanded position if the members are allowed to : Bracs
expand freely and independently after heating. S |
1l -
Ex:brngnm[- Dllr Compression
sien = of brass
e . . R
(¢) Expanded position of the compound bar i.e. final Sten]
osition after heating. Brass
P & 3 Sles|
 Compatibility Equation: Assumption:
_ _ 1.L=L_=L
5_55'( +5sf _5Bt _6Bf s B
2.a, >
® Equilibrium Equation: .
E E 3. Steel —Tension
o A =05hg Brass — Compression

Where, § = Expansion of the compound bar = AD in the above figure.

0, = Free expansion of the steel tube due to temperature rise t°C = o Lt

= AB in the above figure.

o4 = Expansion of the steel tube due to internal force developed by the unequal expansion.

= BD in the above figure.

0y, = Free expansion of the brass rod due to temperature rise t°C = ¢, Lt

= AC in the above figure.

0y = Compression of the brass rod due to internal force developed by the unequal expansion.

= BD in the above figure.
And in the equilibrium equation
Tensile force in the steel tube = Compressive force in the brass rod

Where, o, = Tensile stress developed in the steel tube.
o, = Compressive stress developed in the brass rod.
A = Cross section area of the steel tube.

A, = Cross section area of the brass rod.

Let us take an example: See the Conventional Question Answer section of this chapter and the question

is “Conventional Question IES-2008 and it’s answer.
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1.18 Maximum stress and elongation due to rotation
22 23 X
) e =225 ana (1) = 22 (.
8 12E | Y |
D P —
X

212 213
X
(i) 0 = 22L ana (1) = 22E QL)
2 3E

For remember: You will get (ii) by multiplying by 4 of (i)

1.18 Creep

When a member is subjected to a constant load over a long period of time it undergoes a slow permanent
deformation and this is termed as “creep”. This is dependent on temperature. Usually at elevated

temperatures creep is high.

® The materials have its own different melting point; each will creep when the homologous

Testing temperature S
Melting temperature

temperature > 0.5. Homologous temp = 0.5

A typical creep curve shows three distinct stages

with different creep rates. After an initial rapid Alirigrrts Bidendiey wes Vel tsen

|_T _...11.___—_.‘_._]-[]-_ Fraeturs
. 5

|

elongation &, the creep rate decrease with time

until reaching the steady state.

e

1) Primary creep is a period of transient creep.

A

o

minimum ©reep rote

The creep resistance of the material increases &
due to material deformation. - .
e The constant creep rate in the
. f second step represent the creep
2) Secondary creepprovides a nearly constant € rate of the material.
creep rate. The average value of the creep rate l

Time &

during this period is called the minimum creep
rate. A stage of balance between competing.

Strain hardening and recovery (softening) of the material.

3) Tertiary creep shows a rapid increase in the creep rate due to effectively reduced cross-sectional area
of the specimen leading to creep rupture or failure. In this stage intergranular cracking and/or

formation of voids and cavities occur.
Creep rate =c1o%
Creep strain at any time = zero time strain intercept + creep rate XTime
=€, +C,0% xt
Where, C,,C, are constants o = stress

1.19 Fatigue

When material issubjected to repeated stress, it fails at stress below the yield point stress. This failureis
known asfatigue. Fatigue failute is caused by means of aprogressive crack formation which are usually fine
and of microscopic. Endurance limit is used for reversed bending only while for othertypes of loading, the
term endurance strength may be used when referring the fatigue strength of thematerial. It may be defined
as the safe maximum stress which can be applied to the machine partworking under actual conditions.
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1.20 Stress produced by a load P in falling from height 'h’

{rfe2]

€ being stress & strain produced by static load P & L=length of bar.

P / 2AEh
=—|1+,/1+
A PL

If a load P is applied suddenly to a bar then the stress & strain induced will be double than those

obtained by an equal load applied gradually.
1.21 Loads shared by the materials of a compound bar made of bars x & y due to load W,
w__AE,
; .
AE, + Ay Ey
L AE,
Y AE + Ay Ey
__PL
AE, + Ay Ey

1.22Elongation of a compound bar, & =

1.23 Tension Test

A A @

K Fracture
Neeking g :
A i 1 '
t ] . i i
Il Young's modulus = slope !
- Fracture ! = stresg/st-ain :
i i .
| | :
i ! !
i | :
i i |
a i 1 '
: ) Nor-uniform |
4 Efastic Uniform o-'.?: fic i plastic :
Bfrmaton defirmalion ! detormation |

4 N - T » Strai

- i Elastic | Plastic sfrain ! gan

! 1 afrain : : 4

Total strain ' !

............................................................

i) True elastic limit:based on micro-strain measurement at strains on order of 2 x 10-6. Very low value

and is related to the motion of a few hundred dislocations.
ii) Proportional limit:the highest stress at which stress is directly proportional to strain.

iii) Elastic limit:is the greatest stress the material can withstand without any measurable permanent
strain after unloading. Elastic limit > proportional limit.
iv) Yield strengthis the stress required to produce a small specific amount of
deformation.The offset yield strength can be determined by the stress
corresponding to the intersection of the stress-strain curve and a line
parallel to the elastic line offset by a strain of 0.2 or 0.1%.(¢ = 0.002 or
0.001).
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® The offset yield stress is referred to proof stress either at 0.1 or 0.5% strain used for design and

specification purposes to avoid the practical difficulties of measuring the elastic limit or
proportional limit.

v) Tensile strength or ultimate tensile strength (UTS) o, is the maximum load Pmax divided by the

original cross-sectional area A, of the specimen.

vi) % Elongation, = ,is chiefly influenced by uniform elongation, which is dependent on the strain-

Lf _Lo
Lo

hardening capacity of the material.

A — A
A

vii) Reduction of Area:q =

® Reduction of area is more a measure of the deformation required to produce failure and its chief

contribution results from the necking process.

® Because of the complicated state of stress state in the neck, values of reduction of area are
dependent on specimen geometry, and deformation behaviour, and they should not be taken as

true material properties.

® RA is the most structure-sensitive ductility parameter and is useful in detecting quality

changes in the materials.

viii) Modulus of Elasticity or Young’s Modulus

® [t is slope of elastic line upto proportional limit.

.

ix) Stress-strain response

£ 3
Linear elastic Linear elastic-perfectly plastic
— 7.
e £
Linear elastic-hardening plastic Linear elastic-hardening plasticity
with unloading

. o

Nonlinear

Britife
(glass, ceramics,

For-2019 (IES, GATE & PSUs)
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|Hard Drawn Brass |

Hard Drawn Copper
| |

Aluminium Alloy |
S
|Am|ed Copper |

>

Force (F) or load

Exiansion (x)

Nominal stress
g = P..".I.D

Tool steel

elastic modulus High strength steel

.

LR

‘ Note similar

Mild steel
{highly ductile}

&

| Conspicuous yield |

Nominal strain e =AL /L,
O g

e Characteristics of Ductile Materials
1. The strain at failure is, £> 0.05 , or percent elongation greater than five percent.

2. Ductile materials typically have a well defined yield point. The value of thestress at the yield point
defines the yield strength, o,.

3. For typical ductile materials, the yield strength has approximately the same valuefor tensile and
compressive loading (0y=0y~0y).

4. A single tensile test is sufficient to characterize the material behavior of a ductilematerial, oy and ouu.

e Characteristics of Brittle Materials
1. The strain at failure ilure is, € <0.05 or percent elongation less than five percent.

2. Brittle materials do not exhibit an identifiable yield point; rather, they fail bybrittle fracture. The value
of the largest stress in tension and compressiondefines the ultimate strength, ow:and oucrespectively.

3. The compressive strength of a typical brittle material is significantly higher thanits tensile strength,
(Oue>> ow).

4. Two material tests, a tensile test and a compressive test, are required tocharacterize the material

behavior of a brittle material, ow:and oue.
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1.241zod Impact Test

The Notched Izod impact test is a technique to obtain a measure = —

of toughness. Itmeasures the energy required to fracture a —
notched specimen at relatively high ratebending conditions. The Specimen

apparatus for the Izod impact test is shown in Figure.A pendulum

with adjustable weight is released from a known height; a

rounded point onthe tip of the pendulum makes contact with a

notched specimen 22mm above the centerof the notch.

1.25 Elastic strain and Plastic strain

The strain present in the material after unloading is called the residual strain or plastic strain and the
strain disappears during unloading is termed as recoverable or elastic strain.
Equation of the straight line CB is given by

o =€

total xE— SPplastic xE = CEjastic xE

Carefully observe the following figures and understand which one is Elastic strain and which one is Plastic

strain
tr" B C A
A
i i
1 1
1 1
i i
0 c |D > :.; ot » ¢
.l £ -+ , '+ Residual strain =
)""' . Elastic strain Elasiic stral
. . astic strain
Residual strain Elastic strain
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1.26 Elasticity

This is the property of a material to regain its original shape
after deformation when the external forces are removed. When
the material is in elastic region the strain disappears
completely after removal of the load, The stress-strain
relationship in elastic region need not be linear and can be
non-linear (example rubber). The maximum stress value below
which the strain is fully recoverable is called the elastic limit.
It is represented by point A in figure. All materials are elastic
to some extent but the degree varies, for example, both mild
steel and rubber are elastic materials but steel is more elastic

than rubber.

1.27 Plasticity

When the stress in the material exceeds the elastic limit, the
material enters into plastic phase where the strain can no
longer be completely removed. Under plastic conditions
materials ideally deform without any increase in stress. A
typical stress strain diagram for an elastic-perfectly plastic
material is shown in the figure. Mises-Henky criterion gives a

good starting point for plasticity analysis.
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1.28 Strain hardening
If the material is reloaded from point C, it will follow the G B

previous unloading path and line CB becomes its new elastic
region with elastic limit defined by point B. Though the new
elastic region CB resembles that of the initial elastic region

OA, the internal structure of the material in the new state has

changed. The change in the microstructure of the material is

clear from the fact that the ductility of the material has come

m Y

down due to strain hardening. When the material is reloaded, O C
it follows the same path as that of a virgin material and fails
on reaching the ultimate strength which remains unaltered

due to the intermediate loading and unloading process.

1.29 Stress reversal andstress-strain hysteresis loop
We know that fatigue failure begins at a local discontinuity and when the stress at the discontinuity
exceeds elastic limit there is plastic strain. The cyclic plastic strain results crack propagation and fracture.

When we plot the experimental data with reversed loading which can induce plastic stress and the true
stress strain hysteresis loops is found as shown below.

Stress
- =

| Strain

- J'j.Ep e .&Eﬁ -

A —

True stress-strain plot with a number of stress reversals

The area of the hysteresis loop gives the energy dissipationper unit volume of the material, per stress cycle.
This is termed the per unit volume damping capacity.

Due to cyclic strain the elastic limit increases for annealed steel and decreases for cold drawn steel.

Here the stress range is Ao. Aep and Aee are the plastic and elastic strain ranges, the total strain range

being Ae. Considering that the total strain amplitude can be given as
AS = A8p+ ASe
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Bauschinger Effect

In most materials, plastic deformation in one direction will affect subsequent plastic response in
another direction. For example,a material that is pulled in tensionshows a reduction in compressive
strength.

It depends on yield stress on loading path and direction.

The basic mechanism for the Bauschinger effect is related to the dislocation structure in the cold
worked metal. As deformation occurs, thedislocations will accumulate at barriers and produce
dislocation pile-ups and tangles.

It is a general phenomenon found in most polycrystalline metals.

1.30Bolts of uniform strength

Diameter of the shank of the bolt is equal to the core diameter of the thread. Stress in the shank will be
more and maximum energy will be absorbed by shank.

1.31 Beam of uniform strength

It is one is which the maximum bending stress is same in every section along the longitudinal axis.

For it

M « bh?

Where b = Width of beam

h = Height of beam

To make Beam of uniform strength the section of the beam may be varied by

Keeping the width constant throughout the length and varying the depth, (Most widely used)
Keeping the depth constant throughout the length and varying the width
By varying both width and depth suitably.

1.32 Pretensioned bolts or Preloaded bolts

Benefits
Rigidity of joints (no slip in service)
No loosening of bolts due to vibrations
Better fatigue performance
Tolerance for fabrication/erection (because of the use of clearance holes)

Disadvantages
Difficulty of ensuring that all bolts are adequately pre-loaded
In double cover connections, small differences in ply thickness in plates of nominally the same thickness
can result in the preload from bolts near the centre of joint being applied to the wrong side of the joint.
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1.33 Fracture
Tension Test of Ductile Material E
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Stress in a bar

GATE-1.

GATE-1@).

GATE-2.

GATE-2a.

Two identical circular rods of same diameter and same length are subjected to same
magnitude of axial tensile force. One of the rods is made out of mild steel having the
modulus of elasticity of 206 GPa. The other rod is made out of cast iron having the
modulus of elasticity of 100 GPa. Assume both the materials to be homogeneous and
isotropic and the axial force causes the same amount of uniform stress in both the
rods. The stresses developed are within the proportional limit of the respective
materials. Which of the following observations is correct? [GATE-2003]

(a) Both rods elongate by the same amount

(b) Mild steel rod elongates more than the cast iron rod

(¢) Castiron rod elongates more than the mild steel rod

(d) Asthe stresses are equal strains are also equal in both the rods

A rod of length L having uniform cross-sectional area A is subjected to a tensile force
P as shown in the figure below If the Young's modulus of the material varies linearly
from Ei, to Ezalong the length of the rod, the normal stress developed at the section-
SS is [GATE-2013]
rrer—— S

E, E;

P e—o —— P

) 2
e >
L

Py PEL—E) PEy . PE
(@) 2 ( )A—(E1+E2)(C)E( )A—E2

A steel bar of 40 mm X 40 mm square cross-section is subjected to an axial
compressive load of 200 kN. If the length of the bar is 2 m and E = 200 GPa, the
elongation of the bar will be: [GATE-2006]
(2)1.25 mm (b)2.70 mm (c)4.05 mm (d) 5.40 mm

A 300 mm long copper wire of uniform cross-section is pulled in tension so that a
maximum tensile stress of 270 MPa is developed within the wire. The entire
deformation of the wire remains linearly elastic. The elastic modulus of copper is 100
GPa. The resultant elongation (in mm) is .[PI: GATE-2006]
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. A bar of varying square cross-section is loaded LLLLLLLLIIIIIIINIIILIEILLITY

symmetrically as shown in the figure. Loads
shown are placed on one of the axes of

symmetry of cross-section. Ignoring self ¢ 100 mm >
weight, the maximum tensile stress in N/ mm®

50
anywhere is l €50 mm—p l
(a) 16.0 (b) 20.0 100 kN l 100 kN
(c) 25.0 (d) 30.0

50 kN

[CE: GATE-2003]

GATE-2c. A curved member with a straight vertical leg is

GATE-2d.

carrying a vertical load at Z. As shown in the figure.

The stress resultants in the XY segment are Z
(a) bending moment, shear force and axial force :
(b) bending moment and axial force only
(c) bending moment and shear force only :
(d) axial force only I
Y
X

[CE: GATE-2003]

A metallic rod of 500 mm length and 50 mm diameter, when subjected to a tensile
force of 100 kN at the ends, experiences an increase in its length by 0.5 mm and a
reduction in its diameter by 0.015 mm. The Poisson’s ratio of the rod material is
........... [GATE-2014]

True stress and true strain

GATE-3.

The ultimate tensile strength of a material is 400 MPa and the elongation up to
maximum load is 35%. If the material obeys power law of hardening, then the true
stress-true strain relation (stress in MPa) in the plastic deformation range is:

(a) o =540%% (b) o =775 (¢) 0 =540£°*° () 0 =775 [GATE-2006]

Elasticity and Plasticity

GATE-4.

GATE-5.

GATE-6.

For-2019

An axial residual compressive stress due to a manufacturing process is present on the
outer surface of a rotating shaft subjected to bending. Under a given bending load,
the fatigue life of the shaft in the presence of the residual compressive stress is:

(a) Decreased

(b) Increased or decreased, depending on the external bending load[GATE-2008]
(¢) Neither decreased nor increased

(d) Increased

A static load is mounted at the centre of a shaft rotating at uniform angular velocity.

This shaft will be designed for [GATE-2002]
(a) The maximum compressive stress (static) (b) The maximum tensile stress (static)
(c) The maximum bending moment (static) (d) Fatigue loading

Fatigue strength of a rod subjected to cyclic axial force is less than that of a rotating
beam of the same dimensions subjected to steady lateral force because

(a) Axial stiffness is less than bending stiffness [GATE-1992]

(b)  Of absence of centrifugal effects in the rod
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(¢) The number of discontinuities vulnerable to fatigue are more in the rod
(d) At a particular time the rod has only one type of stress whereas the beam has both the
tensile and compressive stresses.

Relation between the Elastic Modulii

GATE-7. The number of independent elastic constants required to define the stress-strain
relationship for an isotropic elastic solid is ........ [GATE-2014]
GATE-7(i).A rod of length L and diameter D is subjected to a tensile load P. Which of the
following is sufficient to calculate the resulting change in diameter?
(a) Young's modulus (b) Shear modulus [GATE-2008]
(c) Poisson's ratio (d)Both Young's modulus and shear modulus

GATE-T7ii. If the Poisson’s ratio of an elastic material is 0.4, the ratio of modulus ofrigidity to

Young’s modulus is ....... [GATE-2014]
GATE-8. In terms of Poisson's ratio (n) the ratio of Young's Modulus (E) to Shear Modulus (G)
of elastic materials is [GATE-2004]
1 1
(a) 2(1+ ) (b)2(1—- u) (C)E(1+ ) (d) 5(1—;1)
GATE-9. The relationship between Young's modulus (E), Bulk modulus (K) and Poisson's ratio
(n) is given by: [GATE-2002]
@E = 3K (1-2u) (b) K = 3E (1-2u)
© E = 3K (1-x) @ K = 3E (1-pu)
GATE-9(i) For an isotropic material, the relationship between the Young’s modulus (E), shear
modulus (G) and Poisson’s ratio (u)is given by [CE: GATE-2007; PI:GATE-2014]
E G E E
(@G=c-—— (b)) E=———()G= (d G=—r—
21+ ) 21+ ) T+ 2(1 - 2w)

GATE-10. A rod is subjected to a uni-axial load within linear elastic limit. When the change in
the stress is 200 MPa, the change in the strain is 0.001. If the Poisson’s ratio of the rod
is 0.3, the modulus of rigidity (in GPa) is [GATE-2015]

Stresses in compound strut

GATE-11. The figure below shows a steel rod of 25 mm? cross sectional area. It is loaded at four

points, K, L, M and N. [GATE-2004, IES 1995, 1997, 1998]
100 NJ K Ly 250N 200 N - Ne 50N
500 mm 400 mm
- =
1700 mm

Assume Esieel = 200 GPa. The total change in length of the rod due to loading is:

()1 pm (b) -10 pm (c) 16 pm (d) -20 pm
GATE-12. A bar having a cross-sectional area of 700mm?2 is subjected to axial loads at the
positions indicated. The value of stress in the segment QR is: [GATE-2006]
63 kN 35 kN 49 kN 21 kN
+— - — —
P Q R S
(a) 40 MPa (b) 50 MPa (c) 70 MPa (d) 120 MPa
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GATE-13. A horizontal bar with a constant cross-section is subjected to loading as shown in the

o

figure. The Young’sI moduli for the sections AB and BC are 3E and E, respectively.

=

=

T A B c

3

i‘%

B

N 3E L g _F,

3

N

N

N L L L ]
I 1

[GATE-2016]
For the deflection at C to be zero, the ratio P/F is

GATE-13a. A bimetallic cylindrical bar of cross sectional area 1 m2 is made by bonding Steel

(Young's modulus = 210 GPa) and Aluminium (Young's modulus = 70 GPa) as
shown in the figure. To maintain tensile axial strain of magnitude 10-6 Steel bar
and compressive axial strain of magnitude 10-6 Aluminum bar, the magnitude of

the required force P (in KN) along the indicated direction is [GATE-2018]
2 gL/ 22— ]2 2
@ (M)
D D
e
= Steel Aluminium =
o A
C perfectly bonded interface <
(a) 70 (b) 140 (c) 210 (d) 280
GATE-14. A rigid bar is suspended by three rods made of the 1\ b

same material as shown in the figure. The area and
length of the central rod are 3A and L, respectively
while that of the two outer rods are 2A and 2L,
respectively. If a downward force of 50 kN is
applied to the rigid bar, the forces in the central
and each of the outer rods will be

(a) 16.67 kN each (b) 30 kN and 15 kN

(¢) 30 kN and 10 kN (d) 21.4 kN and 14.3 kN

50 kN
[CE: GATE-2007]

Thermal Effect

GATE-15.

GATE-16.

GATE-17.

A uniform, slender cylindrical rod is made of a homogeneous and isotropic material.
The rod rests on a frictionless surface. The rod is heated uniformly. If the radial and
longitudinal thermal stresses are represented by o and o, respectively, then

[GATE-2005]
(@)o,=0,0,=0 (b)o, #0,0,=0 (c)o,=0,0,#0 (d)o,#0,0,#0

A solid steel cube constrained on all six faces is heated so that the
temperature rises uniformly byAT. If the thermal coefficient of the material is
a, Young’s modulus is £ and the Poisson’s ratiois v, the thermal stress
developed in the cube due to heating is
(a)_w (b)_w (C)_M [GATE-2012]
(1-2v) (1-2v) (1-2v)

A metal bar of length 100 mm is inserted between two rigid supports and its
temperature is increased by 10° C. If the coefficient of thermal expansion is

12x10°° per °C and the Young’s modulus is 2 x10° MPa, the stress in the bar is
(a) zero (b) 12 MPa (c) 24 Mpa (d) 2400 MPa [CE: GATE-2007]
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GATE-18. A 200 mm long, stress free rod at room temperature is held between two immovable
rigid walls. The temperature of the rod is uniformly raised by 250°C. If the Young’s
modulus and coefficient of thermal expansion are 200 GPaand 1x107°/°C,

respectively, the magnitude of the longitudinal stress (in MPa) developed in the rod
1S veeveerrneennns [GATE-2014]

GATE-19. A circular rod of length ‘L’ and area of cross-section ‘A’ has a modulus of elasticity ‘E’
and coefficient of thermal expansion 'a'.One end of the rod is fixed and other end is
free. If the temperature of the rod is increased by AT, then [GATE-2014]

(a) stress developed in the rod is E a AT and strain developed in the rod is o AT
(b) both stress and strain developed in the rod are zero
(c) stress developed in the rod is zero and strain developed in the rod is a AT

(d) stress developed in the rod is E o AT and strain developed in the rod is zero

GATE-20. A steel cube, with all faces free to deform, has Young’s modulus, E, Poisson’s ratio, v,
and coefficient of thermal expansion, a. The pressure (hydrostatic stress) developed

within the cube, when it is subjected to a uniform increase in temperature, AT, is
given by [GATE-2014]
(@0 ) a(ATE © _WATE 2 oau(ATE

1-2v 1-2v 3(1 - 2v)

~

GATE-20a.A circular metallic rod of length 250 mm is placed between two rigid immovable walls
as shown in the figure. The rod is in perfect contact with the wall on the left side and
there is a gap of 0.2 mm between the rod and the wall on the right side. If the
temperature of the rod is increased by 200°C, the axial stress developed in the rod is

MPa. [GATE-2016]
Young’s modulus of the material of the rod is 200 GPa and the coefficient of thermal
expansion is 10-°per°C.

250 mm
|4— 0.2 mm

GATE-20b.A steel bar is held by two fixed supports as shown in the figure and is subjected to an
increase oftemperature AT=100°C. If the coefficient of thermal expansion and
Young's modulus of elasticityof steel are 11x10-6/°C and 200 GPa, respectively, the
magnitude of thermal stre_/gs (in MPa)induced in the bar is . [GATE-2017]

MAN\

DI\

£
GATE-20c.A horizamtal bar, fixed at one end (x = 0), has a length of 1 m, and cross-sectional area
0of100 mm?2.Its elastic modulus varies along its length as given by E(x) = 100 ex GPa,
where x isthe length coordinate (in m) along the axis of the bar. An axial tensile load
of 10 kN is applied atthe free end (x = 1). The axial displacement of the free end is
mm. [GATE-2017]

Fatigue, Creep

GATE-21. The creep strains are [CE: GATE-2013]
(a) caused due to dead loads only (b) caused due to live loads only
(c) caused due to cyclic loads only (d) independent of loads
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Tensile Test
GATE-22. The stress-strain curve for mild steel is shown in the figure given below. Choose the
[GATE-2014]
Description of the point

correct option referring to both figure and table.
Point on the graph
1. Upper Yield Point

&
T P
Q 2. Ultimate Tensile Strength
R 3. Proportionality Limit
= [ §) S 4. Elastic Limit
E T 5. Lower Yield Point
H U 6. Failure
& B
D
2 Q
o
H
m
P B
Strain e (%)
P Q R S T U P Q R S T U
(a) 1 2 3 4 5 6(b) 3 1 4 2 6 5
(o) 3 4 1 5 2 6(d) 4 1 5 2 3 6
GATE-22a. In the engineering stress-strain curve for mild steel, the Ultimate Tensile
Strength(UTS) refers to [GATE-2017]
(a) Yield stress (b) Proportional limit
(c) Maximum Stress (d) Fracture stress
[PI: GATE-2016]

GATE-22b. The elastic modulus of a rigid perfectly plastic solid is
(a) 0 (b) 1 (c) 100 (d) infinity
GATE-23. A test specimen is stressed slightly beyond the yield point and then unloaded. Its
yield strength will [GATE-1995]
(a) Decrease (b) Increase
(¢) Remains same (d) Becomes equal to ultimate tensile strength
GATE-23(i).Which one of the following types of stress-strain relationship best describes the
behavior of brittle materials, such as ceramics and thermosetting plastics,
[GATE-2015]

o = stress; ¢ = strain
(A . —
* _I I|'— l:l‘B":I r-----___ s
] |
G I|I (8] III
|II |II
II . III
g : z »>
F 3
) ]
* o) |,
|
o gl
- |III
E g ' >
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GATE-23a. In alinearly hardening plastic material, the true stress beyond initial yielding

GATE-24.

GATE-25.

(a) increases linearly with the true strain [GATE-2018]
(b) decreases linearly with the true strain
(c) first increases linearly and then decreases linearly with the true strain

(d) remain constant

The flow stress (in MPa) of a material is given by o =500s"! where ¢ is true strain.
The Young’s modulus of elasticity of the material is 200 GPa. A block of thickness 100
mm made of this material is compressed to 95 mm thickness and then the load is
removed. The final dimension of the block (in mm) is [GATE-2015]

The strain hardening exponent n of stainless steel SS304 with distinct yield and UTS
values undergoing plastic deformation is [GATE-2015]

(an<0 (b) n =0 (c)0<n<1 dn=1

GATE-26.

Under repeated loading a S
material has the stress-strain
curve shown in figure, which of
the following statements is
true?
(a) The smaller the shaded area,
the better the material damping R
(b) The larger the shaded area, the >
better the material damping p
(c) Material damping 1s an
independent material property
and does not depend on this

curve
(d) None of these [GATE-1999]

GATE-27. Pre-tensioning of a bolted joint is used to [GATE-2018]

(a) strain harden the bolt head
(b) decrease stiffness of the bolted joint
(c) increase stiffness of the bolted joint

(d) prevent yielding of the thread root

Previous 25-Years IES Questions

Stress in a bar due to self-weight

IES-1.

IES-2.

A solid uniform metal bar of diameter D and length L is hanging vertically from its
upper end. The elongation of the bar due to self weight is: [TES-2005]

(a) Proportional to L and inversely proportional to D2

(b)  Proportional to L2 and inversely proportional to D2

(¢)  Proportional of L but independent of D

(d)  Proportional of L2 but independent of D

The deformation of a bar under its own weight as compared to that when subjected
to a direct axial load equal to its own weight will be: [TIES-1998]
(a) The same (b) One-fourth (c) Half (d) Double
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IES-3. A rigid beam of negligible weight is LLLLLLIII]
supported in a horizontal position by
two rods of steel and aluminum, 2 m
and 1 m long having values of cross -
sectional areas 1 cm? and 2 cm? and E of _ FESSYFSENNA

200 GPa and 100 GPa respectively. A o
load P is applied as shown in the figure m 1m
Steel Aluminium
If the rigid beam is to remain horizontal
then
(a) The forces on both sides should
be equal | Rigid Beam:
(b) The force on aluminum rod . P
should be twice the force on steel g
() The force on the steel rod should [1ES-2002]
be twice the force on aluminum
(d) The force P must be applied at

the centre of the beam

IES-3a. A rigid beam of negligible weight, is supported in a horizontal position by two
rods of steel and aluminium, 2 m and 1 m long, having values of cross-sectional areas
100 mm2and 200 mm?2, and Young's modulus of 200 GPa and 100 GPa, respectively. A
load P is applied as shown in the figure below: [TES-2018]

—_—

2 m | Steel A
1 m | Aluminium

[ ]
Rigid beam l
P

If the rigid beam is to remain horizontal, then
(a) the force P must be applied at the centre of the beam
(b) the force on the steel rod should be twice the force on the aluminium rod
(c¢) the force on the aluminium rod should be twice the force on the steel-rod
(d) the forces on both the rods should be equal

Bar of uniform strength

IES-4. Which one of the following statements is correct? [TES 2007]
A beam is said to be of uniform strength, if
(a) The bending moment is the same throughout the beam
(b)  The shear stress is the same throughout the beam
(¢)  The deflection is the same throughout the beam
(d) The bending stress is the same at every section along its longitudinal axis

IES-5. Which one of the following statements is correct? [TES-2006]
Beams of uniform strength vary in section such that
(a) bending moment remains constant (b) deflection remains constant
(c) maximum bending stress remains constant (d) shear force remains constant

IES-6. For bolts of uniform strength, the shank diameter is made equal to [IES-2003]

(a) Major diameter of threads (b) Pitch diameter of threads
(¢) Minor diameter of threads (d) Nominal diameter of threads
IES-7. A bolt of uniform strength can be developed by [TES-1995]
(a) Keeping the core diameter of threads equal to the diameter of unthreaded portion of the
bolt

(b) Keeping the core diameter smaller than the diameter of the unthreaded portion
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(¢) Keeping the nominal diameter of threads equal the diameter of unthreaded portion of the
bolt
(d) One end fixed and the other end free

In a bolt of uniform strength:
(a) Nominal diameter of thread is equal to the diameter of shank of the bolt
(b) Nominal diameter of thread is larger than the diameter of shank of the bolt
(¢) Nominal diameter of thread is less than the diameter of shank of the bolt
(d) Core diameter of threads is equal to the diameter of shank of the bolt.
[IES-2011]

Elongation of a Taper Rod

IES-8.

IES-9.

IES-10.

IES-11.

IES-11(i).

IES-11ii.

Two tapering bars of the same material are subjected to a tensile load P. The lengths
of both the bars are the same. The larger diameter of each of the bars is D. The
diameter of the bar A at its smaller end is D/2 and that of the bar B is D/3. What is the
ratio of elongation of the bar A to that of the bar B? [TIES-2006]
(a)3:2 (b) 2: 3 (©4:9 (d)1:3

A bar of length L tapers uniformly from diameter 1.1 D at one end to 0.9 D at the
other end. The elongation due to axial pull is computed using mean diameter D. What
is the approximate error in computed elongation? [TES-2004]

(a) 10% ®) 5% ) 1% (d) 0.5%

The stretch in a steel rod of circular section, having a length 'l' subjected to a tensile
load' P' and tapering uniformly from a diameter di at one end to a diameter d2 at the

other end, is given [TES-1995]
Pl pl.z pl.z 4pl
d) ——
® JEdd, ® g, © 4Ed, @ Edg,

A tapering bar (diameters of end sections being d: andd: a bar of uniform cross-
section ’d’ have the same length and are subjected the same axial pull. Both the bars
will have the same extension if'd’ is equal to [TES-1998]

@%% s % (@)%

A rod of length [ tapers uniformly from a diameter D at one end to a diameter d at the
other. The Young’s modulus of the material is E. The extension caused by an axial
load P is [TES-2012]
4Pl 4Pl 4Pl 2Pl
(@)

207 —a9E Pz + aE © 7paE Y 7DaE

A rod of length L tapers uniformly from a diameter D at one end to a diameter D/2 at
the other end and is subjected to an axial load P. A second rod of length L. and
uniform diameter D is subjected to same axial load P. Both the rods are of same
material with Young’s modulus of elasticity E. The ratio of extension of the first rod
to that of the second rod [TES-2014]

(a) 4 (b) 3 (c) 2 (1

Poisson’s ratio

IES-12.

In the case of an engineering material under unidirectional stress in the x-direction,
the Poisson's ratio is equal to (symbols have the usual meanings)
[TAS 1994, IES-2000]

(a) 2L ) 2L 02 @2
E O O, &

X X X X
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Which one of the following is correct in respect of Poisson's ratio (v) limits for an
isotropic elastic solid? [TES-2004]

(a) —o<v <o () 1/4<v<1/3 (¢)-1<v<1/2 (d) —-1/2<v<1/2

Match List-I (Elastic properties of an isotropic elastic material) with List-II (Nature
of strain produced) and select the correct answer using the codes given below the

Lists: [TES-1997]
List-I List-IT
A. Young's modulus 1. Shear strain
B. Modulus of rigidity 2. Normal strain
C. Bulk modulus 3. Transverse strain
D. Poisson's ratio 4. Volumetric strain
Codes: A B C D A B C D
(@ 1 2 3 4 b 2 1 3 4
0 2 1 4 3 (d) 1 2 4 3
If the value of Poisson's ratio is zero, then it means that [TES-1994]
(a) The material is rigid.
(b) The material is perfectly plastic.
(¢) There is no longitudinal strain in the material
(d) The longitudinal strain in the material is infinite.
Which of the following is true (u= Poisson's ratio) [IES-1992]
(@ O<u<l/2 M) l<u<0 @l<pu<-1 (d) 0 < << —0

Elasticity and Plasticity

IES-17. If the area of cross-section of a wire is circular and if the radius of this circle
decreases to half its original value due to the stretch of the wire by a load, then the
modulus of elasticity of the wire be: [TES-1993]

(a) One-fourth of its original value (b) Halved (c) Doubled (d) Unaffected

IES-18. The relationship between the Lame’s constant ‘A’, Young’s modulus ‘E’ and the
Poisson’s ratio ‘p’ [TES-1997]
(a)/1=—E” b)i=— EH () 4= B4 (d)2= Ep

(l+,u)(l—2,u) (1+ 2,u)(l—,u) 1+ p (l—,u)

IES-19. Which of the following pairs are correctly matched? [TES-1994]
1. Resilience............... Resistance to deformation.

2. Malleability .............. Shape change.

3. Creep .ceveveeeeenrnnenes Progressive deformation.

4. Plasticity .... ccceennenn.. Permanent deformation.

Select the correct answer using the codes given below:

Codes: (a) 2,3 and 4 (b) 1,2 and 3 (¢)1,2and 4 (d) 1,3 and 4

IES-19a Match List — I with List - IT and select the correct answer using the code given below
thelists: [IES-2011]

List -1 List -II
A. Elasticity 1. Deform non-elastically without fracture
B. Malleability 2. Undergo plastic deformation under tensile load
C. Ductility 3. Undergo plastic deformation under compressive load
D. Plasticity 4. Return to its original shape on unloading
Codes A B C D A B C D
(a) 1 2 3 4 b 4 2 3 1
(©) 1 3 2 4 () 4 3 2 1
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Assertion (A): Plastic deformation is a function of applied stress, temperature and strain rate.
[IES-2010]

Reason (R): Plastic deformation is accompanied by change in both the internal and external
state of the material.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A

(c) A is true but R is false

(d) A is false but R is true

Creep and fatigue

IES-20.

IES-21.

IES-22.

IES-22a.

IES-22b.

IES-23.

IES-24.

What is the phenomenon of progressive extension of the material i.e., strain
increasing with the time at a constant load, called? [TES 2007]
(a) Plasticity (b) Yielding (b) Creeping (d) Breaking

The correct sequence of creep deformation in a creep curve in order of their
elongation is: [TES-2001]

(a) Steady state, transient, accelerated (b) Transient, steady state, accelerated

(c) Transient, accelerated, steady state (d) Accelerated, steady state, transient

The highest stress that a material can withstand for a specified length of time

without excessive deformation is called [TES-1997]
(a) Fatigue strength (b) Endurance strength
(c) Creep strength (d) Creep rupture strength

A transmission shaft subjected to bending loads must be designed on the basis of
(a) Maximum normal stress theory [IES-1996]
(b) Maximum shear stress theory

(c) Maximum normal stress and maximum shear stress theories

(d) Fatigue strength

Endurance limit is of primary concern in the design of a/an [TES-2016]
1. rotating shaft 2. industrial structure

3. column 4. machine base

Which of the above is/are correct?

(a) 1 only (b) 2 only (c) 3 and 4 only (d)1,2,3and 4
Which one of the following features improves the fatigue strength of a metallic
material? [TES-2000]
(a) Increasing the temperature (b) Scratching the surface

(c) Overstressing (d) Under stressing

Consider the following statements: [TES-1993]
For increasing the fatigue strength of welded joints it is necessary to employ

1. Grinding 2. Coating 3. Hammer peening

Of the above statements

(a) 1 and 2 are correct (b) 2 and 3 are correct

(c) 1 and 3 are correct (d) 1, 2 and 3 are correct

Relation between the Elastic Modulii

IES-25.

IES-26.

For a linearly elastic, isotropic and homogeneous material, the number of elastic
constants required to relate stress and strain is:[IAS 1994; IES-1998, CE:GATE-2010]
(a) Two (b) Three (c) Four (d) Six

E, G, K and p represent the elastic modulus, shear modulus, bulk modulus and
Poisson's ratio respectively of a linearly elastic, isotropic and homogeneous material.
To express the stress-strain relations completely for this material, at least[IES-2006]
(a) E, G and p must be known (b) E, K and p must be known

(c) Any two of the four must be known (d) All the four must be known
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An isotropic elastic material is characterized by [TES-2016]

(a) two independent moduli of elasticity along two mutually perpendicular directions

(b) two independent moduli of elasticity along two mutually perpendicular directions
andPoisson’s ratio

(c) a modulus of elasticity, a modulus of rigidity and Poisson’s ratio

(d) any two out of a modulus of elasticity, a modulus of rigidity and Poisson’s ratio

The number of elastic constants for a completely anisotropic elastic material which
follows Hooke's law is: [TES-1999]

(a) 3 (b) 4 (0) 21 (d) 25

What are the materials which show direction dependent properties, called?

(a) Homogeneous materials (b) Viscoelastic materials[IES 2007, IES-2011]

(c) Isotropic materials (d) Anisotropic materials

Measured mechanical properties of material are same in a particular direction at
each point. This property of the material is known as [IES-2016]

(a) isotropy (b) homogeneity (c) orthotropy (d) anisotropy

An orthotropic material, under plane stress condition will have: [TES-2006]
(a) 15 independent elastic constants (b) 4 independent elastic constants

(c) 5 independent elastic constants (d) 9 independent elastic constants

Match List-I (Properties) with List-II (Units) and select the correct answer using the
codes given below the lists: [IES-2001]

List I List IT

A. Dynamic viscosity 1. Pa

B. Kinematic viscosity 2. m2/s

C. Torsional stiffness 3. Ns/m2

D. Modulus of rigidity 4. N/m

Codes: A B C D A B C D
(@) 3 2 4 1 (b) 5 2 4 3
®b) 3 4 2 3 @ 5 4 2 1

Young's modulus of elasticity and Poisson's ratio of a material are 1.25 X105 MPa and
0.34 respectively. The modulus of rigidity of the material is:
[IAS 1994, IES-1995, 2001, 2002, 2007]
(b) 0.4664 x105 Mpa
(d) 0.9469 x105MPa

(a) 0.4025 X105 Mpa
(c) 0.8375 x105 MPa

Consider the following statements:
Modulus of rigidity and bulk modulus of a material are found to be 60 GPa and 140
GPa respectively. Then [TES-2013]

1. Elasticity modulus is nearly 200 GPa
2. Poisson’s ratio is nearly 0.3

3. Elasticity modulus is nearly 158 GPa
4. Poisson’s ratio is nearly 0.25

Which of these statements are correct?
(@) 1 and 3 (b) 2 and 4 (¢) 1 and 4 (d) 2 and 3

The modulus of rigidity and the bulk modulus of a material are found as 70 GPa and
150 GPa respectively. Then [TES-2014]

1. elasticity modulus is 200 GPa

2. Poisson’s ratio is 0.22

3. elasticity modulus is 182 GPa

4. Poisson’s ratio is 0.3

Which of the above statements are correct?
(a) 1 and 2 (b) 1 and 4

(c) 2 and 3 (d) 3 and 4
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IES-31(iii).For a material following Hooke’s law the values of elastic and shear moduli are 3x105

IES-32.

IES-33.

IES-34.

IES-35.

IES-36.

IES-37.

IES-37a.

IES-38.

IES-38(i).

MPa and 1.2x10°> MPa respectively. The value for bulk modulus [TES-2015]
(a) 1.5x10°MPa (b) 2x105MPa (c) 2.5x10°MPa (d) 3x105MPa

In a homogenous, isotropic elastic material, the modulus of elasticity E in terms of G
and K is equal to [TAS-1995, IES - 1992]

( )G+3K 3G+K 9KG 9KG

a

b d
9KG ® ~5kG ©G 13K ST

What is the relationship between the linear elastic properties Young's modulus (E),
rigidity modulus (G) and bulk modulus (K)? [TES-2008]
1 9 3 3 9 1 9 3
a)—=—+— b)=—=—+= C)—=—+
(a) (b) ( )E m

9 1 3
(D= ==+=
E K G E K G E K G

1
G

What is the relationship between the liner elastic properties Young’s modulus (E),
rigidity modulus (G) and bulk modulus (K)? [TES-2009]
KG OKG 9KG 9KG
(a) E= b)) E=— cE= @ E=
OK+G K+G K+3G 3K+G

If E, G and K denote Young's modulus, Modulus of rigidity and Bulk Modulus,
respectively, for an elastic material, then which one of the following can be possibly
true? [IES-2005]

(a) G=2K b)G=E ) K=E dG=K=E

If a material had a modulus of elasticity of 2.1 x 10¢ kgf/cm2 and a modulus of rigidity
of 0.8 x 10¢ kgf/cm? then the approximate value of the Poisson's ratio of the material
would be: [TES-1993]

(a) 0.26 (b) 0.31 (c) 0.47 (d) 0.5

The modulus of elasticity for a material is 200 GN/m? and Poisson's ratio is 0.25.
What is the modulus of rigidity? [IES-2004]
(a) 80 GN/m? (b) 125 GN/m? (c) 250 GN/m? (d) 320 GN/m?

The modulus of rigidity of an elastic material isfound to be 38.5% of the value of its
Young’smodulus. The poisson’s ratio pof the materialis nearly:[IES-2017 (Prelims)]
(a) 0.28 (b) 0.30 (c) 0.33 (d) 0.35

Consider the following statements: [TES-2009]

1. Two-dimensional stresses applied to a thin plate in itsown plane represent the
planestress condition.

2. Under plane stress condition, the strain in the direction perpendicular to the
plane is zero.

3. Normal and shear stresses may occur simultaneously on aplane.

Which of the above statements is /are correct?

(a)1 only (b)1 and 2 (¢)2 and 3 (d)1 and 3

A 16 mm diameter bar elongates by 0.04% under a tensile force of 16 kN. The average
decrease in diameter is found to be 0.01% Then: [IES-2013]

1. E=210 GPa and G =77 GPa

2. E=199 GPaand v=0.25

3. E=199 GPa and v =0.30

4. E =199 GPa and G = 80 GPa

Which of these values are correct?

(@) 3and 4 (b) 2 and 4 (¢) 1and 3 (d) 1 and 4
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IES-38a. A bar produces a lateral strain of magnitude 60 x 10-5mm when subjected to a tensile
stress of magnitude 300 MPa along the axial direction. What is the elastic modulus of
the material if the poisson’s ratio is 0.3? [IES-2017 (Prelims)]

(a) 200 GPa (b) 150 GPa (c) 125 GPa (d) 100 GPa

Stresses in compound strut

IES-39. Eight bolts are to be selected for fixing the cover plate of a cylinder subjected to a
maximum load of 980:-175 kN. If the design stress for the bolt material is 315 N/mm?2,
what is the diameter of each bolt? [TIES-2008]

(a) 10 mm (b) 22 mm (c) 30 mm (d) 36 mm

IES-39a. A tension member of square cross-section of side 10 mm and Young’s modulus E is
replaced by another member of square cross-section of same length but Young’s
modulus E/2. The side of the new square cross-section, required to maintain the same
elongation under the same load, is nearly [TES-2014]

(a) 14 mm (b) 17 mm (c) 8 mm (d) 5 mm

IES-39b. Two steel rods of identical length and material properties are subjected to equal
axialloads. The first rod is solid with diameter d and the second is a hollow one with
externaldiameter D and interned diameter 50% of D. If the two rods experience equal

extensions,the ratio of % [TES-2016]
3 V3 1 1
@3 (b © 3 @
IES-40. For a composite consisting of a bar enclosed inside a tube of another material when

compressed under a load 'w' as a whole through rigid collars at the end of the bar.
The equation of compatibility is given by (suffixes 1 and 2) refer to bar and tube
respectively [TES-1998]

@W,+W, =W ()W, +W, =Const. ()= Vo gy Mo _ W,

AE,  AFE, AE, AFE

IES-40(i). A copper rod of 2 cm diameter is completely encased in a steel tube of inner diameter
2 cm and outer diameter 4 cm. Under an axial load, the stress in the steel tube is 100
N/mm?. If Es=2 Ec, then stress in the copper rod is [TES-2015]
(a) 50N/mm?2 (b)33.33 N/mm?2 (c) 100 N/mm? (d) 300 N/mm?

IES-41. When a composite unit consisting of a steel rod surrounded by a cast iron tube is
subjected to an axial load. [TES-2000]
Assertion (A): The ratio of normal stresses induced in both the materials is equal to
the ratio of Young's moduli of respective materials.
Reason (R): The composite unit of these two materials is firmly fastened together at
the ends to ensure equal deformation in both the materials.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is notthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

IES-42. The figure below shows a steel rod of 25 mm? cross sectional area. It is loaded at four
points, K, L, M and N. [GATE-2004, IES 1995, 1997, 1998]
100NJ PELLIN 200N 1 NeZON o
500 mm 400 mm
1700 mm

Assume Esieel = 200 GPa. The total change in length of the rod due to loading is
(a) 1 pm (b) -10 um (c) 16 pm (d) -20 pm
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A steel rod of cross-sectional area 10 mm? is subjected to loads at points P, Q, R and S
as shown in the figure below: [TES-2016]
400 N
200 N M P L) it e [ S el 101 M
300N
ja— 500 mirm —sejr—— 1000 mm=——=arfa— 500 mm —e-|

If Esteel = 200 GPa, the total change in length of the rod due to loading is

(a) — 5 pm (b) — 10 pm (¢c) — 20 pm (d) — 25 pm
The reactions at the rigid A B
supports at A and B for 1 C L~
the bar loaded as shown ; ::
in the figure are A >10kN V
respectively. - -
(a) 20/3 kN,10/3 kN 7 ¢
(b) 10/3 kN, 20/3 kN ] -
(¢) 5kN, 5 kN 1 1Im 2m é
(d) 6 kN, 4 kN g N g

[IES-2002, IES-2011; IAS-2003]

In the arrangement as shown in the figure, the stepped steel bar ABC is loaded by a
load P. The material has Young’s modulus E = 200 GPa and the two portions. AB and

BC have area of cross section 1cm® and 2cm® respectively. The magnitude of load P

required to fill up the gap of 0.75 mm is: [TES-2013]

A

”

A

” B P C

7 ) 4

-~

-

”

< 1m Dl 1m > Gap 0.75 mm

(a) 10 kN (b) 15 kN (c) 20 kN (d) 25 kN
Which one of the following is correct? [TES-2008]
When a nut is tightened by placing a washer below it, the bolt will be subjected to
(a) Compression only (b) Tension
(c) Shear only (d) Compression and shear

Which of the following stresses are associated with the tightening of nut on a bolt?
[TES-1998]

Tensile stress due to the stretching of bolt

Bending stress due to the bending of bolt

Crushing and shear stresses in threads

Torsional shear stress due to frictional resistance between the nut and the bolt.

Select the correct answer using the codes given below

Codes: (a) 1,2 and 4 (b) 1,2 and 3 (¢)2,3and4 (d)1,3and 4

Ll

Thermal effect

IES-46.

IES-47.

A 100 mm x 5 mm X 5 mm steel bar free to expand is heated from 15°C to 40°C. What

shall be developed? [IES-2008]
(a) Tensile stress (b) Compressive stress (c) Shear stress (d) No stress

Which one of the following statements is correct? [GATE-1995; IES 2007, 2011]
If a material expands freely due to heating, it will develop
(a) Thermal stress  (b) Tensile stress (c) Compressive stress (d) No stress
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IES-48. A cube having each side of length a, is constrained in all directions and is heated
uniformly so that the temperature is raised to T°C. If a is the thermal coefficient of
expansion of the cube material and E the modulus of elasticity, the stress developed

in the cube is: [TIES-2003]
alE oTE alE oTE
(a) (b) ——— (c) d) 77—
(1-27) 2y (1+27)
IES-49. Consider the following statements: [TES-2002]

Thermal stress is induced in a component in general, when
1. A temperature gradient exists in the component
2. The component is free from any restraint
3. Itis restrained to expand or contract freely
Which of the above statements are correct?
(a) 1and 2 (b) 2 and 3 (c) 3 alone (d) 2 alone

IES-49(i). In a body, thermal stress is induced because of the existence of: [IES-2013]
(a) Latent heat (b) Total heat
(¢) Temperature gradient (d) Specific heat

IES-50. A steel rod 10 mm in diameter and 1m long is heated from 20°C to 120°C, E = 200 GPa
and a = 12 x 10-6 per °C. If the rod is not free to expand, the thermal stress developed

is: [IAS-2003, IES-1997, 2000, 2006]
(a) 120 MPa (tensile) (b) 240 MPa (tensile)
(c) 120 MPa (compressive) (d) 240 MPa (compressive)

IES-50a. A circular steel rod of 20 cm? cross-sectional area and 10 m length is heated through
50 °C with ends clamped before heating. Given, E = 200 GPa and coefficient of
thermal expansion, a =10 x 107%/°C, the thrust force generated on the clamp is
(a) 100 kN (b) 150 kN (c) 200 kN (d) 250 kN[IES-2016]

IES-51. A cube with a side length of 1 cm is heated uniformly 1° C above the room
temperature and all the sides are free to expand. What will be the increase in volume

of the cube? (Given coefficient of thermal expansion is a per °C)
(a) 3 a cm3 (b) 2 a cm3 (c) a cm3 (d) zero [TES-2004]

IES-52. A bar of copper and steel form a composite system. [IES-2004, 2012]
They are heated to a temperature of 40 ° C. What type of stress is induced in the
copper bar?
(a) Tensile (b) Compressive (c) Both tensile and compressive (d) Shear

IES-53. a=12.5%10°/°C, E=200GPaIf the rod fitted strongly between the supports as shown

in the figure, is heated, the stress induced in it due to 20°C rise in temperature will
be: [TES-1999]
(a) 0.07945 MPa (b) -0.07945 MPa (c) -0.03972 MPa (d) 0.03972 MPa

k=50kN/m

0.5m N

i !
IES-53a. A steel rod, 2 m long, is held between two walls and heated from 20°C to 60°C. Young’s
modulus and coefficient of linear expansion of the rod material are 200 x 103MPa and
10x10-6/°C respectively. The stress induced in the rod, if walls yield by 0.2 mm, is
(a) 60 MPa tensile (b) 80 MPa tensile [TES-2014]
(c) 80 MPa compressive (d) 60 MPa compressive
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IES-53b. A steel rod 10 m long is at a temperature of 20°C. The rod is heated to a temperatureof
60°C. What is the stress induced in the rod if it is allowed to expand by 4 mm, when E

=200 GPa and a=12 x 10-6/°C? [TES-2016]
(a) 64 MPa (b) 48 MPa (c) 32 MPa (d) 16 MPa
TIES-54. The temperature stress is a function of [TES-1992]

1. Coefficient of linear expansion 2. Temperature rise 3. Modulus of elasticity
The correct answer is:
(a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d1,2and 3

IES-54(i). An aluminium bar of 8 m length and a steel bar of 5 mm longer in length are kept at
30°C. If the ambient temperature is raised gradually, at what temperature the
aluminium bar will elongate 5 mm longer than the steel bar (the linear expansion
coefficients for steel and aluminium are 12 x 10-6/°C and 23 x 10-6/°C respectively?

(a) 50.7°C (b) 69.0°C (c) 1438.7°C (d) 33.7°C [TES-2014]

IES-54(ii). The figure shows a steel piece of diameter 20 mm at A and C, and 10 mm at B. The
lengths of three sections A, B and C are each equal to 20 mm. The piece is held
between two rigid surfaces X and Y. The coefficient of linear expansion a = 1.2 X 10-
5/°C and Young’s Modulus E = 2 X 105 MPa for steel:[IES-2015]
When the temperature of this piece increases by
50°C, the stresses in sections A and B are .
(2)120 MPa and 480 MPa 14 7T | Zd
(b) 60MPa and 240MPa |
(c) 120MPa and 120MPa i |
(d) 60MPa and 120MPa | | I * |

Impact loading

IES-55. Assertion (A): Ductile materials generally absorb more impact loading than a brittle

material [TES-2004]
Reason (R): Ductile materials generally have higher ultimate strength than brittle
materials

(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is notthe correct explanation of A
(¢)  Aistrue but R is false
(d) Aisfalse but R is true
IES-56. Assertion (A): Specimens for impact testing are never notched. [TES-1999]
Reason (R): A notch introduces tri-axial tensile stresses which cause brittle fracture.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but R is true

Tensile Test

IES-57. During tensile-testing of a specimen using a Universal Testing Machine, the
parameters actually measured include [TIES-1996]
(a) True stress and true strain (b) Poisson’s ratio and Young's modulus

(c) Engineering stress and engineering strain  (d) Load and elongation

TIES-58. In a tensile test, near the elastic limit zone [TES-2006]
(a) Tensile stress increases at a faster rate
(b) Tensile stress decreases at a faster rate
(¢) Tensile stress increases in linear proportion to the stress
(d) Tensile stress decreases in linear proportion to the stress
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Match List-I (Types of Tests and Materials) with List-II (Types of Fractures) and
select the correct answer using the codes given below the lists:

List I List-I1 [TES-2002; IAS-2004]
(Types of Tests and Materials) (Types of Fractures)
A. Tensile test on CI 1. Plain fracture on a transverse plane
B. Torsion test on MS 2. Granular helecoidal fracture
C. Tensile test on MS 3. Plain granular at 45° to the axis
D. Torsion test on CI 4. Cup and Cone
5. Granular fracture on a transverse plane

Codes:

A B C D A B C D
(@ 4 2 3 1 (©) 4 1 3 2
(b) 5 1 4 2 (d) 5 2 4 1
Which of the following materials generally exhibits a yield point? [IES-2003]
(a) Cast iron (b) Annealed and hot-rolled mild steel
(c) Soft brass (d) Cold-rolled steel

For most brittle materials, the ultimate strength in compression is much large then
the ultimate strength in tension. The is mainly due to [TES-1992]

(a) Presence of flaws andmicroscopic cracks or cavities

(b) Necking in tension

(c) Severity of tensile stress as compared to compressive stress

(d) Non-linearity of stress-strain diagram

A copper rod 400 mm long is pulled in tension to a length of 401.2 mm by applying a
tensile load of 330 MPa. If the deformation is entirely elastic, the Young’s modulus of

copper is [TES-2012]

(a) 110 GPA (b) 110 MPa (c) 11 GPa (d) 11 MPa

What is the safe static tensile load for a M36 x 4C bolt of mild steel having yield stress

of 280 MPa and a factor of safety 1.5? [IES-2005]

(a) 285 kN (b) 190 kN (c) 142.5 kN (d) 95 kN

Which one of the following properties is more sensitive to increase in strain rate?
[TES-2000]

(a) Yield strength  (b) Proportional limit (c) Elastic limit (d) Tensile strength

Which of the following properties will be themeaningful indicator/indicators of
uniform rateof elongation of a test piece of a structuralmaterial before necking
happens in the testpiece? [TES-2017 Prelims]
1. Ductility

2. Toughness

3. Hardness

Select the correct answer using the code givenbelow:

(a) 1 only (b) 2 only (c) 3 only (d)1,2and 3

A steel hub of 100 mm internal diameter and uniform thickness of 10 mm was heated
to a temperature of 300°C to shrink-fit it on a shaft. On cooling, a crack developed
parallel to the direction of the length of the hub. Consider the following factors in

this regard: [TES-1994]

1. Tensile hoop stress 2. Tensile radial stress

3. Compressive hoop stress 4. Compressive radial stress

The cause of failure is attributable to

(a) 1 alone (b) 1 and 3 (¢)1,2and 4 (d) 2,3 and 4

If failure in shear along 45° planes is to be avoided, then a material subjected to
uniaxial tension should have its shear strength equal to at least [IES-1994]

(a) Tensile strength (b) Compressive strength

(c) Half the difference between the tensile and compressive strengths.
(d) Half the tensile strength.
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Select the proper sequence [IES-1992]
1. Proportional Limit 2. Elastic limit 3. Yielding 4. Failure
(@)2,3,1,4 (b)2,1,3,4 ©1,3,2,4 (1,234
Elastic limit of cast iron as compared to its ultimate breaking strength is
(a) Half (b) Double [TES-2012]
(c) Approximately (d) None of the above

Statement (I): Steel reinforcing bars are used in reinforced cement concrete.

Statement (IT): Concrete is weak in compression. [IES-2012]

(a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct
explanation of Statement (I)

(b) Both Statement (I) and Statement (II) are individually true but Statement (II) is not the
correct explanation of Statement (I)

(c) Statement (I) is true but Statement (II) is false

(d) Statement (I) is false but Statement (II) is true

Statement (I): Cast iron is good in compression.

Statement (II): It is extensively used in members of truss. [IES-2014]

(2)Both statement (I) and (II) are individually correct and statement (II) is the correct
explanation of statement (I)

(b)Both statement (I) and (II) are individually correct and statement (II) is not the correct
explanation of statement (I)

(c)Statement (I) is true but statement (II) is false.

(d)Statement (I) is false but statement (II) is true.

Statement (I): The Bauschinger effect is observed in tension test of mild steel
specimen due to loss of mechanical energy during local yielding.

Statement (II): The Bauschinger effect is a function of section modulus of specimen
under test. [TES-2015]

(a) Both statement (I) and (II) are individually correct and statement (II) is the correct
explanation of statement (I)

(b) Both statement (I) and (II) are individually correct and statement (II) is not the correct
explanation of statement (I)

(c) Statement (I) is true but statement (II) is false.

(d) Statement (I) is false but statement (II) is true.

A 10 mm diameter bar of mild steel of elasticmodulus 200x109 Pa is subjected to a
tensileload of 50000 N, taking it just beyond its yieldpoint. The elastic recovery of
strain that wouldoccur upon removal of tensile load will be [IES-2017 Prelims]

(a) 1.38x 103 (b) 2.68 x 103 (c) 3.18 x 103 (d) 4.62 x10-3

Previous 25-Years IAS Questions

Stress in a bar due to self-weight

TIAS-1.

IAS-2.

A heavy uniform rod of length 'L' and material density '6' is hung vertically with its
top end rigidly fixed. How is the total elongation of the bar under its own weight

expressed? [IAS-2007]
25°g Sl%g Sl%g Sl%g
b d
(a) E (b) E (©) J2E (d) oF

A rod of length 'l’ and cross-section area ‘A’ rotates about an axis passing through one
end of the rod. The extension produced in the rod due to centrifugal forces is (w is
the weight of the rod per unit length and @ is the angular velocity of rotation of the
rod). [TAS 1994]
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aowl? wi® wi® 3gE
@ ®) < ©2 @ s
gE 3gE gE Wl

Elongation of a Taper Rod

IAS-3. A rod of length, ":" tapers uniformly from a diameter "D:' to a diameter "D:' and
carries an axial tensile load of "P". The extension of the rod is (E represents the
modulus of elasticity of the material of the rod) [IAS-1996]

4P1 4PE1 7EP1 7Pl
@ ——— (b) © @) ———
7ED,D, 7D, D, 4D,D, 4ED,D,

Poisson’s ratio

IAS-4. In the case of an engineering material under unidirectional stress in the x-direction,
the Poisson's ratio is equal to (symbols have the usual meanings)
[TAS 1994, IES-2000]

& & o} O
(a) = (b) —- ©— d —+
8)( O-X G)( gX
TIAS-5. Assertion (A): Poisson's ratio of a material is a measure of its ductility.

Reason (R): For every linear strain in the direction of force, Poisson's ratio of the

material gives the lateral strain in directions perpendicular to the direction of force.
[IAS-1999]

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is notthe correct explanation of A

(¢) Aistrue but R is false

(d) Aisfalse but R is true

TIAS-6. Assertion (A): Poisson's ratio is a measure of the lateral strain in all direction
perpendicular to and in terms of the linear strain. [IAS-1997]
Reason (R): The nature of lateral strain in a uni-axially loaded bar is opposite to that
of the linear strain.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is notthe correct explanation of A
(¢) AistruebutRis false
(d) Aisfalse but R is true

Elasticity and Plasticity

TIAS-7. A weight falls on a plunger fitted in a container filled with oil thereby producing a
pressure of 1.5 N/mm? in the oil. The Bulk Modulus of oil is 2800 N/mm2. Given this
situation, the volumetric compressive strain produced in the oil will be:[IAS-1997]

() 400 x 106 (b) 800 x 106 (c) 268 x 106 (d) 535 x 106

Relation between the Elastic Modulii

IAS-8. For a linearly elastic, isotropic and homogeneous material, the number of elastic
constants required to relate stress and strain is: [TAS 1994; IES-1998]
(a) Two (b) Three (c) Four (d) Six

IAS-9. The independent elastic constants for a homogenous and isotropic material are
@E GK, v (b) E, G, K © E,G,v DE,G [IAS-1995]
IAS-10. The unit of elastic modulus is the same as those of [TAS 1994]
(a)Stress, shear modulus and pressure (b) Strain, shear modulus and force
(¢) Shear modulus, stress and force (d) Stress, strain and pressure.
IAS-11. Young's modulus of elasticity and Poisson's ratio of a material are 1.25 x 105 MPa and
0.34 respectively. The modulus of rigidity of the material is:
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[IAS 1994, IES-1995, 2001, 2002, 2007]
(a) 0.4025 x 105 MPa (b) 0.4664 x 105 MPa
(c) 0.8375 x 105 MPa (d) 0.9469 x 10> MPa
The Young's modulus of elasticity of a material is 2.5 times its modulus of rigidity.The
Posson's ratio for the material will be: [TAS-1997]
(a) 0.25 (b) 0.33 (c) 0.50 (d) 0.75
In a homogenous, isotropic elastic material, the modulus of elasticity E in terms of G
and K is equal to [TAS-1995, IES - 1992]
G +3K 3G +K 9KG 9KG
(a) (b) (c) (d)
9KG 9KG G+3K K+3G

The Elastic Constants E and K are related as (u is the Poisson’s ratio) [IAS-1996]
@E=2k(1-24) by E=3k (1-24) ©E=38k(1+ ) (DE=2KAQ+2u4)

For an isotropic, homogeneous and linearly elastic material, which obeys Hooke's
law, the number of independent elastic constant is: [IAS-2000]
(a) 1 (b) 2 ()3 (d) 6

The moduli of elasticity and rigidity of a material are 200 GPa and 80 GPa,
respectively. What is the value of the Poisson's ratio of the material? [IAS-2007]
(2) 0-30 (b) 026 (c) 025 (d) 024

Stresses in compound strut

IAS-17.

The reactions at the rigid supports at A and B for the bar loaded as shown in the

figure are respectively. [IES-2002; IAS-2003]
(a) 20/3 kN,10/3 Kn (b) 10/3 kN, 20/3 kN (¢) 5 kN, 5 kN (d) 6 kN, 4 kN
A4 c B
~
g —————> 10kN [0
] L~
4 #
Im Z2m #
¢ ’

Thermal effect

TAS-18.

IAS-19.

TAS-20.

A steel rod 10 mm in diameter and 1m long is heated from 20°C to 120°C, E = 200 GPa
and a =12 x 10-¢ per °C. If the rod is not free to expand, the thermal stress developed

is: [IAS-2003, TES-1997, 2000, 2006]
(a) 120 MPa (tensile) (b) 240 MPa (tensile)
(c) 120 MPa (compressive) (d) 240 MPa (compressive)

A. steel rod of diameter 1 ecm and 1 m long is heated from 20°C to 120°C. Its
a=12x10"°/K and E=200 GN/m?2. If the rod is free to expand, the thermal stress

developed in it is: [TAS-2002]
(a) 12 x 104 N/m?2 (b) 240 kN/m?2 (c) zero (d) infinity
Which one of the following pairs is NOT correctly matched? [TAS-1999]

(E = Young's modulus, a = Coefficient of linear expansion, T = Temperature rise, A =
Area of cross-section, I= Original length)

(a) Temperature strain with permitted expansion 6 ... (aTl=9)
(b) Temperature stress alE
(c) Temperature thrust aTEA
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E(aTl-0)
I

(d) Temperature stress with permitted expansion & ...

Impact loading

IAS-21. Match List I with List IT and select the correct answer using the codes given below
the lists: [TAS-1995]
List I (Property) List II (Testing Machine)
A. Tensile strength 1. Rotating Bending Machine
B. Impact strength 2. Three-Point Loading Machine
C. Bending strength 3. Universal Testing Machine
D. Fatigue strength 4. Izod Testing Machine
Codes: A B C D A B C D
(a) 4 3 2 1 (b) 3 2 1 4
) 2 1 4 3 (d) 3 4 2 1
Tensile Test
IAS-22. A mild steel specimen is tested in tension up to fracture in a Universal Testing
Machine. Which of the following mechanical properties of the material can be
evaluated from such a test? [IAS-2007]
1. Modulus of elasticity 2. Yield stress 3. Ductility
4. Tensile strength 5. Modulus of rigidity
Select the correct answer using the code given below:
(a)1,3,5and 6 (b) 2, 3,4 and 6 () 1,2,5and 6 (d)1,2,3and 4
TAS-23. In a simple tension test, Hooke's law is valid upto the [IAS-1998]
(a) Elastic limit (b) Limit of proportionality (c) Ultimate stress  (d)Breaking point
IAS-24. Lueder' lines on steel specimen under simple tension test is a direct indication of
yielding of material due to slip along the plane [TAS-1997]
(a) Of maximum principal stress (b) Off maximum shear
(c) Of loading (d) Perpendicular to the direction of loading
IAS-25. The percentage elongation of a material as obtained from static tension test depends
upon the [IAS-1998]
(a) Diameter of the test specimen (b) Gauge length of the specimen
(c) Nature of end-grips of the testing machine (d) Geometry of the test specimen
IAS-26. Match List-I (Types of Tests and Materials) with List-II (Types of Fractures) and
select the correct answer using the codes given below the lists:
List I List-I1 [TES-2002; IAS-2004]
(Types of Tests and Materials) (Types of Fractures)
A. Tensile test on CI 1. Plain fracture on a transverse plane
B. Torsion test on MS 2. Granular helecoidal fracture
C. Tensile test on MS 3. Plain granular at 45° to the axis
D. Torsion test on CI 4. Cup and Cone
5. Granular fracture on a transverse plane
Codes: A B C D A B C D
(a) 4 2 3 1 (c) 4 1 3 2
®) 5 1 4 2 @ 5 2 4 1
TAS-27. Assertion (A): For a ductile material stress-strain curve is a straight line up to the

yield point. [TAS-2003]
Reason (R): The material follows Hooke's law up to the point of proportionality.
(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is notthe correct explanation of A

(c) Aistrue but R is false

(d) Aisfalse but R is true
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IAS-28. Assertion (A): Stress-strain curves for brittle material do not exhibit yield point.
[IAS-1996]
Reason (R): Brittle materials fail without yielding.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) AistruebutR is false
(d) Aisfalse but R is true

IAS-29. Match List I (Materials) with List II (Stress-Strain curves) and select the correct
answer using the codes given below the Lists: [IAS-2001]
ListI List IT

A Mild Steel L

B. Pure copper

C. Cast iron

DY

"]
D. Pure ahmminium 4
e
Codes: A B C D A B C D
@ 3 1 4 1 ® 3 9 4 9
© 2 4 3 1 @ 4 1 3 9

IAS-30. The stress-strain curve of an ideal elastic strain hardening material will be as

| 1 |

o F a

§—w §F—w §F—w : — »
(@) (b) ©) @
[IAS-1998]
IAS-31. An idealised stress-strain curve for a perfectly plastic material is given by
al (e o a
(@ —
® © (d |
£ > £ £
[IAS-1996]
IAS-32. Match List I with List II and select the correct answer using the codes given below
the Lists: [IAS-2002]
List I List II
A. Ultimate strength 1. Internal structure
B. Natural strain 2. Change of length per unit instantaneous length
C. Conventional strain 3. Change of length per unit gauge length
D. Stress 4. Load per unit area
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Codes: A B C D A B C D
(a 1 2 3 4 (b) 4 3 2 1
(c) 1 3 2 4 (d) 4 2 3 1
IAS-33. What is the cause of failure of a short MS strut under an axial load? [IAS-2007]
(a) Fracture stress (b) Shear stress (c) Buckling (d) Yielding
IAS-34. Match List I with List IT and select the correct answer using the codes given the lists:
[IAS-1995]
List I List IT
A. Rigid-Perfectly plastic
1 o
E
B. Elastic-Perfectly plastic 9 o
€
ol
C. Rigid-Strain hardening | E—
3.
“E

D. Linearly elastic

Codes: A B C D A B C D
(@ 3 1 4 2 () 1 3 2 4
© 3 1 2 4 @ 1 3 4 2
IAS-35. Which one of the following materials is highly elastic? [IAS-1995]
(a) Rubber (b) Brass (c) Steel (d) Glass

TAS-36. Assertion (A): Hooke's law is the constitutive law for a linear elastic material.
Reason (R) Formulation of the theory of elasticity requires the hypothesis that there
exists a unique unstressed state of the body, to which the body returns whenever all
the forces are removed. [TAS-2002]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is notthe correct explanation of A
(¢) Aistrue but R is false
(d) Aisfalse but Ris true

TAS-37. Consider the following statements: [IAS-2002]
1. There are only two independent elastic constants.
2. Elastic constants are different in orthogonal directions.
3. Material properties are same everywhere.
4. Elastic constants are same in all loading directions.

5. The material has ability to withstand shock loading.
Which of the above statements are true for a linearly elastic, homogeneous and
isotropic material?

(@) 1,3,4and 5 (b) 2, 3 and 4 (¢) 1,3 and 4 (d) 2 and 5
IAS-38. Which one of the following pairs is NOT correctly matched? [IAS-1999]
(a) Uniformly distributed stress .... Force passed through the centroid of the
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cross-section

(b) Elastic deformation Work done by external forces during

deformation is dissipated fully as heat
(c) Potential energy of strain Body is in a state of elastic deformation
(d) Hooke's law Relation between stress and strain

IAS-39. A tensile bar is stressed to 250 N/mm?2 which is beyond its elastic limit. At this stage
the strain produced in the bar is observed to be 0.0014. If the modulus of elasticity of
the material of the bar is 205000 N/mm?2 then the elastic component of the strain is
very close to [TAS-1997]

(a) 0.0004 (b) 0.0002 (c) 0.0001 (d) 0.00005

OBJECTIVE ANSWERS

GATE-1. Ans. (¢) 5L = % or 6L« é [AsP,L and A is same]

sL)
(L) asea _ Eqi _ 100 - (dL), > (L)
(6L)C.I EMS 206 ¢ "
GATE-1(i) Ans. (a)

PL_ (200x1000)x2

GATE-2. Ans. (a)oL=—= smM=1.25mm
AE (0.04x 0.04) x200x10

GATE-2a. Ans. 0.81 mm (Range given 0.80 to 0.82 mm)

5:%=(Ej£=o—x£=270MPaxﬂ=O.81mm

AJE E 100x10° MPa
50 x1000
50 x 50

250 %1000

The stress in upper bar = =—————— =25 N/ mm”
100 x 100

GATE-2b. Ans. (c)The stress in lower bar = =20 N/ mm?

Thus the maximum tensile anywhere in the bar is 25 N/ mm?

GATE-2¢. Ans. (d)There is no eceentricity between the XY segment and the load. So, it is subjected to
axial force only. But the curved YZ segment is subjected to axial force, shear force and bending

moment.
~¢y _~(-0.015/50) _ o
0.5/500

GATE-2d. Ans. 0.29 to 0.31 Poisson'sratio () =

X

GATE-3. Ans. (b)
€r=1In(1+€,) =In(1 + 0.35) = 0.3
But at UTS n =€

g=kg"

or = 0,(1+0.3) = 400(1 + 0.35) Tensile strengh (necking)
= 540 MPa
O'f =K E?

540 = K(0.3)%3

True stress 5

True strain(g)

GATE-4. Ans. (d)
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— —-1 m,..,.,’-— Tensile stress

-
Bend

Compressive —-—J ~Frnax l—d—
stress

A cantilever-loaded rotating beam, showing the normal distribution of surface stresses. (i.e.,
tension at the top and compression at the bottom)

l=+— Residual stress

-p-iaﬁ*
S +
Plastic
A = - M= daformation -
in surtace

e jorl—

The residual compressive stresses induced.

Net stress pattern obtained when loading a surface treated beam. The reduced magnitude of the
tensile stresses contributes to increased fatigue life.

GATE-5. Ans. (d)

GATE-6. Ans. (d)

GATE-7. Ans. 1.9 to 2.1 Actual answer is 2

GATE-7(i). Ans. (d) For longitudinal strain we need Young's modulus and for calculating transverse strain
we need Poisson's ratio. We may calculate Poisson's ratio from E = 2G(1+ x) for that we need
Shear modulus.

GATE-7(ii) Ans.0.35 t0 0.36 Use E=2G (1 +pn), G/E =0.35714

GATE-8. Ans. (a)

GATE-9. Ans. (a) Remember E=2G(1+pu)=3K(1-2u)= IKG

3K+G
GATE-9(i) Ans.(a)
GATE-10. Answer: 77
Modulus of rigidity (G)
o=E¢
or200=E x 0.001
200

Or E=-—""=200x10> MPa = 200GPa
0.001

E=2G0+u) or G=

E 200
20+u) 2(1+0.3)
GATE-11. Ans. (b) First draw FBD of all parts separately then

100 N 50N S0N

.._I |_IEDN 15%’ |‘15_0N -

=77GPa

Total change in length = Z %

GATE-12. Ans. (a)
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63kN B3kN 28kN 28kN 21kM 21kMN
= Q Q R R S
F.B.D
Ogn = o = 28090 \1p4 - 40MPa
A 700
GATE-13. Ans. 4.0 (Range given 3.9 to 4.1)
A B C
P-F P-F F F
E— 3E E I
(P-F)L FL P
O,.(Comp.) =0..(Tensile or ——=—— Or —=40
w0 (COMP.) = b (Tensile) Ax3E  AE F

GATE-13a. Ans. (d)

R R PR P-R
-=-| F [—= =

R .
=——=10" (Tensile
Eq AE. (T )
R=10"°x1x210x10° N =210 kN
and &, PR 10 (Compressive)

Al

6 9
P_210= 107 x1x70x10

1000
P =280kN
GATE-14. Ans. (c)If the force in each of outer rods is P, and force in the central rod is P,, then

2P, +P, =50 ()

Also, the elongation of central rod and outer rods is same.
PL, P,L,
AE AR

- P, x 2L _ P, xL

2A 3A
= P, =3P,

...(00)
Solving (i) and (ii) we get
P, =30kN and P, =10kN

GATE-15.Ans.(a) Thermal stress will develop only when you prevent the material to contrast/elongate. As
here it is free no thermal stress will develop.

GATE-16. Ans. (a) AV _p _ @ (1+aT) —a°
\Y; K at

or E — 34T

3(1-20)
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a(AT)E a(AT)E . _
Or p=——— orstress(o) = —p = ————— i.e.compressive
(1—20) (1—21))

Same question was asked in IES-2003 please refer question no. IES-48 in this chapter.
GATE-17. Ans. (c)

Temperature stress = o TE=12x10° x10 x 2 x10° = 24 MPa
GATE-18.Ans. 499 to 501 0 = aAtE =(1x107°)x 250 (200x10° ) =500x10° Pa = 500 MPa

GATE-19.Ans.(c)
GATE-20.Ans. (a)
GATE-20a.Ans. 240 MPa (Compressive) Range given (239.9 MPa to 240.1 MPa)
PL L
LoAT —-§=—— or LaAT-5=2=
AE E

oro =aATE _%:10—5 x 200x 200x10° —%x 200x10°

GATE-20b. Ans. 220 Range (218 to 222)
GATE-20c. Ans. Range (1.70 to 1.72)

GATE-21. Ans. (a) Creep is due to constant load but depends on time.

GATE-22.Ans. (¢)
GATE-22a. Ans. (c)

GATE-22b. Ans. (d) E = %, In the plastic zone A¢ = 0 , Therefore E = Infinite
&
GATE-23. Ans. (b)

GATE-23a. Ans. (a)

GATE-23(i). Ans. (d)
GATE-24. Ans. 95.19
100

True strain = In—=0.5129
95
o =500x(0.5129)"! =371.51
Upto elastic limits using Hooke's Law
371.51x10° x100

Al
Al =0.18575mm (considering this for elastic recovery)

oxl

E= or 200x10° =

This is elastic component and after release of the compressive load this
amount of recovery takes place.
This will be added to 95mm. Therefore, final dimension = 95.18575mm

GATE-25.Ans. (c)
GATE-26. Ans. (b)
GATE-27. Ans.(c) Pretension increase stiffness of system.
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2
xLx pxgxL
IES-1. Ans. (d) 6-—D- __4 or 5 @ L2
2AE 7zD?
2x xE

IES-2. Ans. (¢)

IES-3. Ans. (b)

IES-3a.Ans. (c) After application of load rigid beam will remain horizontal, therefore
elongation of steel and aluminium will be same.

IES-4. Ans. (d)

IES-5. Ans. (c)

IES-6. Ans. (c)

IES-7. Ans. (a)

IES-7a. Ans. (d)

IES-8. Ans. (b) Elongation of a taper rod (8l) = PL
%dldzE
or (), = (da) :(D/?’jzg
(o), (d,), \D/2) 3
IES-9. Ans. (c) Actual elongation of the bar (41), = PL__ PL
(”dldsz (”xl.leO.9DjE
4 4
. PL
Calculated elongation of the bar (81)_ = ——
& 7D
xE
o) —(ol 2
. Error (%) :Mxmo B q]x100%=1%
(1), 1.1D x0.9D
PL

IES-10. Ans. (d) Actual elongation of the bar (41), =

T
Zo e

IES-11. Ans. (b)
IES-11(i). Ans. (c¢)
IES-11(ii). Ans(c)

4PI
Extension of tapered rod =m Extension of uniform diameter rod=ﬁ
4Pl
ED,D
Ratio=—"—-1-2 _ _ 7
L
7D?/4xE

IES-12. Ans. (a)
IES-13. Ans. (¢) Theoretically -1< ¢ <1/2 but practically 0 < u#<1/2

IES-14. Ans. (¢)
IES-15. Ans. (a) If Poisson's ratio is zero, then material is rigid.
IES-16. Ans. (a)
IES-17. Ans. (d) Note: Modulus of elasticity is the property of material. It will remain same.
IES-18. Ans. (a)
IES-19. Ans. (a) Strain energy stored by a body within elastic limit is known as resilience.
IES-19a. Ans. (d)
IES-19b. Ans. (b) Plastic deformation
e Following the elastic deformation, material undergoesplastic deformation.
e Also characterized by relation between stress and strain atconstant strain rate and temperature.
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e  Microscopically...it involves breaking atomic bonds,moving atoms, then restoration of bonds.
Stress-Strain relation here is complex because of atomicplane movement, dislocation movement,
and the obstaclesthey encounter.
Crystalline solids deform by processes — slip and twinningin particular directions.
Amorphous solids deform by viscous flow mechanismwithout any directionality.
Equations relating stress and strain are called constitutiveequations.
A true stress-strain curve is called flow curve as it gives thestress required to cause the material to
flow plastically tocertain strain.
IES-20. Ans. (c)
IES-21. Ans. (b)
IES-22. Ans. (¢)
IES-22a. Ans. (d) Shaft means torsion and added bending load produce a reversed state of stress.
IES-22b.Ans. (a) Endurance limit is the design criteria for cyclic loading.
IES-23. Ans. (d)
IES-24. Ans. (c¢) A polished surface by grinding can take more number of cycles than a part with rough
surface. In Hammer peening residual compressive stress lower the peak tensile stress
IES-25. Ans. (a)
IES-26. Ans. (c¢)
IES-26a.Ans. (d)Isotropic material is characterized by two independent elastic constant.
IES-27. Ans. (¢)
IES-28. Ans. (d)
IES-28a.Ans. (b)
IES-29. Ans. (d)
IES-30. Ans. (a)
IES-31. Ans.(b) E = 2G(1+ 1) or 1.25x105 = 2G(1+0.34) or G = 0.4664 X 105> MPa
IES-31(i). Ans. (d)
TES-31(ii). Ans(d) G =70GPa, K= 150GPa We know,
E=3K@Q-24)=3x150(1-2x) =2G 1+ p) =2x70(1+ w)
On solving the above equations we get, 1 =0.3& E =182GPa
IES-31(iii). Ans. (b)
IES-32. Ans. (¢)

IES-33. Ans. (d) E =2G(1+ ) =3K(1-2u) = 3?<KGG
+
OKG
TES-34. Ans. (d) E=2G(1+x)=3K(1-2p) = ==
+
IES-35. Ans.(c) E = 2G(1+ ) = 3K (1-2u) = 3iKGG
+

the value of 4 must be between 0 to 0.5 so E never equal to G but if x = % then

E=ksoans.isc
IES-36. Ans. (b) Use E =2G(1+ x)

E 200

- = 80GN/m’
2(1+u)  2x(1+0.25) "

IES-37. Ans. (a) E=2G(1+ ) or G=

IES-37a. Ans. (b)

IES-38. Ans. (d) Under plane stress condition, the strain in the direction perpendicular to the plane is not
zero. It has been found experimentally that when a body is stressed within elastic limit, the
lateral strain bears a constant ratio to the linear strain.

IES-38(i). Ans. (b)

Lateral Strain __ 60x1075

IES-38a. Ans. (b) Axial strain (&) = 5————— = ——— = 200 X 10-°
_ o, 300x10° 150 Gp
T e, 200x10-5 .
2
IES-39. Ans. (b) Total load(P) =8 x axﬂ ord =\/ P _ \/ 980175 _ 22.25mm
4 2ro 27 x 315

IES-39a. Ans. (a)
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we knOW15: &1 6 d = 5 P P L L E = —Enew

AE o} new? °old new? —old old 2

PL PL
(Ejold - (Ejnew o A\)Id EOId - A1eWEnew

E —M = — 2
E_/Z_ A)ld = Awew =2x Aold =2x10

a? =2x102=a_ =+/2x10=14mm
IES-39b.Ans. (b)% =

new?

PL
ARE
IES-40.Ans. (¢) Compatibility equation insists that the change in length of the bar must be compatible

with the boundary conditions. Here (a) is also correct but it is equilibrium equation.
IES-40(i) Ans. (a) Elongation will be same for this composite body

PL PL c. O o. 100
oty o sy o g =50N/mm’

AE AE E E E 2E,
TIES-41. Ans. (a)
IES-42. Ans. (b) First draw FBD of all parts separately then

or4s = Ay ord® = D*— (2)? ors =

~ &

100N

) E O

Total change in length = § %

- . . (d) x 0.5) + (- x 1) + x 0. =.95%10°¢
IES-42a.Ans (d’10x10—6x200x109[(200 0.5) +(-200x1)+(100x%x0.5)]=-25x10"°m

IES-43. Ans. (a) Elongation in AC = length reduction in CB

Ryx1 Rgyx2

AE AE

And Ra+ Reg=10
IES-43(i) Ans. (b)
IES-44. Ans. (b)
IES-45. Ans. (d)
IES-46. Ans. (d) If we resist to expand then only stress will develop.
IES-47. Ans. (d)
TES-48. Ans. (b) DV _ $=(p)_ a’(1+aTy - 2’

v K a®

P _
Or E = 3aT

3(1- 29)
IES-49. Ans. (c¢)
IES-49(i). Ans. (c)
TES-50. Ans. (d) 2EAt =(12x10"°)x(200x10° ) x (120 — 20) = 240MPa

It will be compressive as elongation restricted.

IES-50a.Ans. (c)L a - AT = % orP=a-AT-AE =10%x 107 x 50 x 20 x 107™* x 200 X 10°N = 200kN

IES-51. Ans. (a) co-efficient of volume expansion (7) = 3xco —efficient of linear expansion(a)
IES-52. Ans. (b)
IES-53. Ans. (b) Let compression of the spring =x m
Therefore spring force = kx kN
Expansion of the rod due to temperature rise = LaAt
(kx) x L
AE

Reduction in the length due to compression force =

(kX)xL B
AE

Now LaAt — X
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6
Or X = 0.5x12.5x10™ x 20 0.125mm

50x0.5
+
7 x0.010°

x 200 x10°

.. Compressive stress = —k—X = —M =-0.07945MPa

A 7 x0.0102
4
IES-53a. Ans. (d)

IES-53b. Ans. (d) Free expansion=L. a. AT =10 x 103x 12 X 107® x 40 = 4.8 mm
Permitted expansion = 4 mm, Expansion resisted = 0.8 mm

PL oL SE  0.8x200x10°
S=——=—0rog="="""

AE E L 10000
IES-54. Ans. (d) Stress in the rod due to temperature rise = (aAt) xE

IES-54(i) Ans. (¢) L0, AT — L a AT =10mm
8000x23x10°°* x AT —8005x12x10° x AT =10mm

AT =113.7°C .. Answer =113.7+30=143.7°C

IES-54(ii) Ans. (b)

IES-55. Ans. (¢)

IES-56. Ans. (d) A is false but R is correct.

IES-57. Ans. (d)

IES-58. Ans. (b)

IES-59. Ans. (d)

IES-60. Ans. (b)

IES-61. Ans. (a)

IES-61(i). Ans. (a)

MPa =16 MPa

2
IES-62. Ans. (b) 0, = ﬂz orW=o, SR
zd 4

4
ﬂ_acwrxdz_280><7r><362
fos  fosx4  15x4

safe —

IES-63. Ans. (b)

IES-63a. Ans. (b)

IES-64. Ans. (a) A crack parallel to the direction of length of hub means the failure was due to tensile hoop
stress only.

IES-65. Ans. (d)

IES-66. Ans. (d)

N =190kN

C A True stress-strain curve

Engineering stress-strain curve

> £

IES-67. Ans. (¢)

IES-68. Ans. (¢)

IES-69. Ans. (c) Truss members will be subjected to tension and cast iron is weak in tension.
IES-70. Ans. (c)

P .
IES-71. Ans. c)Stress(o) = " Elastic Strain(ey) =

[ES]

o
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IAS-1.

TIAS-2

TAS-4.
IAS-5.
IAS-6.

IAS-7

IAS-8.
IAS-9.

1AS

: , WL (SALg)L &l%g
Ans. (d) Elongation due to self weight = = =
2AE 2AE 2E

. Ans. (b)
IAS-3.

PI

Ans. (a)The extension of the taper rod = ———
(” DD, J.E
4

Ans. (a)
ans. (d)
Ans. (b)
15

. Ans. (d) Bulk modulus of elasticity (K) = P ore, = E =—— =535%x10"°
£

2800

Ans. (a) '
Ans. (d)

IAS-10. Ans. (a)
IAS-11. Ans.(b) E = 2G(1+ u) or 1.25x105 = 2G(1+0.34) or G = 0.4664 x 105> MPa

IAS-12.

IAS-13.
IAS-14.

IAS-15.

E E 25
Ans. (a) E=2G(1 T+u=— = —-1|=|—-1|=0.25
ns. (a) (+,u) =>1+u G => U (ZG J (2 J
Ans. (¢)
Ans.(b) E=2G (1 + 4)=3k(1-24)

Ans. (b) E, G, K and p represent the elastic modulus, shear modulus, bulk modulus and poisons
ratio respectively of a ‘linearly elastic, isotropic and homogeneous material.” To express the
stress — strain relations completely for this material; at least any two of the four must be

known. E =2G (1+ ,U) —3K (1—3/,1) _ 39KK-E5G

E 200

IAS-16. Ans. (¢) E=2G (1+ ) or y=——1= ~1=0.25

2G 2x80

IAS-17. Ans. (a) Elongation in AC = length reduction in CB

Rax1 Rgx2

AE AE
And Ra+ Re=10

TAS-18. Ans. (d) 2EAt =(12x107°)x(200x10° ) x (120 — 20) = 240MPa

It will be compressive as elongation restricted.

IAS-19. Ans. (¢) Thermal stress will develop only if expansion is restricted.

IAS-20
IAS-21.
TIAS-22.
TIAS-23.
TAS-24.
IAS-25.

. Ans. (a) Dimensional analysis gives (a) is wrong
Ans. (d)
Ans. (d)
Ans. (b)
Ans. (b)
Ans. (b)

IAS-26. Ans. (d)
IAS-27. Ans. (d)
IAS-28. Ans. (a) Up to elastic limit.
IAS-29. Ans. (b)

TAS-30.
TIAS-31.
TAS-32.
TAS-33.

TAS-34.

Ans. (d)

Ans. (a)

Ans. (a)

Ans. (d) In compression tests of ductile materials fractures is seldom obtained. Compression is
accompanied by lateral expansion and a compressed cylinder ultimately assumes the shape of a
flat disc.

Ans. (a)
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IAS-35. Ans. (c)Steel is the highly elastic material because it is deformed least on loading, and regains its
original from on removal of the load.

IAS-36. Ans. (a)

IAS-37. Ans. (a)

IAS-38. Ans. (b)

IAS-39. Ans. (b)
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Previous Conventional Questions with Answers

Conventional Question IES-2010

Q. If a load of 60 kN is applied to a rigid | gy,
bar suspended by 3 wires as shown ' ? '
in the above figure what force will g
be resisted by each wire? 7
//////'/ 4

The outside wires are of Al, cross-
sectional area 30,0 nr'lm2 and l.ength 4 - “«— Alum. wires
m. The central wire is steel with area
200 mm? and length 8 m:

Initially there is no slack in the

wires E=2x10°N/mm? for Steel

5 9 . - Steel wire
=0.667x10°N / mm~ for Aluminum
I ]
T 60 kN
[2 Marks]
Ans.
/L L/ LY
/
Z Z
Y4 A4
« Aluminium wire
Fa1 -
/\FSt A Fai
T ~~—o——J—> Steel wire
l ]
I 60kN
P=60 kN
a,, =300mm? 1,; =4m
a, =200mm? 1, =8m
E,; =0.667x10°N / mm?
E, =2x10°N/mm?
Force balance along vertical direction
2F,; + F,, =60 kN 1)
Elongation will be same in all wires because rod is rigid remain horizontal after loading

Fai x1a; _ Fot-lst

(2
ap By ag Eg

Fu, x4 _ F;x8
300%0.667x10° 200x2x10°
F,, =1.0005 F,, (3)

_ 60x10°

From equation (1) F, = =19.99 kN or 20 kN

3.001
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Fp; =20 kN
Answer.
F,= 20 kN

Conventional Question GATE

Question: The diameters of the brass and steel segments of the axially loaded bar shown in
figure are 30 mm and 12 mm respectively. The diameter of the hollow section of the
brass segment is 20 mm.

Determine: (i) The maximum normal stress in the steel and brass (i) The displacement of the free end ;
Take Es = 210 GN/m?2 and E, = 105 GN/m?2

7

7

I il

e,

,

10!@1 12mm¢ 5”13@.-“"14, 20 mm ¢ g
= Z

A  Steel L /////.0’/}::

B  Brass c D%

le— 0.15 m—sfe— 0.2 m ——»}« 0.125 m—|
Answer: A, :%x (12)* =362 mm? = 367 x 10 °m’
T

(Ay)oc =74 <(30)" =2267mm’ = 2257 x 10 *m’

(As)eo :%X(302 _202) =1257zmm’ =125z x10°m?

(i) The maximum normal stress in steel and brass:

3
o, = 10 40oMN/m? = 88.42MN/ m2
367 %10
5x10°
=—————x10°MN/m* = 7.07MN/m’
(%)sc = 2257107 " "

(o_ ) _ 5x1 0°
°Jeo 1257 %107
(11) The displacement of the free end:

ol = (é‘lS )AB + (5Ib )BC + (5Ib )CD

_ 88.42x0.15 . 7.07x0.2 N 12.73x0.125 ( o-l]
210x10°x10° 105x10°x10° 105x10°x10°°

=9.178x10°m = 0.09178 mm

x10°MN/m? =12.73MN/ m?

Conventional Question IES-1999
Question: Distinguish between fatigue strength and fatigue limit.
Answer: Fatigue strength as the value of cyclic stress at which failure occurs after N cycles. And

fatigue limit as the limiting value of stress at which failure occurs as N becomes very large
(sometimes called infinite cycle)

Conventional Question IES-1999

Question: List at least two factors that promote transition from ductile to brittle fracture.
Answer: (i) With the grooved specimens only a small reduction in area took place, and the
appearance of the facture was like that of brittle materials.

For-2019 (IES, GATE & PSUs) Page 59 of 480 Rev.0



Chapter-1

Page 60
Stress and Strain S K Mondal’s

(i1) By internal cavities, thermal stresses and residual stresses may combine with the effect
of the stress concentration at the cavity to produce a crack. The resulting fracture will
have the characteristics of a brittle failure without appreciable plastic flow, although
the material may prove ductile in the usual tensile tests.

Conventional Question IES-1999

Question:
Answer:

Distinguish between creep and fatigue.

Fatigue 1s a phenomenon associated with variable loading or more precisely to cyclic stressing
or straining of a material, metallic, components subjected to variable loading get fatigue,
which leads to their premature failure under specific conditions.

When a member is subjected to a constant load over a long period of time it undergoes a slow
permanent deformation and this is termed as "Creep". This is dependent on temperature.

Conventional Question IES-2008

Question:

Answer:

What different stresses set-up in a bolt due to initial tightening, while used as a

fastener? Name all the stresses in detail.

(1)  When the nut is initially tightened there will be some elongation in the bolt so tensile
stress will develop.

(i1) While it is tightening a torque across some shear stress. But when tightening will be
completed there should be no shear stress.

Conventional Question IES-2008

Question:

Answer:

A Copper rod 6 cm in diameter is placed within a steel tube, 8 cm external diameter
and 6 cm internal diameter, of exactly the same length. The two pieces are rigidly
fixed together by two transverse pins 20 mm in diameter, one at each end passing
through both rod and the tube.

Calculated the stresses induced in the copper rod, steel tube and the pins if the
temperature of the combination is raised by 50°C.

[Take Es=210 GPa, o, = 0.0000115/° C ; Ec=105 GPa, o, = 0.000017/°C ]

/—Steel tube Pin { 20 mm ¢)

AAMAANIAANNINIANNINSIINISNYS

o, O
E—°+E—S:At(ac—ozs)

[ S

4 4

2
Area of copper rod(A,) = md 7T[ 6

2
—] m* =2.8274x10°m?
100
4

8Y (6
[100] _[100]
Rise in temperature, At = 50°C
Free expansion of copper bar=a, LAt
Free expansion of steel tube =a, LAt

nd® 7

Area of steel tube (A,) = 2 m® =2.1991x10"°m’

Difference in free expansion =(a, —a; ) LAt
=(17-11.5)x10° x L x50=2.75x10“L m

A compressive force (P) exerted by the steel tube on the copper rod opposed the extra
expansion of the copper rod and the copper rod exerts an equal tensile force P to pull the steel
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tube. In this combined effect reduction in copper rod and increase in length of steel tube
equalize the difference in free expansions of the combined system.
Reduction in the length of copper rod due to force P Newton=

(a1 _PL _ PL .
¢ AE, (2.8275x10°)(105x10%)
Increase in length of steel tube due to force P

MMZZPL: P.L
S AE, (21991x10fﬂ(210x109
Difference in length is equated
(aL), +(aL), =2.75x10°°L
PL N P.L
(2.8275x107°)(105x10°) * (2.1991x10°°)(210x10°)
Or P = 49.695 kN

)m

=275x10""L

Stress in copper rod, o, = P_ %MPaﬂ?.SSMPa
A, 2.8275x10
P 49695

Stress in steel tube, o, = — MPa = 22.6MPa

A, 2.1991x107

Since each of the pin is in double shear, shear stress in pins (7

P 49695 —79 MPa

2X A 2% (0.02)

pin )

Conventional Question IES-2002
Question: Why are the bolts, subjected to impact, made longer?
Answer: If we increase length its volume will increase so shock absorbing capacity will increased.

Conventional Question IES-2007
Question: Explain the following in brief:
(i) Effect of size on the tensile strength
(ii) Effect of surface finish on endurance limit.

Answer: (1)  When size of the specimen increases tensile strength decrease. It is due to the reason
that if size increases there should be more change of defects (voids) into the material
which reduces the strength appreciably.

(1) If the surface finish is poor, the endurance strength is reduced because of scratches
present in the specimen. From the scratch crack propagation will start.

Conventional Question IES-2004

Question: Mention the relationship between three elastic constants i.e. elastic modulus (E),
rigidity modulus (G), and bulk modulus (K) for any Elastic material. How is the
Poisson's ratio (L) related to these modulli?

Answer:Eng—G
3K+G
IKG
E =3K(1—-2u)=2G(1+u) =
(1—2w) (1+p) IKLG

Conventional Question IES-1996
Question: The elastic and shear moduli of an elastic material are 2x10!1 Pa and 8x101° Pa
respectively. Determine Poisson's ratio of the material.

9KG
3K+G

Answer: We know that E = 2G(1+p ) = 3K(1-2p) =
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or,1+ - =
R
11
ot =20 4 525

2G 2%(8x10")

Conventional Question IES-2003

Question: A steel bolt of diameter 10 mm passes through a brass tube of internal diameter 15
mm and external diameter 25 mm. The bolt is tightened by a nut so that the length
of tube is reduced by 1.5 mm. If the temperature of the assembly is raised by 40°C,
estimate the axial stresses the bolt and the tube before and after heating. Material
properties for steel and brass are:

E,=2x10° N/mm?® a4 =1.2x10"°/°C and Es= 1x105 N/mm? o,=1.9x105/°C

Answer:

7
g
A1V NANAIA SANRARANEANNAN NN NN
L\\\ uvﬁuu&i??u& )

[ l

Area of steel bolt (A, )=%>< (0.010)’m? =7.854 x10°m?

Area of brass tube (A, )=%[(0.025)2 —(0.015)2] =3.1416x10""*

Stress due to tightening of the nut

Compressive force on brass tube= tensile fore on steel bolt

or, 6,A, = oA
Al
)b-IA\)ZGSAS =§: AGL
3

Let assume total length (¢)=1m

(1.5x107%) (

Therefore (1x10° x10°%)x x(3.1416 x 10’4) =0, x 7.854x10°

or o, =600MPa (tensile)

(Al 1.5%107

b — (1x105)><( )MPa:150MPa(Compressive)

and o, =E,

So before heating
Stress in brass tube (s, ) = 150MPa(compressive)
Stress in steel bolt(c, ) = 600MPa (tensile)

Stress due to rise of temperature
Let stress 6, & 6, are due to brass tube and steel bolt.
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If the two members had been free to expand,
Free expansion of steel = o, XAt x1

Free expansion of brass tube = o, XAt x1

Since oy >0, free expansion of copper is greater than the free expansion of steel. But they

are rigidly fixed so final expansion of each members will be same. Let us assume this final
expansion is '0', The free expansion of brass tube is grater than 0, while the free expansion of

steel is less than 6§ . Hence the steel rod will be subjected to a tensile stress while the brass
tube will be subjected to a compressive stress.

For the equilibrium of the whole system,

Total tension (Pull) in steel =Total compression (Push) in brass tube.
A, 7.854x10°
A, 3.14x10"

Final expansion of steel =final expansion of brass tube

c,A, =c_ A 0, 6, =0,_X o, = 0.250;

o o,
AT+ =x1=q, (At)x1— =L x1
ag(At) +Es o, (At) E,

(9

or,(1.2x10°)x40x1+ ——=—— —=(1.9x107°)x 40 1—— %
(1:2510°*)x 4014 5 = (1.9510°%)x 40— gt — (i)
From(i) & (ii) we get

1 0.25 _
GSW+W:2.8X1O4

or,c, = 37.33 MPa (Tensile stress)

or, 0,= 9.33MPa (compressive)
Therefore, the final stresses due to tightening and temperature rise

Stress in brass tube =0, +0,=150+9.33MPa=159.33MPa
Stress in steel bolt =o_+0_= 600 + 37.33 = 637.33MPa.

Conventional Question IES-1997
Question: A Solid right cone of axial length h is made of a material having density p and

elasticity modulus E. It is suspended from its circular base. Determine its
elongation due to its self weight.
Answer: See in the figure MNH is a solid right cone of
length 'h'.
Let us assume its wider end of diameter’d’ fixed My e s s s rrsiN
rigidly at MN.
Now consider a small strip of thickness dy at a
distance y from the lower end.
Let 'ds' is the diameter of the strip.
2

.. Weight of portion UVH=%[TCZs

y xpg — (i)

From the similar triangles MNH and UVH,
MN d J4

uv d, y
dy

or,d, :7————(ii)
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force at UV _ Weight of UVH

.. Stress at section UV =

cross — section area at UV nd?
4
1 nd?
=3 4 > leg
nd? 3
4
1
[3)/,09]-0')/
So, extension in dy= =
Ly pgdy
~ 2
. Total extension of the bar =f 3 _ rah
/| E 6E

From stress-strain relation ship

_0 9 6L
E—E_dlor,dé_ =
¢l

Conventional Question IES-2004
Question: Which one of the three shafts listed hare has the highest ultimate tensile strength?
Which is the approximate carbon content in each steel?
(i) Mild Steel (ii) cast iron (iii) spring steel
Answer: Among three steel given, spring steel has the highest ultimate tensile strength.
Approximate carbon content in
(1)  Mild steel is (0.3% to 0.8%)
(i1)) Cost iron (2% to 4%)
(1) Spring steel (0.4% to 1.1%)

Conventional Question IES-2003

Question: If a rod of brittle material is subjected to pure torsion, show with help of a sketch,
the plane along which it will fail and state the reason for its failure.

Answer: Brittle materials fail in tension. In a torsion test the maximum tensile test Occurs at 45°to the
axis of the shaft. So failure will occurs along a 45°to the axis of the shaft. So failure will occurs
along a 45° helix

X

So failures will occurs according to 45°plane.

Conventional Question IAS-1995

Question: The steel bolt shown in Figure has a thread pitch of 1.6 mm. If the nut is initially
tightened up by hand so as to cause no stress in the copper spacing tube, calculate
the stresses induced in the tube and in the bolt if a spanner is then used to turn the
nut through 90°.Take E.: and Es as 100 GPa and 209 GPa respectively.

Answer: Given: p = 1.6 mm, E.= 100 GPa ; Es = 209 CPa.
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) ePPer SPACING gteel bolt
10 mm dia)
12 __| 18 | ;
mmeé (mmdé

— 100 mm ———

Stresses induced in the tube and the bolt, o_,0; :

2
A =Zx[ 10} _7584x10°m?
4 (1000

2 2
A, =Zx [18 ]._(12 =14.14x10°m?
4|\ 1000 1000

Tensile force on steel bolt, Ps = compressive force in copper tube, P. = P
Also, Increase in length of bolt + decrease in length of tube = axial displacement of nut

ie (1), +(ol) =1.6x 90 =0.4mm=0.4x10"m
s ¢ 360
or P Pl_0ax10® (o1, =1 =)
ASES ACEC

or P x 100 751 g+ 751 5 =0.4x107°
1000 )| 7.854x107° x209x10° 14.14x107 x100x10
or P =30386N

A£=386.88MPa and A£=214.89MPa

S C

Conventional Question AMIE-1997

Question:

Answer:

A steel wire 2 m long and 3 mm in diameter is extended by 075 mm when a weight
W is suspended from the wire. If the same weight is suspended from a brass wire,
2:5 m long and 2 mm in diameter, it is elongated by 4 -64 mm. Determine the

modulus of elasticity of brass if that of steel be 2.0 X 105> N / mm?2
Given, |, =2 m, d= 3 mm, ol =075 mm; Es= 20 % 105 N/ mm%|, =2.5m, dv

=2 mm ol, =4.64mm and let modulus of elasticity of brass = Ep

Pl
Hooke's law gives, ol = E [Symbol has usual meaning]

Case I: For steel wire:

&:fi
ASES

Px(2><1000) = (D)

or 0.75= ]
(Zx3jx2ﬂx1ﬁx

2000

Case II: For bass wire:
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5, = Pl,
AbEb
Px(2.5x1000
4.64 - P(2:5x1000) - (i)
(Zszijb
or P =4.64 x| Zx2? | xE, x——
4 2500

From (1) and (ii), we get

0.75x| Zx32 |x2.0x10° x —]
4 2

000
or E, =0.909x10°N/mm?

w1
2500

=4.64x(%x22ijb

Conventional Question AMIE-1997

Question:

Answer:

A steel bolt and sleeve assembly is shown in figure below. The nut is tightened up
on the tube through the rigid end blocks until the tensile force in the bolt is 40 kN.
If an external load 30 kN is then applied to the end blocks, tending to pull them
apart, estimate the resulting force in the bolt and sleeve.

Steel bolt Gteel sleeve
25mm ¢ 62.-5mm 0D
\ 50.0mm 1D
FM
t _; SRS S SSSSSSSSSWZ
End block End block
e G0OMmm ————————= D-I
- 500mm
Area of steel bolt, A, = (ij =4.908x10*m?
1000
Area of steel sleeve, AS:EK 62'5] —( 50 j}:’l.104><10'3’m2
411000 1000

Forces in the bolt and sleeve:
(1) Stresses due to tightening the nut:

Let o, = stress developed in steel bolt due to tightening the nut; and
o, = stress developed in steel sleeve due to tightening the nut.
Tensile force in the steel bolt = 40 kN = 004 MN

o, xA, =0.04
or o, x4.908 x10™* =0.04

0.04
Oy =7
4.908x10

Compressive force in steel sleeve = 004 MN

o, xA,=0.04
or 0,x1.104x10° =0.04

0.04
Oy=——
® 1.104x10°°

(1) Stresses due to tensile force:

=81.5MN/m?(tensile)

=36.23MN/m? (compressive)
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Let the stresses developed due to tensile force of 30 kN = 003 MN in steel bolt and sleeve be
o', and o' respectively.
Then, o', xA, +0';xA;=0.03

6'b><4.908><104+0'S><1.104><1O’3=0.03 ———(i)
In a compound system with an external tensile load, elongation caused in each will be the
same.
G'
ol, = E_bb I,
or §|b:%x0.5 (Given,l, =500mm = 0.5)
b
o' .
and &l = £ *x0.4  (Given,l, =400mm=0.4)
But dl, =0
Z5405=22x04
Eb Es
or o',=08c", (Given,E, =E;) ---(2)

Substituting this value in (1), we get
0.85'.x4.908x10* + o',x1.104x107° =0.03

gives o', =20MN/m?(tensile)
and o', =0.8x20=16MN/m?’(tensile)
Re sulting stress in steel bolt,
(0,), =0, +0',=81.5+16 =97.5MN/m?
Re sulting stress in steelsleeve,
(0,), =0, +0', =36.23 - 20 = 16.23MN/ m* (compressive )
Resulting force in steel bolt,= (o, )r xA,
=97.5x4.908x10™* =0.0478MN(tensile)
Resulting force in steelsleeve = (o, ) x A,
=16.23x1.104 x107° = 0.0179MN(compressive)
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Theory at a Glance (for IES, GATE, PSU)

2.1 States of stress

® Uni-axial stress: only one non-zero Area

principal stress, i.e. o1 /_/—"" ,/J

Right side figure represents Uni-axial state of

e —f—>
o1

stress. o1
® Bi-axial stress: one principal stress o

equals zero, two do not, i.e. 01>03 ;02 =0
Right side figure represents Bi-axial state of 1 .

-— o1
stress. o
lo:

® Tri-axial stress: three non-zero oz

principal stresses, i.e. 01>02>03 A

Right side figure represents Tri-axial state of

stress. o /
/

® Jsotropic stress: three principal ¢
<

stresses are equal, i.e. 01 =02 = 03

Right side figure represents isotropic state of —

stress. s |7

® Axial stress:stwo of three principal }%:'

stresses are equal, i.e. 01 = 02 or 02 = 03 |

Right side figure represents axial state of o

stress.
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® Hydrostatic pressure: weight of column of |"_r

fluid in interconnected pore spaces. l G

Phydrostatic= privia gh (density, gravity, depth)

|

® Hydrostatic stress:Hydrostatic stress is a //'

used to describe a state of tensile or o T
compressive stress equal in all directions “

within or external to a body. Hydrostatic Or

stress causes a change in volume of a “
material. Shape of the body remains %
unchanged i.e. no distortion occurs in the 1

body. o |7

Right side figure represents Hydrostatic state of o la

stress.

2.2 Uni-axial stress on oblique plane
Let us consider a bar of uniform cross sectional area A under direct tensile load P giving rise to axial
normal stress P/A acting on a cross section XX. Now consider another section given by the plane YY inclined

at @ with the XX. This is depicted in following three ways.

0 X
Y. P/—. | %
v 0
LY N 1
|
!
X T
Y
» P
Fig. (c)
A . . .
Area of the YY Plane =——; Let us assume the normal stress in the YY plane is O, and there is a
S

shear stress T acting parallel to the YY plane.

Now resolve the force P in two perpendicular direction one normal to the plane YY = P cos @ and another

parallel to the plane YY = Psin®
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Therefore equilibrium gives, o =Pcosfor

n

cos @

and 7 X

=Psinfor r=£sinﬁcost9 or
cosd A

® Note the variation of normal stress O n and shear stress T with the variation of @ . When8 =0,

normal stress o, is maximum i.e. (O‘n) =— and shear stressz=0. As @ is increased, the

max A

normal stress o, diminishes, until when@=0, 6, =0. But if angle @ increased shear stress 7
. . P T (o] : L o]
increases to a maximum value 7, ,, = oA at 0= 7 =45 and then diminishes to 7 =0 at 8 =90
® The shear stress will be maximum when sin20 =1or 6 =45°
) P
® And the maximum shear stress, 7,,, = oA

® In ductile material failure in tension is initiated by shear stress i.e. the failure occurs across the

shear planes at 45° (where it 1s maximum) to the applied load.
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e Complementary stresses
Now if we consider the stresses on an oblique plane Y'Y’ which is perpendicular to the previous plane

YY. The stresses on this plane are known as complementary stresses. Complementary normal stress

is O r: and complementary shear stress isT " The following figure shows all the four stresses. To
obtain the stresses O r: and T ’We need only to replace € by 0+90°in the previous equation. The

angle +90° is known as aspect angle.

N

Therefore

It is clear O-r: -|-O'n =— and 7T =-T
A

i.e. Complementary shear stresses are always equal in magnitude but opposite in sign.

® Sign of Shear stress

For sign of shear stress following rule have to be followed:

The shear stress 7 on any face of the element will be considered positive when it has a clockwise
moment with respect to a centre inside the element. If the moment is counter-clockwise with respect

to a centre inside the element, the shear stress in negative.
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TN

+[+] -0

-~ *
T

o, =75MPa
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2.3 Complex Stresses (2-D Stress system)

i.e. Material subjected to combined direct and shear stress

We now consider a complex stress system below. The given figure ABCD shows on small element of

material
;Y A oy
Ty
A B
| . Y
/] AV e
|
|
I ! B Gx
Ox + e | 1 + Ox <
Tod L — — — | _ n
x&:: {J- Tuy
;’tf -1 D =—— C
ri Vi I TN:.'
'¢ ¥ Oy
Oy
Stresses in three dimensional element Stresses in cross-section of the element

o, and o, are normal stresses and may be tensile or compressive. We know that normal stress may come
from direct force or bending moment. Tyy is shear stress. We know that shear stress may comes from direct
shear force or torsion and 7 Y and 7 yx are complementary and

Ty = Ty

Let o, 1s the normal stress and 7 is the shear stress on a plane at angle g.
Considering the equilibrium of the element we can easily get
o,+o, 0,—0C

Normal stress (Gn ) == + 5 ~0526 + 7,, 51N 2610

« — 0

o
Shear stress(7) = T"sinZG - 7,,C0S 20

Above two transformation equations for plane stress are coming from considering equilibrium. They do not

depend on material properties and are valid for elastic and in elastic behavior.

e Location of planes of maximum stress
(&) Normal stress, (O'n )max

For o, maximum or minimum
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(o-x+0'y)+(ax—0'y)
2 2

oo,

=0, where o, =

cos 26 + Ty sin20
(0'X -0, ) . 27Xy
or —————=x(sin20)x2+r7, (cos20)x2=0 or tan26,=—=>—
2 (o, —0y)
(b) Shear stress, 7,
For 7 maximum or minimum

ﬁ=0, where 7 = Ix 9%
06

sin26’—rXy cos 20

or 2 20-" (00526?)><2—rXy (—-sin20)x2=0

or cot20= i

o, —0,
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2.4 Bi-axial stress

Let us now consider a stressed element ABCD where 7, =0, i.e. only o, and o, is there. This type of

stress is known as bi-axial stress. In the previous equation if you put 7,, =0 we get Normal stress, o and

shear stress, 7 on a plane at angle @ .

o,+o, o0,-0, Oy
e Normal stress, o, = 3 + 5 €0s26
A B
. Oo,—0y . T P
e Shear/Tangential stress, 7 = ——>sin 26
0 [n] B Ox
e For complementary stress, aspect angle = € + 90 "
O
e Aspect angle ‘0’ varies from 0 to 77/2
D C
e Normal stress o, varies between the values I
Oy

0,(0=0)& o, (0=7/2)

]Gr:&:} MPa

B

r=16KPa

| o, =95, a
- . =100 MPa

o, =94MPa
D C
Oy

® \We may derive uni-axial stress on oblique plane from

o.to, o0,-0, )
o= + cos20+r1,, sin20
§ 2 2 Y
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G,—GC, .
7 =——-5in20 - 7, cos20
2

and

Just put o, =0 and 7, =0 A E
- P
Therefore,
+0 -0 1 - I
o, =2 Ix " c0s20=—0, (1+cos20) =0, cos’0 O« 8 O
2 2 2 4
o,-0 . o, .
and 7 = X2 sm26’=7xsm20 D C

2.5 Pure Shear

® Pure shear is a particular case of bi-axial stress where O- - O-

Note: o, or o, which one is compressive that is immaterial but one should be tensile and other

should be compressive and equal magnitude. If o, =100MPa then o, must be—100MPa otherwise if

o, =100MPa then o, mustbe—100MPa.

® |n case of pure shear on 45° planes

=+ ,
T = TO, ; 0.=0 and o/ =0
max X n n
® \We may depict the pure shear in an element by following two ways
(a) In a torsion member, as shown below, an element ABCD is in pure shear (only shear stress is
present in this element) in this member at 45¢ plane an element A'B'C'D’is also in pure shear

where o, = -o, but in this element no shear stress is there.

T A Txy
Ty Yl
|+
D— C

Ty

(b) In a bi-axial state of stress a member, as shown below, an element ABCD in pure shear where

o, =—0, but in this element no shear stress is there and an element A'B'C'D’ at 45° plane is

also in pure shear (only shear stress is present in this element).
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Oy = —0Ox = —T AI
A L B l/
. \,
o =T | — Tax=T D' B'
D I C \ /|
Oy= ~Gx = —T c'

Let us take an example:See the in the Conventional question answer section in this chapter and the

question is “Conventional Question IES-2007"

2.6 Stress Tensor

® State of stress at a point ( 3-D)

Stress acts on every surface that passes through the point. We can use three mutually perpendicular
planes to describe the stress state at the point, which we approximate as a cube each of the three planes
has one normal component & two shear components therefore, 9 components necessary to define stress
at a point 3 normal and 6 shear stress.

Therefore, we need nine components, to define the state of stress at a point

Oy z-xy Tyz
O-V TYX TYZ
o, T, T 2y

r
— Ty = Ty If they don’t offset, block spins therefore,
T, = T, only six are independent.
r
x 7/-yZ = zy

The nine components (six of which are independent) can be written in matrix form

O-xx Xy Xz z.xx Xy Xz O-x Txy sz 0-1 1 0-1 2 0-1 3
O-ij = o-yx O'yy O'yZ or Tij = Ty>< Tyy Tyz = Tyx O'y Tyz = 0'21 0'22 0'23
O-zx Gzy Gzz sz 2 Tzz sz zy Uz 031 0-32 033

This is the stress tensor

Components on diagonal are normal stresses; off are shear stresses
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v Y
ZY
r,, y"/” /
- rf_'-"
*yx
O-X
iy
O-}’
-1
0 X
® State of stress at an element (2-D)
‘lﬁy
- A —T Tpr
Ty
Ay == 0 s
D =—+f— C

oy
s
2.7 Principal stress and Principal plane
e When examining stress at a point, it is possible to choose three mutually perpendicular
planeson which no shear stresses exist in three dimensions, one combination of orientations for
the three mutually perpendicular planes will cause the shear stresses on all three planes to go to
zero this is the state defined by the principal stresses.
o Principal stresses are normal stresses that are orthogonal to
each other
e Principal planes are the planes across which principal
stresses act (faces of the cube) for principal stresses (shear

stresses are zero)
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e Major Principal Stress

e Minor principal stress

e Position of principal planes

e Maximum shear stress(In —Plane)

e Maximum positive and maximum negative shear stresses (Out - of - Plane)

Tmax = i% occurs at 45° to the principal axes -2

Tmax = i% occurs at 45° to the principal axes -1
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ReferencePlane BC
S

o, =-85MPa

ij-’

7., —60MPa =—] X
! oy =—111.4upa””  @1=014MFa

L

2.8 Mohr's circle for plane stress

e The transformation equations of plane stress can be represented in a graphical form which is

popularly known asMohr's circle.
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e Though the transformation equations are sufficient to get the normal and shear stresses on any

plane at a point, with Mohr's circle one can easily visualize their variation with respect to plane

orientation 6.

e Equation of Mohr's circle

o,+0, O,—
2

o) .
We know that normal stress, o, = + > Y cos26 + 7, SN 20

oc,—0, .
And Tangential stress, T = % sin20 - 1, cos 26

0x+ayj_ax—a

Rearranging we get, | o — = Y cos20+17,.sin26 ............... @)
¥ 2 2 Y

c,—0, .
and 1= Ty Sin20 - t,,cos20 ............... (i)

A little consideration will show that the above two equations are the equations of a circle with o, and t as

its coordinates and 26 as its parameter.
If the parameter 20 is eliminated from the equations, (i) & (i1) then the significance of them will become

clear.

O-avg

2
=—O-X+O-y and R = i +7’
2 2

n avg Xy

Or (0' -0 )2+r2 =R?

. o, +O0 y
It is the equation of a circle with centre,(O'an , O) 1.e 5 .
2
o, — O
2
andradius, R= = +7T
2 Y

e Construction of Mohr’s circle

Convention for drawing

o AT Xy that is clockwise (positive) on a face resides above the O axis; a7 Xy anticlockwise
(negative) on a face resides below O axis.

® Tensile stress will be positive and plotted right of the origin O. Compressive stress will be

negative and will be plotted left to the origin O.

® An angle 6 on real plane transfers as an angle 2 € on Mohr's circle plane.

For-2019 (IES, GATE & PSUs) Page 81 of 480 Rev.0



Chapter-2 Principal StPege 82d Strain S K Mondal’s
We now construct Mohr’s circle in the following stress conditions

I. Bi-axial stress when O , and O, y known and 7 xy = 0
1I. Complex state of stress (O, , O, y and T Xy known)
L. Constant of Mohr’s circle for Bi-axial stress (when only O, and O'y known)
If 0, and O, y both are tensile or both compressive sign of O, and O y will be same and this state of stress

is known as “ like stresses” if one is tensile and other is compressive sign of O, and O, y will be opposite and

this state of stress is known as ‘unlike stress’.

Construction of Mohr’s circle for like stresses (when O, and O, are same type of stress)
Step-I: Label the element ABCD and draw all stresses.

D A

O] o,
c B
L?
Step-II: Set up axes for the direct stress (as abscissa) i.e., in x-axis and shear stress (as ordinate) i.e. in
Y-axis

4

T

-3 D o
-T "

Step-III: Using sign convention and some suitable scale, plot the stresses on two adjacent faces e.g. AB

and BC on the graph. Let OL and OM equal to O, and O'y respectively on the axis O O .

A
T

Ty

Step-IV: Bisect ML at C. With C as centre and CL or CM as radius, draw a circle. It is the Mohr’s
circle.
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L

T

- M -
-0 0O II|I Ty C ,r gy O
(g + ay)
I E—

_1:!

Step-V: At the centre C draw a line CP at an angle 20 , in the same direction as the normal to the

plane makes with the direction of O « - The point P represents the state of stress at plane

ZB.
[ﬂ}. . L]
D—2 A
T c,
o
o= 0 G - .
2 @] G
cC B
1 [ + ciy)
Oy el
-1
]

Step-VI: Calculation,Draw a perpendicular PQ and PR where PQ = 7 and PR = o,

O + O, O — O,
oc=—>_YandMc=cL=cp= ~ Y
2 2
(oX + O (oX — O,
PR=o-n: X y+ X ycosZH
2 2
O _Gy

PQ =7 =CPsin 20 = sin 26
2
[Note: In the examination you only draw final figure (which is in Step-V) and follow the

procedure step by step so that no mistakes occur.)
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Construction of Mohr’s circle for unlike stresses (when O, and O, are opposite in sign)

°
Follow the same steps which we followed for construction for ‘like stresses’ and finally will get the figure

shown below.

D Z A
T c,
0
o ] Ox I
—-.& IIII Gy O a =
c B
_'t A

Note:For construction of Mohr’s circle for principal stresses when (O and O, is known) then follow the

same steps of Constant of Mohr’s circle for Bi-axial stress (when only O, and O, y known) just change the

o, = G1and Gy =0,

IL. Construction of Mohr’s circle for complex state of stress (O, , O'y and Txy known)

Label the element ABCD and draw all stresses.

Step-1:
Jlﬂ}_
T.
D — = A
Dy
Oy O
rx}’
C.,« [ B
Ty
y Oy

Step-II: Set up axes for the direct stress (as abscissa) i.e., in x-axis and shear stress (as ordinate) i.e. in

Y-axis

Rev.0
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A
T

Ty
Step-II1: Using sign convention and some suitable scale, plot the stresses on two adjacent faces e.g. AB
and BC on the graph. Let OL and OM equal to O, and O, y respectively on the axis OO .
Draw LS perpendicular to OO0 axis and equal to T Xy de. LS=T Xy * Here LS is downward as
T xy On AB face is (— ive) and draw MT perpendicular to OO axis and equal to T Xy 1.e. MT=
T Xy - HereMT is upward as 7 Xy BC face is (+ ive).

-T

Step-IV: Join ST and it will cut OO axis at C. With C as centre and CS or CT as radius, draw circle. It
is the Mohr’s circle.

-T

Step-V: At the centre draw a line CP at an angle 26 in the same direction as the normal to the plane

makes with the direction of O X -

For-2019 (IES, GATE & PSUs) Page 85 of 480 Rev.0



Chapter-2 Principal StPege 8ad Strain S K Mondal’s

D “—Fx]"r é‘
Z\  , K :
Oy o Ox
&
[ B
Oy

Step-VI: Calculation,Draw a perpendicular PQ and PR where PQ = 7 and PR = o,
o, to,

Centre, OC =
2

7
Radius CS = /(CLY2+(LS)? = (axzay] +1y2 =CT=CP

Oy +0 Oy —Ox
PR:an = X2 y + X2 y cos26’+rxy sin 20

Ox —O'y

PQ=7r= sin26-ryy cos26.

[Note: In the examination you only draw final figure (which is in Step-V) and follow the

procedure step by step so that no mistakes occur.]

Note: The intersections of QO axis are two principal stresses, as shown below.

Let us take an example:See the in the Conventional question answer section in this chapter and the

question is “Conventional Question IES-2000”
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2.9 Mohr's circle for some special cases:

i) Mohr’s circle for axial loading: ™
: 2
Y // Eé{/>\ X
r P K9 J°
Vgl
E
— o, = P/A

o =§; O'y=Z'Xy=0

ii) Mohr’s circle for torsional loading: 7—)

N
Tr_ \\ /
7,=—; 0,=0,=0 il
J |X
It is a case of pure shear
T

iii) In the case of pure shear

X y
Tmax = i_O-X
iv) A shaft compressed all round by a hub l
LT s
=—
_b o
—
01 = 02= 03 = Compressive (Pressure)
v) Thin spherical shell under internal pressure |
t
0 ¢
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= p_l‘ = p—D (tensile)

O.
LT ot 4t

vi) Thin cylinder under pressure

_pD_pr pd

. pr .
o. = — (tensile) and 0, =— =— (tensile
T ) AT )
vii) Bending moment applied at the free end of a cantilever /
y of 1
Only bending stress, o, = W and o,=1,=0
2.10 Strain

Normal strain

Let us consider an element AB of infinitesimal length 6x. After deformation of the actual body if

ou
displacement of end A is u, that of end B is u+a—.5x. This gives an increase in length of element AB is
X

ou
u+ a—u.5x -u |= ou 0X and therefore the strain in x-direction is &, = —
ox ox ox

. . o ov
Similarly, strains in y and z directions are & =— and &, =—.
OX 0z

Therefore, we may write the three normal strain components
_au, _ov, oW

& =—; & ; and & =—.
oX Yooy 0z
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&u _
U +=—5%

[
B |

u | IH'

Change in length of an infinitesimal element.
Shear strain

Let us consider an element ABCD in x-y plane and let the displaced position of the element be A'B'C'D’

.This gives shear strain in x-y plane asy,, =oc +f where « is the angle made by the displaced live B'C’

with the vertical and pis the angle made by the displaced line A'D'with the horizontal. This gives

oy oy oX oX
We may therefore write the three shear strain components as
ou ov. ov ow ow ou
Vo =t Ve =t —andy, =—+_—
oy OX oz oy oX oz

Therefore the state of strain at a point can be completely described by the six strain componentsand the
strain components in their turns can be completely defined by the displacement components u, v, and w.

Therefore, the complete strain matrix can be written as

9 0 o0
OX
g, 0 % 0
Sy a
0 0o —=
&, . 0z L
Vxy 9 9 0
el | ag 5
7zx O - -
oy 0z
9 o4 9
| 0z oX |
y
cu _
uw+—2aov
dy °
%—uﬁy
Al "
) B C
25T g .
E}L" _'-'—ﬂ?}x
vi | _ o

Al_lq D X
du

u+—0x
6%

Shear strain associated with the distortion of an infinitesimal element.
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Strain Tensor
The three normal strain components are

. _au, o
EX—EXX—&, E, =&, =

The three shear strain components are

ex :&:1 a_u+a_v ’ c :&:1 Q_{_@ and c :}/zle a_u+aw
Y2 2loy ox

Therefore the strain tensor is

7xy 7xz
EXX 2 2
exx e><y e><z

e.=|€ S S = Py IS ﬁ
i Tyx vy yz | 2 vy 2

eZX ezy eZZ 7ZX 7/Zy
EZZ

2 2

Constitutive Equation

The constitutive equations relate stresses and strains and in linear elasticity. We know from the
Hook’s law (O') =E.¢

Where E is modulus of elasticity

. . Oy . . .
It is known that o, produces a strain of EX in x-direction

. . O, . . . o, . . .
and Poisson’s effect gives —u EX in y-direction and —u EX in z-direction.

Therefore we my write the generalized Hook’s law as

cmz[o-ulo+a)]  e=lo,-ul(o+0,)] wa &=Z[o,-u(0,+0,)]

It is also known that the shear stress, 7 =Gy, where G is the shear modulus and y is shear strain. We may

thus write the three strain components as

Ty Ty, T,
7xy=Ey’ }/yzzé and }/Z)(:E

In general each strain is dependent on each stress and we may write

x _K11 K12 K13 K14 K15 K16 ]

Q Q

24 25 K26 y

44 N5 Nyg Xy
sa Kss Ksg Tyz

Vax _K61 Koz Kes Koy Kes Kae_ T

K, Ky, Ky K, K

Kat Koz Ky Kay Kys Ky z
Vxy Ki Kiz Kig Ky Kys K

Ks, Ks, K K

.. The number of elastic constant is 36(For anisotropic materials)
For Anisotropic material only 21 independent elastic constant are there.

If there are axes of symmetry in 3 perpendicular directions, material is called orthotropic materials. An

orthotropic material has 9 independent elastic constants
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For isotropic material

1
K=Ky =Ky = E

1
K, =K. =K, =—
44 55 66 G
K,=K,=K, =K, =K, =K, =~
12 13 21 23 31 32 E

Rest of all elements in K matrix are zero.

For isotropic material only two independent elastic constant is there say E and G.

o 1-D Stress - = P

Let us take an example: A rod of cross sectional area Ao is I

A J—=>
loaded by a tensile force P. L
, P
It’s stresses o, =—, o,=0, and o,=0
A Y ‘

1-D state of stress or Uni-axial state of stress

o, 0 0 7, 0 O o, 00
o;= 0 0 Ofor; =0 0O0|=0 00
0O 0O 0O 0O 0O 0O
Therefore strain components are
_ 9« O, _ Ox _
ST ST H L TS e ST TR T TS
Strain
%& 0 0
&, 0 0 - p, 0 O
&g=0 -pue, 0 | =0 _'UEX 0 (=0 g, O
0 0 —UE, o 0 0 q
0 0 —u—=
“E
e 2-D Stress (o, =0)
O &= Ox THOY |
Ey—E_O'y—ILlO'X_

Ez:—é[% +O'y]

[Where, €,,€,,€, are strain component in X, Y, and Z axis respectively]
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e 3-D Stress & Strain

Chapter-2

(ii)

o erglo-ulora)
T
ez=é:crz ~u(o,+o,)]
w0~z e e ]
gl s el
o =iz )= (s e
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2.12 An element subjected to strain components €,,€, &%(y

Consider an element as shown in the figure given. The strain component In X-direction is €, , the strain

component in Y-direction is €, and the shear strain component is Yy -

Now consider a plane at an angle @ with X- axis in this plane a normal strain €,and a shear strainy, .

Then

e t+e e, — €
. g,= X2 L+ X2 y00326?+7/7xysin26? s
exﬂ—j -{;&ex
‘?;j s

We may find principal strain and principal plane for strains in the same process which we followed for

. Lo =—L2€ysin26’+77xyc0320

stress analysis.
In the principal plane shear strain is zero.

Therefore principal strains are

€, T €, €, —€ 7 xy
612= +

’ 2 2 2

The angle of principal plane

yxy

tan 26?p =
(e, —¢€,)

e Maximumshearing strain is equal to the difference between the 2 principal strains i.e

(7/xy)max =€ TS
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We may draw Mohr’s circle for strain following same procedure which we followed for drawing Mohr’s

circle in stress. Everything will be same and in the place of O " write S the place of O, y write Ey

. . 7/xy
and in place of T Xy write
X
2 Sy
Sy .
y D
" ___,,r"'"'_'_r_'_" 3
|
' |
¥ t g — £,
ey 26 /\ gl =
2 Ty |
2 ' C X
2 | 28, ey f £
¢ 2
| ¥ i "
B =
| ¥
| E_—Tx
€, +&, £, +E £ +E, e e = -
2 2 2 N |
EX
=
£

2.15 Volumetric Strain (Dilation)

A relationship similar to that for length changes holds for three-dimensional (volume) change.

: : o P
volumetric strain, (e, ), the relationship is (e,) = (V-Vo)/Voor (e,) = AVIVo= K

® Where Vis the final volume, Viis the original volume, and AV is the volume change.

® Volumetric strain is a ratio of values with the same units, so it also is a dimensionless quantity.

® AV/V=volumeiric strain = extey+ e.=¢e1 +e2 + €3

For

® Dilation:The hydrostatic component of the total stress contributes to deformation by changing the

area (or volume, in three dimensions) of an object. Area or volume change is called dilation and is

positive or negative, as the volume increases or decreases, respectively. € = E Where p is pressure.
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e Rectangular block, L

AV + + /

— =€ S S

X y z L
VO
L
Proof: Volumetric strain
L L
AV V-V,
V, V, L L
L1+ )xL(1+e, )xL(1+e,)-L

= E Before deformation,
=€, t€, +€, Volume (Vo) = L3
(neglecting second and third order
term, as very small )

e In case of prismatic bar,

dv
Volumetric strain,—— =& (1 - 2,[1) P <
\"

P<

Proof: Before deformation, the volume of the bar, V =

AL
After deformation, the length (L') = L(1 + 8)

and the new cross-sectional area (A') = A(1 - ,ue)z

2

Therefore now volume (V') = A'L'=AL(1 + 8)(1 - ,ue)

AV V-V AL(1+¢&)(1- ue)’ — AL
NEVC NG S
AV

726‘(1—2/1)

e Thin Cylindrical vessel

. . . O, o pr
€ 1=Longitudinal strain =— — y—% = ——[1-2
ons e “E ol

u=Lla_ ]

€, =Circumferential strain = 2 _ =
E E 2Et

V pr
—=¢, +2¢e,=—[5-4
1 2 2Et[ u]

0o

® Thin Spherical vessels

r
ezelzezzzp—Et[l—,u]
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L{1+ &)
(1+2,)
L(1+¢2,)
After deformation,
Volume (V)
= L(’I+gx)><L(1+gy)><L(1+gz)
L -
G A — P
l Iy |=>P
4
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AV 3pr
—=3e=——[1-
v, 2E 4]

® In case of pure shear

o, =—0,=T7
Therefore
T
& =—(1+
T

&y :_E(1+ﬂ)

g, =0

dv
Therefore ¢, = e te,+e,=0

2.16 Measurement of Strain

Unlike stress, strain can be measured directly. The most common way of measuring strain is by use of the

Strain Gauge.

Strain Gauge

A strain gage is a simple device, comprising of a thin
electric wire attached to an insulating thin backing
material such as a bakelite foil. The foil is exposed to the

surface of the specimen on which the strain is to be

—

measured. The thin epoxy layer bonds the gauge to the | l——
Thin foil
or electric

were part of the specimen being strained. wire

surface and forces the gauge to shorten or elongate as if it

A change in length of the gauge due to longitudinal strain

creates a proportional change in the electric resistance, . .
and since a constant current is maintained in the gauge, a + -

proportional change in voltage. (V = IR).

The voltage can be easily measured, and through ‘h-Eq-akelite

calibration, transformed into the change in length of the

original gauge length, i.e. the longitudinal strain along the STRAIN GAUGE
gauge length.

Strain Gauge factor (G.F)

Measured from Bridge voltage

‘r‘__..-rﬂ"
GF — AR/R _AR/R
~ AEfE £ o
Given Calculated

The strain gauge factor relates a change in resistance with strain.
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Strain Rosette

The strain rosette is a device used to measure the state of strain at a point in a plane.

It comprises three or more independent strain gauges, each of which is used to read normal strain at the
same point but in a different direction.

The relative orientation between the three gauges is known as o, and &

The three measurements of normal strain provide sufficient information for the determination of the
complete state of strain at the measured point in 2-D.

We have to find out €, €, and y,, form measured value ¢, €,, and €,

General arrangement:

The orientation of strain gauges is given in the Ep \ ‘ Y

figure. To relate strain we have to use the

following formula.

+ —
€= S TS LSS o520+ 2 sin26 ~
2 2 2 £, | g,
We get e
: £ SV
+ p—
e =TS ST o820 + yﬂsin 2a o X
2 2 o)

2 2
e t+e, € —€ Vxy o
= > y 4 5 yC032(a+,B)+ 2y sm2(a+ﬂ)
.= S ;ey 4+ ;ey cos2(a+f+5)+ 7; sin2(a+ B +9)

From this three equations and three unknown we may solve €,, €, and y,

e Two standard arrangement of the of the strain rosette are as follows:

(i) 45° strain rosette or Rectangular strain rosette.

In the general arrangement above, put y

a=0°% B=45° and 5 =45°

Putting the value we get

[ J €,=€, b
) €= ﬁ + Q o
2 2 = X
[ ec = Ey a
(ii) 60°strain rosette or Delta strain rosette
In the general arrangement above, put y
a=0° B=60° and o =60°
Putting the value we get b
[ ] ea = EX C
e +3e, 3 60" 120°
e &= = Y, - Yy = > x
4 4 a

For-2019 (IES, GATE & PSUs) Page 97 of 480 Rev.0



Chapter-2 Principal StPage a&d Strain

€, +3 €, \/5 or
[ ] EC e ——— e —— J/Xy
4 4 ¥
Solving above three equation we get
S TS
1
eyzg[z.eb +2e, -5 6
2
by T 7S TS
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Stresses at different angles and Pure Shear

GATE-1.

GATE-2.

GATE-3.

GATE-4.

GATE-4a.

GATE-4b.

A block of steel is loaded by a tangential force on its top surface while the bottom
surface is held rigidly. The deformation of the block is due to

[GATE-1992]
(a) Shear only (b) Bending only  (c) Shear and bending (d) Torsion

A shaft subjected to torsion experiences a pure shear stress 7 on the surface. The

maximum principal stress on the surface which is at 45° to the axis will have a value
[GATE-2003]
(a) 7 cos 45° (b) 2 7 cos 45° (c) T cos? 45° (d) 27 sin 45° cos 45°

The number of components in a stress tensor defining stress at a point in three
dimensions is: [GATE-2002]
(a) 3 (b) 4 (c) 6 (d)9

A bar of rectangular cross-sectional area of 50 mm? is pulled from both the sides by
equal forces of 100 N as shown in the figure below. The shear stress (in MPa) along
the plane making an angle 45° with the axis, shown as a dashed line in the figure, is
[PI: GATE-2016]

w
W

45° "
In a two dimensional stress analysis, the state of stress at a point is shown below. If
6 =120 MPa and t=70MPa, o, and 6, are respectively. [CE: GATE-2004]
A
AB=14
BC=3 A
AC=5
T c
| \K7
B l C P x
Oy
(@) 26.7 MPa and 172.5 MPa (b) 54 MPa and 128 MPa
(c) 67.5 MPa and 213.3 MPa (d) 16 MPa and 138 MPa

A carpenter glues a pair of cylindrical wooden logs by bonding their end faces at an

angle of 0 = 30° as shown in the figure. [GATE-2018]
Log 1 ‘ Log 2
6;" BE axis
4 MPa < -------mmmmmmn e e L » 4 MPa
A
o 1
6 = 30°

For-2019 (IES, GATE & PSUs) Page 99 of 480 Rev.0



Chapter-2 Principal SRegs #0od Strain S K Mondal’s
The glue used at the interface fails if

Criterion 1: the maximum normal stress exceeds 2.5 MPa
Criterion 2: the maximum shear stress exceeds 1.5 MPa

Assume that the interface fails before the logs fail. When a uniform tensile stress of 4 MPa is
applied, the interface

(a) fails only because of criterion 1
(b) fails only because of criterion 2
(c) fails because of both criteria 1 and 2

(d) does not fail.

GATE-5. The symmetry of stress tensor at a point in the body under equilibrium is obtained

from
(a) conservation of mass (b) force equilibrium equations
(¢) moment equilibrium equations (d) conservation of energy[CE: GATE-2005]

GATE-5a. The state of stress at a point on an element is shown in figure (a). The same state of

stress is shownin another coordinate system in figure (b) [GATE-2016]
P p Tw
A "Exy
——
’EX)r
T)!X TXX
TK}' «—]
p p T:(y A 4
TB")’

(a) (b)
The components (Txx, Tyy, Txy) are given by
(a) (p/ 2, —pl 2, 0) () (0,0,p)
() (p,—p,p/2) (d)(0,0,p/2)

GATE-5b. Thestateofstress at a pointiso, = 0, = 0, = 7,, = T,, = T, = T, = 0 and 7., = T),, = 50 MPa.
The maximum normal stress (in MPa) at that point is

[GATE-2017]

Principal Stress and Principal Plane

GATE-6. Consider the following statements: [CE: GATE-2009]
1. On a principal plane, only normal stress acts
2. On a principal plane, both normal and shear stresses act
3. On a principal plane, only shear stress acts
4. Isotropic state of stress is independent of frame of reference.
Which of these statements is/are correct?

(@) 1and 4 (b) 2 only
(¢c) 2and 4 (d) 2 and 3
GATE-7 If principal stresses in a two-dimensional case are -10 MPa and 20 MPa respectively,
then maximum shear stress at the point is [CE: GATE-2005]
(a) 10 MPa (b) 15 MPa
(c) 20 MPa (d) 30 MPa
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GATE-7a. If 0, and 0, are the algebraically largest and smallest principal stresses respectively,

the value of the maximum shear stress is [GATE-2018]
o, +0, 0, — 0, o, + 0o, 0, — O,
a b) —— C),[— d
(a) 5 (b) 5 (c) 5 (d) 5

GATE-8 For the state of stresses (in MPa) shown in the figure below, the maximum shear
stress (in MPa) is [CE: GATE-2014]

4

4

GATE-8(@) In a plane stress condition, the components of stress at point are ox = 20 MPa, oy = 80
MPa and 1xy = 40 MPa. The maximum shear stress (in MPa) at the point is
(a) 20 (b) 25 (c) 50 (d) 100 [GATE-2015]

GATE-9. A solid circular shaft of diameter 100 mm is subjected to an axial stress of 50 MPa. It
is further subjected to a torque of 10 kNm. The maximum principal stress
experienced on the shaft is closest to [GATE-2008]

(a) 41 MPa (b) 82 MPa (c) 164 MPa (d) 204 MPa

GATE-10. The state of two dimensional stresses acting on a concrete lamina consists of a direct
tensile stress, o, =1.5N/mm®, and shear stress, 1=1.20 N/ mm®, which cause cracking

of concrete. Then the tensile strength of the concrete in N/ mm?®is [CE: GATE-2003]

(a) 1.50 (b) 2.08
(c) 2.17 (d) 2.29
GATE-11. In a bi-axial stress problem, the stresses in x and y directions are (o0x =200 MPa and oy
=100 MPa. The maximum principal stress in MPa, is: [GATE-2000]
(a) 50 (b) 100 (c) 150 (d) 200
GATE-12. The maximum principle stress for the stress g
state shown in the figure is 4
(@0 b) 20 —> 07
()30 (d) 150 5 o
o~ 1

A
[GATE-2001]
GATE-13. The normal stresses at a point are ox = 10 MPa and, oy = 2 MPa; the shear stress at this
point is 4MPa. The maximum principal stress at this point is: [GATE-1998]

(a) 16 MPa (b) 14 MPa (c) 11 MPa (d) 10 MPa

GATE-14. The state of stress at a point is given by o, =—-6 MPa, 6, =4 MPa, and t,, =-8MPa. The
maximum tensile stress (in MPa) at the point is .......... [GATE-2014]

GATE-14a. The state of stress at a point, for a body in plane stress, is shown in the figure below.

If the minimum principal stress is 10 kPa, then the normal stress o . (in kPa) is

(a) 9.45 (b) 18.88 (c) 37.78 (d) 75.50 [GATE-2018]
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, -
Mohr’s Circle
GATE-15. In a Mohr's circle, the radius of the circle is taken as: [IES-2006; GATE-1993]

<@(3%ﬁfﬂwf @JE%?X%mY
(@(5%if%%f @ \(o.-5,) +(z,)

Where, ox and oy are normal stresses along x and y directions respectively and txy is the shear
stress.

GATE-16. A two dimensional fluid element rotates like a rigid body. At a point within the
element, the pressure is 1 unit. Radius of the Mohr's circle, characterizing the state of
stress at that point, is: [GATE-2008]

(a) 0.5 unit (b) 0 unit (c) 1 unit (d) 2 units

GATE-17. The state of stress at a point under plane stress condition is
0xx= 40 MPa, 0y,= 100 MPa and txy,= 40 MPa.
The radius of the Mohr’s circle representing the given state of stress in MPa is
(a) 40 (b) 50 (c) 60 (d) 100 [GATE-2012]

30 O
0 30
(a) center at (0, 0) and radius 30 MPa (b) center at (0, 0) and radius 60 MPa
(c) center at (20, 0) and radius 30 MPa (d) center at (30, 0) and zero radius

[CE: GATE-2006]
GATE-20. The figure shows the state of stress at a certain + o
¥

GATE-18. Mohr’s circle for the state of stress defined by { } MPa is a circle with

point in a stressed body. The magnitudes of
normal stresses in the x and y direction are
100MPa and 20 MPa respectively. The radius of
Mohr's stress circle representing this state of

G\; .
stress is: - Ox >
(a) 120 (b) 80
(c) 60 (d) 40

.

[GATE-2004]
Data for Q21-Q22 are given below. Solve the problems and choose correct answers.

[GATE-2003]
The state of stress at a point "P" in a two dimensional loading is such that the Mohr's circle is a
point located at 175 MPa on the positive normal stress axis.

GATE-21. Determine the maximum and minimum principal stresses respectively from the
Mohr's circle

(a) + 175 MPa, —175MPa (b) +175 MPa, +175 MPa
(c) 0,-175 MPa (d)0,0
GATE-22. Determine the directions of maximum and minimum principal stresses at the point
“P” from the Mohr's circle [GATE-2003]
(a) 0, 90° (b) 90°, 0 (c) 45°, 135° (d) All directions
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Volumetric Strain

GATE-23. An elastic isotropic body is in a hydrostatic state of stress as shown in the figure. For
no change in the volume to occur, what should be its Poisson’s ratio? [CE: GATE-2016]

Gy

1

— G,
G,
(a) 0.00 (b) 0.25 (c) 0.50 (d) 1.00
GATE-23a. The Poisson’s ratio for a perfectly incompressible linear elastic material is
(a) 1 (b) 0.5 (0 (d) Infinity[GATE-2017]

GATE-23b. Length, width and thickness of a plate are 400 mm, 400 mm and 30 mm, respectively.
For the material of the plate, Young’s modulus of elasticity is 70 GPa, yield stress is 80
MPa and Poisson’s ratio is 0.33. When the plate is subjected to a longitudinal tensile
stress of 70 MPa, the increase in the volume (in mm3) of the plate is _ [GATE-2017(PI)]

Principal strains
GATE-24. If the two principal strains at a point are 1000 x 106 and -600 X 106, then the

maximum shear strain is: [GATE-1996]
(a) 800 x 10-6 (b) 500 x 10-6 (c) 1600 x 106 (d) 200 x 106
GATE-24a. A plate in equilibrium is subjected to oyy = 50 MPa

uniform stresses along its edges with

A T T T T A
magnitude oxx = 30 MPa and oyy =50 MPa as L1 1 | >
shown in the figure. The Young’s modulus Ya [,
of the material is 2x10! N/m2 and the I L
Poisson’s ratio is 0.3. If os is negligibly R Oxx = 30 MPa
small and assumed to be zero, then the —
strain €. is ] —>
(a) -120%x10-6 (b) - 60x106 “ >
v l l l l v
(c) 0.0 (d) 120 x10-6

[CE: GATE-2018]

GATE-24b.A rectangular region in a solid is in a state of plane strain. The (x, y) coordinates of
the corners ofthe undeformed rectangle are given by P(0,0), R(4,3), S(0,3). The
rectangle is subjected to uniform strains, exx = 0.001, eyy = 0.002, ¥ xy = 0.003, The

deformed length of the elongateddiagonal, upto three decimal places, is
units. [GATE-2017]

Strain Rosette

GATE-25. The components of strain tensor at a point in the plane strain case can be obtained
by measuring logitudinal strain in following directions.

(a) along any two arbitrary directions (b) along any three arbitrary direction
(c¢) along two mutually orthogonal directions
(d) along any arbitrary direction [CE: GATE-2005]
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Previous 25-Years IES Questions

Stresses at different angles and Pure Shear

IES-1. If a prismatic bar be subjected to an axial tensile stress o, then shear stress induced
on a plane inclined at 0 with the axis will be: [TES-1992]
o . o o o .
(a)Esm 20 (b)ECOSZQ (C)ECOSZH (d) Esm26?

IES-1a. The state of stress at a point when completely specified enables one to determine the
1. maximum shearing stress at the point [TES-2016]
2. stress components on any arbitrary plane containing that point
Which of the above is/are correct?

(a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2
IES-2. In the case of bi-axial state of normal stresses, the normal stress on 45° plane is equal

to [TES-1992]

(a) The sum of the normal stresses (b) Difference of the normal stresses

(c) Half the sum of the normal stresses (d) Half the difference of the normal stresses

IES-2(i). Two principal tensile stresses of magnitudes 40MPa and 20MPa are acting at a point
across two perpendicular planes. An oblique plane makes an angle of 30°with the

major principal plane. The normal stress on the oblique plane is [TES-2014]
(a) 8.66MPa (b) 17.32MPa (c) 35.0MPa (d) 60.0MPa
A point in two-dimensional stress state, is G
IES-2a A
subjected to biaxial stress as shown in the /
above figure. The shear stress acting on
the plane AB is
(a) Zero ) o ¢ >
(c) o cos20 (d) o sin 0. cos 0 6
0
B
c
[TES-2010]
IES-3. In a two-dimensional problem, the state of pure shear at a point is characterized by
[TES-2001]
(@) &, =¢,and y,, =0 (b) &, =—¢,and y,, =0
() & =2¢,andy, =0 (d) &, =0.5¢,and y,, =0
IES-3a. What are the normal and shear stresses on T =t 400 MPa

the 45° planes shown?
(a) o, =—0, =400MPa and r =0
(b) o, =0, =400MPa and =0 /
(c) o, =0, =—400MPa and z =0
(d) 0, =0, =7 =+200MPa
' |
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IES-4. Which one of the following Mohr’s circles represents the state of pure shear?
[TES-2000]

(et} ()

\_/

-

(c) /.\ (d) /-5\
- 0 -/ o
&= 0
IES-4(i). If the Mohr’s circle drawn for the shear stress developed because of torque applied
over a shaft, then the maximum shear stress developed will be equal to [IES-2014]

(a) diameter of the Mohr’s circle (b) radius of the Mohr’s circle
(c) half of the radius of the Mohr’s circle (d) 1.414 times radius of the Mohr’s circle

IES-5. For the state of stress of pure shear 7 the strain energy stored per unit volume in the
elastic, homogeneous isotropic material having elastic constants E and v will be:
[TES-1998]
2 2 2 2

v T 2T T
(a) E(l+v) (b) E(1+v) (c)?(1+v) () E(zﬂ/)

IES-6. Assertion (A): If the state at a point is pure shear, then the principal planes through
that point making an angle of 45° with plane of shearing stress carries principal
stresses whose magnitude is equal to that of shearing stress.

Reason (R): Complementary shear stresses are equal in magnitude, but opposite in
direction. [TES-1996]

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Aisfalse but R is true

IES-7. Assertion (A): Circular shafts made of brittle material fail along a helicoidally surface
inclined at 45° to the axis (artery point) when subjected to twisting moment.
Reason (R): The state of pure shear caused by torsion of the shaft is equivalent to one
of tension at 45° to the shaft axis and equal compression in the perpendicular
direction. [TES-1995]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut R is false
(d) Ais false but R is true

IES-8. A state of pure shear in a biaxial state of stress is given by [TES-1994]
o, 0 o O Oy Ty
(a) (b) (c) (d) None of the above
0 o, 0 -0 Ty Oy

IES-9. The state of plane stress in a plate of 100 mm thickness is given as [TES-2000]
oxx = 100 N/mm?2, oyy = 200 N/mm2, Young's modulus = 300 N/mm2, Poisson's ratio = 0.3.
The stress developed in the direction of thickness is:
(a) Zero (b) 90 N/mm?2 (c) 100 N/mm?2 (d) 200 N/mm?
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IES-10.

IES-103).

IES-11.

IES-11a

Principal SRegs #6d Strain S K Mondal’s
The state of plane stress at a point is described by o, = o, = oand Ty = 0. The normal

stress on the plane inclined at 45° to the x-plane will be: [TES-1998]

(a)O' (b) \/EO' (C)\/§O' (d)20‘

An elastic material of Young’s modulus E and Poisson’s ratio v is subjected to a
compressive stress of o1 in the longitudinal direction. Suitable lateral compressive
stress o2 are also applied along the other twolateral directions to limit the net strain
in each of the lateral direction to half of the magnitude that would be under o1 acting

alone. The magnitude of o2 1s [TES-2012]
v
(a)— (b ) ©) = (d) o
21 +v) 7 2@ -n ™ (1+ vt -
Consider the following statements: [TES-1996, 1998]

State of stress in two dimensions at a point in a loaded component can be completely
specified by indicating the normal and shear stresses on

1. A plane containing the point

2.  Any two planes passing through the point

3. Two mutually perpendicular planes passing through the point
Of these statements

(a) 1, and 3 are correct (b) 2 alone is correct

(c) 1 alone 1is correct (d) 3 alone is correct

If the principal stresses and maximum shearing stresses are of equal numerical value
at a point in a stressed body, the state of stress can be termed as

(a) Isotropic (b) Uniaxial [TES-2010]

(c) Pure shear (d) Generalized plane state of stress

Principal Stress and Principal Plane

IES-12.

IES-12(i).

IES-13.

IES-13a.

IES-13b.

In a biaxial state of stress, normal stresses are ox = 900 N/mm2, oy= 100 N/mm2and
shear stress © = 300 N/mm2. The maximum principal stress is [IES-2015]
(a) 800 N/mm?2 (b) 900 N/mm? (c) 1000 N/mm? (d)1200 N/mm?2

A body is subjected to a pure tensile stress of 100 units. What is the maximum shear
produced in the body at some oblique plane due to the above? [TES-2006]
(a) 100 units (b) 75 units (c) 50 units (d) 0 unit

In a strained material one of the principal stresses is twice the other. The maximum
shear stress in the same case is t . .Then, what is the value of the maximum
principle stress? [IES 2007]

(8) Tppx (b) 27, (©) 47y (d) 87,

A body is subjected to a direct tensile stress of 300 MPa in one plane accompaniedby
a simple shear stress of 200 MPa. The maximum normal stress on the plane willbe
(a) 100 MPa (b) 200 MPa (c) 300 MPa  (d) 400MPa [TES-2016]

The state of stress at a point in a loaded member is ox = 400 MPa, oy =- 400 MPa
and txy =+ 300 MPa . The principal stresses g, and g, are [TES-2016]

(a) 300 MPa and — 700 MPa (b) 400 MPa and — 600 MPa
(c) 500 MPa and — 500 MPa (d) 600 MPa and — 400 MPa

IES-13c.

The state of plane stress at a point in a loaded member is given by:
G, =+ 800 MPa

c, =+ 200 MPa
T, =t 400 MPa [TES-2013]

The maximum principal stress and maximum shear stress are given by:
(@) o, =800MPaand 1 =400 MPa
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() o, =800 MPa and t,_,_ =500 MPa

(¢) o,,, =1000 MPa and 1, =500 MPa
(d) o, =1000 MPa and t___ =400 MPa

IES-13d. The state of stress at a point in a body is given by ox= 100 MPa, oy = 200 MPa. One of
the principal o1 = 250 MPa. The magnitude of other principal stress and shearing

stress Txy are respectively [IES-2015]
(@)50+/3 MPa and 50 MPa (b) 100 MPa and 50+/3 MPa
() 50MPa and 50+/3 MPa (d) 50/3 MPa and 100 MPa

IES-13e. A state of plane stress consists of a uniaxial tensile stress of magnitude 8 kPa, exerted
on vertical surfaces and of unknown shearing stresses. If the largest stress is 10 kPa,
then the magnitude of the unknown shear stress will be [IES-2018]
(a) 6.47kPa (b) 5.47 kPa (c) 4.47 kPa (d) 3.47 kPa

IES-14. In a strained material, normal stresses on two mutually perpendicular planes are ox
and oy (both alike) accompanied by a shear stress ty One of the principal stresses
will be zero, only if [TES-2006]

O, X0
@) 7, =— 5 L (b) 7, =0,%0, ©7T,y = NS xo, @ 7, = o’ +O'5

IES-15. The principal stresses o1, 02 and o3 at a point respectively are 80 MPa, 30 MPa and -40
MPa. The maximum shear stress is: [TES-2001]
(a) 25 MPa (b) 35 MPa (c) 55 MPa (d) 60 MPa

IES-15(1). A piece of material is subjected, to two perpendicular tensile stresses of 70 MPa and
10 MPa. The magnitude of the resultant stress on a plane in which the maximum

shear stress occurs is [TES-2012]
(a) 70 MPa (b) 60 MPa (c) 50 MPa (d) 10 MPa

IES-16. Plane stress at a point in a body is defined by principal stresses 30 and o. The ratio of
the normal stress to the maximum shear stresses on the plane of maximum shear
stress is: [IES-2000]
(a) 1 (b) 2 ()3 (d) 4

IES-16(i). A system under biaxial loading induces principal stresses of 100 N/cm? tensile and 50
N/ecm? compressive at a point. The normal stress at that point on the maximum shear
stress at that point on maximum shear stress plane is [IES-2015]

(a) 75 N/em? (b) 50 N/cm? (c) 100 N/cm? (d) 25 N/em?

IES-17.  Principal stresses at a point in plane stressed element are o, =0, =500 kg/cm?.

Normal stress on the plane inclined at 45° to x-axis will be: [TES-1993]

(a0 (b) 500 kg/cm?2 (c) 707 kg/cm? (d) 1000 kg/cm?2
IES-19. For the state of plane stress. 10Mpg

Shown the maximum and L0Mpy

minimum principal stresses are:

(a) 60 MPa and 30 MPa '

(b) 50 MPa and 10 MPa 50ME| 50Mpa

(c) 40 MPa and 20 MPa

(d) 70 MPa and 30 MPa 40Mpa

1oMRa [IES-1992]
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IES-20. Normal stresses of equal magnitude p, but of opposite signs, act at a point of a
strained material in perpendicular direction. What is the magnitude of the resultant
normal stress on a plane inclined at 45° to the applied stresses? [TES-2005]
(a)2p (b) p/2 (c) p/4 (d) Zero

IES-21. A plane stressed element is subjected to the state of stress given by
o, =7, =100 kgf/cm® and oy = 0. Maximum shear stress in the element is equal to
[TES-1997]
(a) 50/3 kgflem? (b)100kgf/cm? (c) 5045 kgffem?  (d)150kgf/cm?
IES-21(i). The magnitudes of principal stresses at a point are 250MPa tensile and 150 MPa
compressive. The magnitudes of the shearing stress on a plane on which the normal

stress is 200MPa tensile and the normal stress on a plane at right angle to this plane
are [TES-2015]

(a) 507 MPa and 50 MPa (tensile) (b) 100 MPa and 100 MPa (compressive)
(¢ 50\/7_ MPa and 100 MPa (compressive) (d) 100MPa and 50\/7_ MPa (tensile)

IES-22. Match List I with List II and select the correct answer, using the codes given below

the lists: [TES-1995]
List I(State of stress) List II(Kind of loading)
A, i] 1. Combined bending and torsion of circular shaft.
| i
B. — 2. Torsion of circular shaft.

c. = — 3. Thin cylinder subjected to internal pressure.

4. Tie bar subjected to tensile force.

—_——

Codes: A B C D A B C D
(@ 1 2 3 4 () 2 3 4 1
@ 2 4 3 1 @ 3 4 1 2
Mohr's circle
IES-23. Consider the Mohr's circle shown T /‘\

above:
What is the state of stress
represented by this circle?
(@)o,=0,#0,7,,=0
b)o, +0,=0,7,, 20 —_ —_> o,

(
(c)o, =0, 0, =7, #0
(

X

d)o, #0,0, =7,, =0

[TES-2008]
IES-24. For a general two dimensional stress system, what are the coordinates of the centre
of Mohr’s circle? [TES 2007]
O, — O, o, +0 o, +0 O, — O,
@ ———=, 0 (b) 0, ——= (© ———2.0(d) 0,———=
2 2 2 2
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IES-25. In a Mohr's circle, the radius of the circle is taken as: [IES-2006; GATE-1993]

(@) [Gx ;"y T +(z,) () \/M%%)Z
© (Gx ;(jy ]Z ~(ry) @ \(o,-0,) +(r )

Where, ox and oy are normal stresses along x and y directions respectively and txy 1s the shear
stress.

IES-25(). The state of stress at a point under plane stress condition is

o, =60MPa,c,, =120MPa and 7, =40MPa. [IES-2014]
The radius of Mohr’s circle representing a given state of stress in MPais
(a) 40 (b) 50 (c) 60 (d) 120
IES-25(ii). The state of stress at a point is given by ox= 100 MPa, o, =- 50 MPa, ty= 100 MPa. The
centre of Mohr’s circle and its radius will be [TES-2015]
(a) (0x=75MPa, txy =0) and 75MPa (b) (0x=25MPa, txy =0) and 125MPa
(c) (0x=25MPa, txy=0) and 150MPa (d) (0x=75MPa, txy=0) and 125MPa
IES-25(ii). @ Which of the following figures may represent Mohr’s circle? [TES-2014]

(a) (b) B (d)

IES-26. Maximum shear stress in a Mohr's Circle [TES- 2008]
(a) Is equal to radius of Mohr's circle (b) Is greater than radius of Mohr's circle
(c) Is less than radius of Mohr's circle (d) Could be any of the above

IES-27. At a point in two-dimensional stress system ox = 100 N/mm?2, oy = txy = 40 N/mm2. What
is the radius of the Mohr circle for stress drawn with a scale of: 1 ecm = 10 N/mm?2?

[TES-2005]
(a) 3cm (b) 4 cm () 5cm (d) 6 cm
IES-28. Consider a two dimensional state of stress given for an element as shown in the
diagram given below: [TES-2004]
v 100 MPa
A
200 MPa
200 MPa
—> X Tmo MPa
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TES-29.

IES-30.

IES-30@).

IES-31.

IES-32.

Strain

Principal SRegs Hiod Strain S K Mondal’s
What are the coordinates of the centre of Mohr's circle?
(a) (0, 0) (b) (100, 200) (c) (200, 100) (d) (50, 0)

Two-dimensional state of stress at a point in a plane stressed element is represented
by a Mohr circle of zero radius. Then both principal stresses

(a) Are equal to zero [TES-2003]

(b) Are equal to zero and shear stress is also equal to zero

(¢)  Are of equal magnitude but of opposite sign

(d)  Are of equal magnitude and of same sign

Assertion (A): Mohr's circle of stress can be related to Mohr's circle of strain by some
constant of proportionality. [TIES-2002, IES-2012]
Reason (R): The relationship is a function of yield stress of the material.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Aisfalse but R is true

Consider the following statements related to Mohr’s circle for stresses in case of
plane stress: [TES-2015]

1. The construction is for variations of stress in a body.

2. The radius of the circle represents the magnitude of the maximum shearing stress.
3. The diameter represents the difference between two principal stresses.

Which of the above statements are correct?

(2)1,2 and 3only (b)2 and 3 only (c) 1 and 3 only (d) 1 and 2 only

When two mutually perpendicular principal stresses are unequal but like, the
maximum shear stress is represented by [TES-1994]

(a) The diameter of the Mohr's circle

(b) Half the diameter of the Mohr's circle

(¢)  One-third the diameter of the Mohr's circle

(d)  One-fourth the diameter of the Mohr's circle

State of stress in a plane element is shown in figure I. Which one of the following
figures-II is the correct sketch of Mohr's circle of the state of stress?
[TES-1993, 1996]

—_—

| | LD $e

'--.-_-_-—.J (C Tl

-—— .
Figure-I Figure-II

Volumetric Strain

IES-33.

IES-33a.

If a piece of material neither expands nor contracts in volume when subjected to
stress, then the Poisson’s ratio must be
(a) Zero (b) 0.25 (c) 0.33 (d) 0.5 [TES-2011]

A metal piece under the stress state of three principal stresses 30, 10 and 5 kg/mm?2 is
undergoing plastic deformation. The principal strain rates will be in the proportions

of [TES-2016]
(a) 15, —5and — 10 (b) — 15, 5and — 10
(c) 15, 5and 10 (d)—15,— 5 and 10
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IES-33b. A point in a two dimensional state of strain is subjected to pure shearing strain of
magnitude y,, radians. Which one of the following is the maximum principal strain?

[IES-2008]
(@) 7, ) 7, /N2 (©) 7, /2 (d 27,

IES-34. Assertion (A): A plane state of stress does not necessarily result into a plane state of
strain as well. [TES-1996]
Reason (R): Normal stresses acting along X and Y directions will also result into
normal strain along the Z-direction.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut R is false
(d) Aisfalse but R is true

IES-34a Assertion (A): A plane state of stress always results in a plane state of strain.
Reason (R): A uniaxial state of stress results in a three-dimensional state of strain.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistrue but R is false [TES-2010]
(d) Aisfalse but R is true

IES-34b Assertion (A): A state of plane strain always results in plane stress conditions.
Reason (R): A thin sheet of metal stretched in its own plane results in plane strain conditions.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) AistruebutRis false
(d) Aisfalse but R is true

IES-34c. Consider the following statements:
When a thick plate is subjected to external loads:
1. State of plane stress occurs at the surface
2. State of plane strain occurs at the surface
3. State of plane stress occurs in the interior part of the plate
4. State of plane strain occurs in the interior part of the plate
Which of these statements are correct? [TES-2013]
(@) 1 and 3 (b) 2 and 4 (¢)1and 4 (d) 2 and 3

Principal strains

IES-35. Principal strains at a point are 100x10° and-200x107%. What is the maximum shear
strain at the point? [TES-2006]
(a) 300 x 10-6 (b) 200 x 10-6 () 150 x 10-6 (d) 100 x 10-6

IES-36. The principal strains at a point in a body, under biaxial state of stress, are 1000x10-¢
and -600 x 10-6.What is the maximum shear strain at that point?
[TES-2009]
(a) 200 x 10-6 (b) 800 x 10-6 (c) 1000 x 10-6 (d) 1600 x 10-6

IES-37. The number of strain readings (using strain gauges) needed on a plane surface to

determine the principal strains and their directions is: [TES-1994]
(@1 (b) 2 (©3 (d) 4
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Principal strain induced by principal stress

IES-38.

IES-38().

IES-38(ii).

IES-39.

IES-40.

The principal stresses at a point in two dimensional stress system are ¢ 1 and ¢ 2 and
corresponding principal strains are ¢, and ¢,. IfE and v denote Young's modulus and

Poisson's ratio, respectively, then which one of the following is correct?

[TES-2008]
E
(@) o, =Eg, (b)o, = m[a +ve, |
E

(c)o, = m[a} —ve, | (d)o, =E[&, —vs, |
At a point in a body, €1 = 0.004 and &2 = -0.00012. If E = 2x105 MPa and p = 0.3, the
smallest normal stress and the largest shearing stress are [IES-2015]
(a) 40MPa and 40MPa (b) OMPa and 40MPa
(c) 80MPa and OMPa (d)OMPa and 80MPa

Two strain gauges fixed along the principal directions on a plane surface of a steel
member recorded strain values of 0.0013 tensile and 0.0013 compressive respectively.
Given that the value of E = 2x105 MPa and p = 0.3, the largest normal and shearing

stress at this point are [TES-2015]
(2)200MPa and 200MPa (b)400MPa and 200MPa
(c)260MPa and 260MPa (d)260MPa and 520MPa

Assertion (A): Mohr's construction is possible for stresses, strains and area moment of
inertia. [TES-2009]
Reason (R): Mohr's circle represents the transformation of second-order tensor.

(a) Both A and R are individually true and R is the correct explanation of A.

(b) Both A and R are individually true but R is NOT the correct explanation of A.

(¢) Aistruebut R is false.

(d) Aisfalse but R is true.

A rectangular strain rosette, shown Yy
infigure, gives following reading in a
strain measurement task, €, /

g1 =1000x10® , &, =800x10°° | A
and &5 =600x10® / €2
The direction of the major principal 1

strainwith respect to gauge 1is
(a) O° (b) 150 4

|
|
(c) 300 (d) 450 7 )45 —— i
[__q%

[TES-2011]

Previous 25-Years IAS Questions

Stresses at different angles and Pure Shear

TIAS-1.

On a plane, resultant stress is inclined at an angle of 45° to the plane. If the normal
stress is 100 N /mm?2, the shear stress on the plane is: [TAS-2003]
(a) 71.5 N/mm? (b) 100 N/mm?2 (c) 86.6 N/mm?2 (d) 120.8 N/mm?2
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IAS-2. Biaxial stress system is correctly shown in [IAS-1999]
304 410 404 404
—L 20 139 20 20 .20 220
2 [~ - i o] 3 t 3
o FQ 19 | 0 30 30 30
\ \ \ \
20 2055 20~ 20 20—
30w vi0 40w 40y
@) ®) © @
TIAS-3. The complementary shear stresses of . T A
intensity 7 are induced at a point in D
the material, as shown in the figure.
Which one of the following is the rl T
correct set of orientations of principal T
planes with respect to AB?
(a)30° and 120° (b) 45° and 135° 's B
(c) 60° and 150° (d) 75° and 165° —r
[TAS-1998]
TAS-4. A uniform bar lying in the x-direction is subjected to pure bending. Which one of the
following tensors represents the strain variations when bending moment is about the
z-axis (p, q and r constants)? [TAS-2001]
py 0 O py 0 O
@0 aqy O ® |0 qy O
0O 0 ry 0O 0 O
py 0 O py 0 O
@] 0 py O [0 aqy O
0 0 py 0 0 aqy
IAS-5. Assuming E = 160 GPa and G = 100 GPa for a material, a strain tensor is given as:
[IAS-2001]
0.002 0.004 0.006
0.004 0.003 0
0.006 0 0
The shear stress, Tyy is:
(a) 400 MPa (b) 500 MPa (c) 800 MPa (d) 1000 MPa

Principal Stress and Principal Plane

TAS-6.

A material element subjected to a plane state of stress such that the maximum shear

stress is equal to the maximum tensile stress, would correspond to

]

o] ol o1

G

Gl

(a)

TAS-7.

(a) 140 MPa
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[TAS-1998]

1
]

(d)

i
]

(c)

T G1

A solid circular shaft is subjected to a maximum shearing stress of 140 MPs. The

magnitude of the maximum normal stress developed in the shaft is:
(b) 80 MPa

[TIAS-1995]

(c) 70 MPa (d) 60 MPa
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TAS-8. The state of stress at a point in a loaded member is shown in the figure. The
magnitude of maximum shear stress is [IMPa =10 kg/cm?2] [TAS 1994]
(a) 10 MPa (b) 30 MPa (c) 50 MPa (d) 100MPa
A
ag,= 400 P
~ T =30MPg
L
0. ——40MPa 0, =—40MPa
—
1
Ty = 30MPa”
T, = A0 P
v
TAS-9. A horizontal beam under bending has a maximum bending stress of 100 MPa and a
maximum shear stress of 20 MPa. What is the maximum principal stress in the beam?
[TAS-2004]
(a) 20 (b) 50 (c) 50 + /2900 (d) 100
IAS-10. When the two principal stresses are equal and like: the resultant stress on any plane
is: [IAS-2002]
(a) Equal to the principal stress (b) Zero
(¢) One half the principal stress (d) One third of the principal stress

IAS-11. Assertion (A): When an isotropic, linearly elastic material is loaded biaxially, the
directions of principal stressed are different from those of principal strains.
Reason (R): For an isotropic, linearly elastic material the Hooke's law gives only two
independent material properties. [TAS-2001]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut R is false
(d) Aisfalse but R is true

IAS-12. Principal stresses at a point in a stressed solid are 400 MPa and 300 MPa respectively.
The normal stresses on planes inclined at 45° to the principal planes will be:
[IAS-2000]
(a) 200 MPa and 500 MPa (b) 350 MPa on both planes
(c) 100MPaand6ooMPa (d) 150 MPa and 550 MPa

IAS-13. The principal stresses at a point in an elastic material are 60N/mm? tensile, 20 N/mm?
tensile and 50 N/mm?2 compressive. If the material properties are: n = 0.35 and E = 105
N/mm?2, then the volumetric strain of the material is: [TAS-1997]
(a) 9 X 10-5 (b) 3 x 10+ (c) 10.5 x 10-5 (d) 21 x 10-5

Mohr's circle
IAS-14. Match List-I (Mohr's Circles of stress) with List-II (Types of Loading) and select the

correct answer using the codes given below the lists: [TAS-2004]
List-I List-IT
(Mohr's Circles of Stress) (Types of Loading)
Ai

1. A shaft compressed all round by a hub

Om
NI
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IAS-15.

TAS-16.

TAS-17.

TAS-18.
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2. Bending moment applied at the free
B OiC end of a cantilever
C. .
3. Shaft under torsion
j |
|
C O
4. Thin cylinder under pressure
i
D. QO (l:’w 5. Thin spherical shell under internal
pressure
Codes: A B C D A B C D
(a 5 4 3 2 (b) 2 4 1 3
(c) 4 3 2 5 (d) 2 3 1 5

The resultant stress on a certain plane makes an angle of 20° with the normal to the
plane. On the plane perpendicular to the above plane, the resultant stress makes an
angle of 0 with the normal. The value of 0 can be: [IAS-2001]

(a) 0° or 20° (b) Any value other than 0° or 90°

(c) Any value between 0° and 20° (d) 20° only

The correct Mohr's stress-circle drawn for a point in a solid shaft compressed by a
shrunk fit hub is as (O-Origin and C-Centre of circle; OA = 01 and OB = o2)

[IAS-2001]

d
B cC A @ ‘
’ ABC

O

A Mohr's stress circle is drawn for a body subjected to tensile stress fX and fy in

two mutually perpendicular directions such that f > fy . Which one of the following

statements in this regard is NOT correct? [IAS-2000]

f,+f

y

(a) Normal stress on a plane at 45° to fx 1s equal to

(b) Shear stress on a plane at 45° to fx is equal to

(c) Maximum normal stress is equal to fX .

f,+f

y

(d) Maximum shear stress is equal to

For the given stress condition o, =2 N/mm?, 0,=0 and Ty = 0, the correct Mohr’s circle
is: [TAS-1999]

T T T T

G (N imm®)
S TR S Lk

(c) (d)
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IAS-19. For which one of the following two-dimensional states of stress will the Mohr's stress

circle degenerate into a point? [IAS-1996]
* J— Tﬁ T
J [ « O 2 g , T T
k| 1
T ¥ [¥]
(@) (b) (C}J' (d) I

Principal strains

IAS-20. In an axi-symmetric plane strain problem, let u be the radial displacement at r. Then

the strain components¢,,s,, Y, are given by [TAS-1995]
u ou o%u ou u
& =—6=—,1,,= b) & =—,6=—,1,=0
@ & =1b =5 e = 500 O =G e =y e
u ou ou ou o%u
&=—8=—,1,,=0 d) & =—,6=",Y,,=
© & =18 = T @ =% 50" " arao

IAS-21. Assertion (A): Uniaxial stress normally gives rise to triaxial strain.
Reason (R): Magnitude of strains in the perpendicular directions of applied stress is
smaller than that in the direction of applied stress. [IAS-2004]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut R is false
(d) Aisfalse but R is true

IAS-22. Assertion (A): A plane state of stress will, in general, not result in a plane state of
strain. [TAS-2002]
Reason (R): A thin plane lamina stretched in its own plane will result in a state of
plane strain.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut Ris false
(d) Aisfalse but R is true

OBJECTIVE ANSWERS

GATE-1.Ans. (a) It is the definition of shear stress. The force is applied tangentially it is not a point load
so you cannot compare it with a cantilever with a point load at its free end.
o, + O, o, —
_9x "%

GATE-2. Ans. (d) o, = x

O,
+ Y cos20 +1,,sin260
2 2 Y

Here o, =0, =0, 7,, =7, =45
GATE-3. Ans. (d) It is well known that,

Ty =TT =T and 7, =7,

so that the state of stress at a point is given by six components o,,0,,0, and z,,
GATE-4. Ans.1 MPa (Range givenis 0.9 to 1.1 MPa)
GATE-4a. Ans. (c)

Let /CAB=0

Ty T

sin©® :§; cos0 = é; tan© :§
5 5 4
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Thus from force equilibrium,
o, x AB=AC x (c cos0 — tsin0)

= zeéx(120xé—70><§)
4 5 5

= c, =67.56 MPa
And, o, x BC=AC x (o sin0 + t cos0)
= c :§X(120X§+70Xéj
73 5 5

= o, = 213.3 MPa

GATE-4b. Ans. (c)

Normal stress on inclined plane, &, = &, C0s° @ = 4xcos’ 30° =3 MPa

. 4
Shear stress on inclined plane, 7 = %sm 20 = Exsm (2X300) =1.73 MPa

Since both the stress exceeds the given limits, answer is option (c).

GATE-5. Ans. (¢)

A Ty

Ny

ol === - > o.

Ty N

N
‘ny

Oy
Taking moment equilibrium about the centre, we get

‘nyX—-f"nyX—: ‘ExyXE'f"ExyX—

'ny = 'ny
GATE-5a. Ans. (b) It is a case of Pure shear.
GATE-5b. Ans. 50 Range (49.9 to 50.1)
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GATE-6. Ans. (a) On a principal plane, only normal stresses act. No shear stresses act on the principal
plane.

GATE-7.Ans. (b)

. O, — O
Maximum shear stress = 2

= ZO_T(_N) —15 MPa
GATE-7a. Ans. (b)

GATE-8. Ans. 5.0
GATE-8(i). Answer: (c)

2 2
— o, — 0O, -
p OO %O e [(80-201 0o sopp,
max 9 2 4 2

GATE-9. Ans. (b) Shear Stress (7 )— 16T = _ 1610000 Pa =50.93MPa

(0 1)3

Maximum principal Stress = 1, 2 =82 MPa

GATE-10.Ans. (c)

Maximum principal stress

c, (5 2 1.5 1 2
=? = 72 7 +(1.20)* =2.17 N/ mm”?

o, - O'y )
GATE-11. Ans. (d) o, = 2 +tr, If 7,

o, +0, o, —0,
2

GATE-12. Ans. (b) 0, =0, o, =0, =

2
(o) =Ty ["X‘GYJ +2 =29, 0 +0? =20

2 2
o, +0, o, — O, —
GATE-13. Ans. (¢) 0, =——>+ ( - yj +72 :10+2+ [102 2J +4? =11.66 MPa

2 2
+ — — — —
GATE-14.Ans. 8.4 to 8.5, o, = ¥ | {0* Gyj so2 2854, J( 62 4} +(-8) =8.434MPa

2

100+0, [(100-0,)
= 5| +50° or 0, =37.78kPa

o, t+o, o, 0, ’ )
GATE-14a. Ans. (c) o, = - +7

GATE-15. Ans. (a)
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Txy

Y N
A Oy
c
—_ N
N r Oxx
=X N (O, Ty)
Y | o
Ty N
B( Smax,0)
Tyx P
Al(Tmin,0) 0 d Opx
| 20 M
M (T ,Tuy)

GATE-16. Ans. (b)
GATE-17. Ans. (b)

2
J(ﬂQE;QQJ +(40)" =50 MPa

GATE-18.Ans.(d)
The maximum and minimum principal stresses are same. So, radius of circle becomes zero and
centre is at (30, 0). The circle is respresented by a point.

GATE-20. Ans. (c)
o, =100MPa, o, = —-20MPa

o,—o, 100- (-20)
N 2
GATE-21. Ans. (b) . T

Radius of Mohr'scircle = =60

‘ Fy= Ty =0, =0,

o,=0,=0,=0,=+175 MPa

1

GATE-22. Ans. (d) From the Mohr’s circle it will give all directions.
GATE-23. Ans. (¢)

GATE-23a. Ans. (b)

GATE-23b. Ans. 1632

é!:Qj£q@+%+q)

\ E

AV =(1_—2'u)(ax+0'y +az)><V =w(70 MPa+0+0)x(400x400x30) mm’
E 70x10° MPa

GATE-24. Ans. (c) Shear strain e, —e,,, ={1000-(-600)} x 10° =1600 x 10°°
GATE-24a. Ans. (a)

GATE-24b. Ans. Range (5.013 to 5.015)
GATE-25. Ans.(b)When strain is measured along any three arbitrary directions, the strain diagram is
called rosette.

IES

IES-1. Ans. (a)
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IES-1a. Ans. (¢)

o,+o, oO,-0, _ Yoy
Normal stress( o, ) = + 0526 +7,,Sin 20 .
2 2 — = "
G -0 A B
Shear stress(7) = ——sin20 - r,, cos 20 + \P Ty
2 i
i [
U
Tuy
D —1— C
Twy
¥ Sy
IES-2. Ans. (¢) o, = . eray + 2 ;Gy cos20 + 7, sin20
o, + 0O
At0 = 45°andr,, =0; o0, =———
2
IES-2(i). Ans(c) o, =40MPa, o, =20MPa.
o,to, 0,—0,
o=— + 5 c0s 260 =30+10cos60 =35MPa
o, -0
IES-2a Ans. (a) Shear stress(z) = — 5 ~sin26 - 7,, cos 28
Hereo, =0,0, =0 andr, =0
IES-3. Ans. (b)
IES-3a. Ans. (a)
IES-4. Ans. (¢)
IES-4(i). Ans. (b)
IES-5. Ans. (a)o, =7, o0,=-7, 0,=0
1 2 1+ u
Uz—[ 24 (-7) -2ur (-t ]Vz—rZV
L[ e () ~aue(r) V="t
IES-6. Ans. (b)
IES-7. Ans. (a) Both A and R are true and R is correct explanation for A.
IES-8. Ans. (b) 0,=7, o0,=-7, 0,=0
IES-9. Ans. (a)
IES-10. Ans. (a) o, = k. ;Uy + 2 ;Uy cos20 +,, sin20
IES-10(G). Ans. (b)
IES-11. Ans. (d)
IES-11a Ans. (¢)
IES-12. Ans. (c)
IES-12(i). Ans. (¢) 7, == ;"2 = 1002‘0 =50 units.
o, — O o
IES-13. Ans. (€) Ty ZlTZ, 0, =20, or Ty 272 or 0, =27, or O=20,=471,,,

2
IES-13a.Ans. (d) 0, = % + \/(%) +200% =400 MPa

400+(—400) . |(400—(-400)Y" _
IES-13b.Ans. ()0, = ———— &, | ———— +300? =+500 MPa

IES-13c. Ans. (¢)
IES-13d. Ans. (c)
IES-13e. Ans. (c)
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=447 kPa

o, to, o, —o, 2 )
IES-14. Ans. (c) o, = + +7,

2
] o, +0 o, -0
fo,=0 = XY= XV | 4z
2 2 Xy

2 2
o, to o,-0C
or | ——2| =| 22| +7° orr, =0, %0
2 2 Xy Y y

IES-15. Ans. (d) 7, = 0,-0, _ 80 - (-40) _

IES-15(i). Ans. (c¢)

27,
IES-16. Ans. (b)tan20 = Y

. ) 3o+0
Major principal stress on the plane of maximum shear = o; =

=20
2
IES-16(i).Ans. (d) Shear stress is maximum at 45° plane
o.,to, o0,-0,
o, = + cos 20
2 2

_ 100 +2(—5O) L0 ;Uy cos2x45° = 25 MPa

IES-17. Ans. (b)When stresses are alike, then normal stress on on plane inclined at angle 45° is

1 ’ 1Y 1.1
0,=0,008’0+0,sin°0=0, +o,| —= —500[ } 500kg/cm?
V2 2 2

o, to, o- -0,
IES-19. Ans. (d) o, =

50+( 10) 50+10j

Oy, =

=70 and o, =-3
IES-20. Ans. (d) o, = 9% ,Ox”

X

O
+ Y cos26
2 2

P-P P+P
o PP

; cos2x45=0
2

IBS-21. Ans. (o) (o), = 2 O / = +O +72 =50F750v5
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Maximum shear stress = M = 50\/§

IES-21(i).Ans. (c)

IES-22.
IES-23.

IES-24.
IES-25.

o.,to, o0,-0C

o, = + > cos 20
2 2

250 +(-150) 250—(-150)
200 = 9 + 9 cos 20

or 8 =20.7°
c,—0o, . 250—(-150)

x Yy

T =

Without Using Calculator

2
cos26 = 150 _ % therefore sin26 = [1— (%j = ﬂ

sin 26 = Tsm(zx 20.70) ~132.28 =504/7

S K Mondal’s

200 4
o.—0. . 250—(-150 7
r=— ys1n29:#x£:50xﬁ
2 2 4
And o,+0,=0,+0,
Ans. (c¢)
Ans. (b) It is a case of pure shear. Just put g, =—0,
Ans. (c¢)
Ans. (a)
N by
A Oy
c
—_—t
N OxXX
‘_\I‘ 0 m {\ X N (T . Ty)
r)qr ﬁ_ NI
Tyx
P
Y Al(omin,0) 0

IES-25(i). Ans. (b)

0, =60MPa,o  =120MPa and 7,, =40MPa.

2 2
. O —0 60-120
radlus=\/(TwJ +7,7 =\/( 5 j +402 =50

IES-25(ii). Ans. (b)
IES-25(iii). Ans. (c)
IES-26. Ans. (a)
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F Y

{l.

2 2
Oy + 0Oy 2 Oy —Oy 2
Gy — + Ty = + Ty
2 2

.. Radius of the Mohr Circle

2
61 _62 GX _Gy 2
= Tmax = 2 =T = Tmax = \/[ 2 T Ty

IES-27. Ans. (¢) Radius of the Mohr circle

— 2 — 2
{ ["ngyj vr,7 110 =[\/(Mj +402}/10 ~50/10 = 5cm
200100

_ e
IES-28. Ans. (d) Centre of Mohr’s circle is [ 5 Y ,Oj = ( 5 ,Oj =(50,0)

IES-29. Ans. (d)

IES-30. Ans. (c)

IES-30(i). Ans. (b)The construction is for variations of stress in a body in different planes.

IES-31. Ans. (b)

IES-32. Ans. (c)

IES-33. Ans. (d)

IES-33a. Ans. (a)It’s very simple. in plastic deformation there is no change in volume. Therefore

volumetric strain will be zero. &, +¢&, +&, =0

Or you may use poisson’s ratio = 0.5 and calculate principal strains.
IES-33b. Ans. (c)

IES-34. Ans. (a)

IES-34a. Ans. (d)

IES-34b. Ans. (d)

IES-34c. Ans. (a)

IES-35. Ans. (a) 7,,, = & — &, = 100—(-200)x10° =300x10°°
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o,— 0,

don't confuse withMaximum Shear stress(z,,,, ) = 5

&

in strain % = %82 andr,, = % that is the difference.

IES-36. Ans. (d)

e*;ey :d%y = ¢, =c,—€, =1000x10°—(-600x10°)=1600x10"

IES-37. Ans. (¢) Three strain gauges are needed on a plane surface to determine the principal strains and
their directions.

IES-38. Ans. (b) ¢, = % — ,u% and ¢, = % — ,u% From these two equation eliminate o, .
IES-38(i). Ans. (b)

IES-38(ii).Ans. (a)

IES-39. Ans. (a)

IES-40. Ans. (a)

IAS

IAS-1. Ans. (b) Weknow o, = ocos’d and r=osinfcoséd
100 = ocos’ 45 or o =200

7 =200sin45c0s45 =100
IAS-2. Ans. (¢)

v

L J
3

IAS-3. Ans. (b) It is a case of pure shear so principal planes will be along the diagonal.
TAS-4. Ans. (d)Stress in x direction =ox

j— O-X —_ O_X —_ O_X
Therefore &, = = & =—H £’ &g, =—U £
IAS-5. Ans. (c)
Ex gxy €y
7xy

Ep Ey &y, | and & =
gzx gzy gzz

z,, =G 7, =100x10° x(0.004 x 2) MPa = 800MPa

0,-0, _0;=(-0y)

IAS-6. Ans. (d) 7, = 5 = > =0,
o, —0, _ : .
IAS-7. Ans. (a) 7., = 5 Maximum normal stress will developed if o, =—0, =0
o,—o,\ 40—40Y’
IAS-8. Ans. (¢) 7.« = (%J + Txyz = \/(%J +30° =50 MPa
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IAS-9. Ans. (¢)o,=100MP:7 =20 mPx

2
O, O,
01,2=—b+ (—bJ +T2

2 2
2 2
_%, (o), 100 |(100 2 _
0=t (2) vt === ] 420 = (50++/2900 ) MPa
o,to, o,-0

IAS-10. Ans. (a) 0, = +— 5 L cos20

2
[We may consider thisas 7, =0] o, =0, =o(say) So o, =0 foranyplane

IAS-11. Ans. (d) They are same.
IAS-12. Ans. (b)

o,+o o,—0 -
o :( X2 y]—i—( X2 yjcosZ@:400;300+40023000052x45°=350|V|Pa

IAS-13. Ans. (a)
e =Ix_ &+2 e—&— 92, 9% | ande,=22- ﬁ+i
<~E “ETE)YTE METE =~ E HMETE

+o, +
€, =€, +€ +ezzm—2—’u(aX +o +0'Z)
y E E y
o, +to,+t0, _(60+20—50
10°

J(1—2><O.35)=9><105

IAS-14. Ans. (d)
IAS-15. Ans. (b)
IAS-16. Ans. (d)

f—f

y

IAS-17. Ans. (d) Maximum shear stress is

IAS-18. Ans. (d) Centre[ax ; % ,oj - (2 . 0 ,OJ - (1,0)

2 2
radius = [0x20yj +15 = (2—;0j +0=1

IAS-19. Ans. (¢) Mohr’s circle will be a point.

. N Oy — Oy 2
Radius of the Mohr’s circle = +7, - 7y,=0ando, =0, =0

2
IAS-20. Ans. (b)

IAS-21. Ans. (b)
IAS-22. Ans. (c) R is false. Stress in one plane always induce a lateral strain with its orthogonal plane.
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Previous Conventional Questions with Answers

Conventional Question IES-1999
Question:
Answer:

principal planes.

Conventional Question IES-2009

Q. The Mohr’s circle for a plane stress is a circle of radius R with its origin at + 2R on ¢

axis. Sketch the Mohr’s circle and determine 6, ..s O in> Cav>s (txy) for this
max

situation.

Ans. Here o =3R

max

Omin = R

What are principal in planes?
The planes which pass through the point in such a manner that the resultant stress across
them 1is totally a normal stress are known as principal planes. No shear stress exists at the

,Rm
7z
O

&

w

~

Conventional Question IES-1999
Question:

Answer: Let shearing stress is '7' MPa.

The principal stresses are

3R

o
1,2 2
Major principal stress is

2

2
:120+70i\/[120—7o] N

N
L

70Mpa

J

2
T 120Mpa

120470
G, = 5
=135(Given) or, = 31.2MPa.

For-2019 (IES, GATE & PSUs)

\/[120—70]2
+ 5 +7

2
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[N

70Mpa

[2 Marks]

Direct tensile stresses of 120 MPa and 70 MPa act on a body on mutually
perpendicular planes. What is the magnitude of shearing stress that can be applied
so that the major principal stress at the point does not exceed 135 MPa? Determine
the value of minor principal stress and the maximum shear stress.

120Mpa
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Minor principal stress is

2
o, = 120; 0 —\/[1202_ 70) +31.9% =55MPa

_ o, ;0'2 _ 1352— 55 — 40MPa

Conventional Question IES-2009

Q. The state of stress at a point in a loaded machine member is given by the principle
stresses. [ 2 Marks]
6, =600 MPa, 6, =0and 63 =-600 MPa.
(i) What is the magnitude of the maximum shear stress?
(ii) What is the inclination of the plane on which the maximum shear stress acts
with respect to the plane on which the maximum principle stress o, acts?

Ans. (i) Maximum shear stress,
_6;—03 _ 600 — (—600)
T T 2
=600 MPa

(ii) At 0 =45°max. shear stress occurs with 0, plane. Since 0; and O, are principle stress

does not contains shear stress. Hence max. shear stress is at 45° with principle plane.

Conventional Question IES-2008

Question: A prismatic bar in compression has a cross- sectional area A = 900 mm?2 and carries
an axial load P= 90 kN. What are the stresses acts on
(i) A plane transverse to the loading axis;
(ii) A plane at 0=60° to the loading axis?

Answer: (1) From figure it is clear A plane
transverse to loading axis, 6=00
1
Lo, = P cos26=-20000 / 1ym2
A 0
=—100N / mm® > On
P 90000 N A\ r
and 7=—-Sin26=———xsin6=0 1
2A 2x900 1
(11) A plane at 60° to loading i
axis, !
0=90°- 60° = 30°
o, = P c0s20=-20000 1239
A 900
= —75N / mm?
T= isin29 _ 90000 sin2x 60°
2A 2x900
= —43.3N/mm?

Conventional Question IES-2001
Question: A tension member with a cross-sectional area of 30 mm? resists a load of 80 kN,
Calculate the normal and shear stresses on the plane of maximum shear stress.

Answer: c, = ECOS2 0 T= isin 20
A 2A
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/' Gn
— P
For maximum shear stress sin20 =1, or, 0 = 45°
3 3
(0,)= 3210 cos?45-1333MPa and 7, =+ = 2219 _4333upa
2A 30x2

Conventional Question IES-2007

Question:

Answer:

At a point in a loaded structure, a pure shear stress state 7 = + 400 MPa prevails

on two given planes at right angles.

(i) What would be the state of stress across the planes of an element taken at +45°
to the given planes?

(ii) What are the magnitudes of these stresses?

(1) For pure shear

O, =—0,; T... = o, ==+400MPa
6=0 l I
2\ o
Gs -t N (o] r C.
N/ NP

5 0;,”= 0 Mohr's Clrcle In pure shear

¥

=0
(1) Magnitude of these stresses

6, =T,Sin20 =7, Sin90° =7, =400MPa and 7 = (-7, €0s20)=0

Conventional Question IAS-1997

Question:

Answer:

Draw Mohr's circle for a 2-dimensional stress field subjected to
(a) Pure shear (b) Pure biaxial tension (c) Pure uniaxial tension and (d) Pure
uniaxial compression

Mohr's circles for 2-dimensional stress field subjected to pure shear, pure biaxial tension, pure
uniaxial compression and pure uniaxial tension are shown in figure below:

1 T t1 t A

/ AR

2

T2

ik}

T

Rl

(0

[N
N7

T2

(d)

@ (&)

Conventional Question IES-2003

Question:

For-2019 (IES, GATE & PSUs)

A Solid phosphor bronze shaft 60 mm in diameter is rotating at 800 rpm and
transmitting power. It is subjected torsion only. An electrical resistance strain
gauge mounted on the surface of the shaft with its axis at 45° to the shaft axis, gives
the strain reading as 3.98 x 10-4. If the modulus of elasticity for bronze is 105 GN/m?2
and Poisson's ratio is 0.3, find the power being transmitted by the shaft. Bending
effect may be neglected.
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Answer:

% ZAxisonm Shaft

4 ;
V- U

—— T

Let us assume maximum shear stress on the cross-sectional plane MU is 7. Then

Principal stress along, VM = -% 47% = -1 (compressive)

Principal stress along, LU = %\/472 = 7(tensile)
Thus magntude of the compressive strain along VM is

=é(1+“): 3.98x10°*
3.98x10* x(105x10°)

o (110.3)

=32.15MPa
.. Torque being transmitted (T) = 7 x%x d®
:(32.15><106)><%><0.063=1363.5 Nm

2nN

-.Power being transmitted, P =T.w=T.[—60 ] =1363.5x| 22800

]W =114.23kW

Conventional Question IES-2002

Question: The magnitude of normal stress on two mutually perpendicular planes, at a point in
an elastic body are 60 MPa (compressive) and 80 MPa (tensile) respectively. Find
the magnitudes of shearing stresses on these planes if the magnitude of one of the
principal stresses is 100 MPa (tensile). Find also the magnitude of the other
principal stress at this point.

Answer: Above figure shows stress condition assuming ™
shear stressis' 7 xy' | 80Mpa
xy
Principal stresses
2
o,to 6,—C
012 —_X y X y +7—§y GOMpaI 2 60Mpa
’ 2 2 Jy
2
—60+80 —60—-280
or,o,, = o0 + Ty
2 2 J
3 80Mpa
—60+80 —60—80
or,c,, = 2+ i\/[ 5 ] + 15,
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To make principal stress 100 MPa we have to consider +'.

.6, =100MPa =10+,/70* + 7, ; or, 7,, =56.57MPa
Therefore other principal stress will be

2
. _—60+80 [(—60—80 (5657
: 2 2

i.e. 80 MPa(compressive)

Conventional Question IES-2001

Question:A steel tube of inner diameter 100 mm and wall thickness 5 mm is subjected to a
torsional moment of 1000 Nm. Calculate the principal stresses and orientations of
the principal planes on the outer surface of the tube.

Answer:  Polar moment of Inertia (J)=%[(O.110)4 ~(0.100)"] = 45610 °m*
T.R _1000x(0.055) Smm

J 456x10° /
— 12.07MPa

Now }:lor J=

27,
Now,tan26 = Y —x,
o, — O,

gives 6, = 45%0r 135°
.0y = TXySinZG =12.07 x sin90°
=12.07 MPa

and o, =12.07sin270°
=—12.07MPa

Conventional Question IES-2000
Question: At a point in a two dimensional stress system the normal stresses on two mutually
perpendicular planes are o, and o, and the shear stress is 7xy. At what value of

shear stress, one of the principal stresses will become zero?

Answer: Two principal stressdes are
2
o, +0 c, -0
G,,= X Y + X Y +T§y
| 2 2

Considering (-)ive sign it may be zero

2

2 2
_|oxto, _ G, —O, 42 or G, +0, _ G, —0, 42
.. > X\
2 2 v 2 2 !
6,+0o 6, —o,
2 _ | Ox y x "y 2 _ —
or, T,y —[ ) ] —[ ) or,7,, =0,0, OLT, =%,/0,0,

Conventional Question IES-1996
Question: A solid shaft of diameter 30 mm is fixed at one end. It is subject to a tensile force of

10 kN and a torque of 60 Nm. At a point on the surface of the shaft, determine the
principle stresses and the maximum shear stress.
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Answer: Given: D =30 mm = 0.03 m; P =10 kN; T= 60 Nm
Principal stresses(o;,0,) and maximum shear stress(z,,,):

. 10)(103 6 2 2
Tensile stress 0, =0, =—— =14.15x10°N/m* or 14.15 MN/m
7 2
~x0.03
4
T
a, T,
T
. T 7
As per torsion equatlon,j = R
.. Shear stress, T:B= TR __ 60x0.015 =11.32x10°N/ m?
b Zpt 2 (0.03)
32 32

or 11.32 MN/m?
The principal stresses are calculated by using the relations:

2
o,+to o, — O,

Here ax=14.15MN/m2,0y=0;rxy=r=11.32 MN/m?

2
o - 14.215 i\/(14;5) L (11.32)

=7.07+£13.35=20.425 MN/ m?,—6.275MN / m®.
Hence,major principal stress, o, =20.425 MN/m? (tensile)

Minor principal stress, o, =6.275MN/m? (compressive)

- 24.425—-(-6.275
Maximum shear stress, 7, = % 202 = 2( ) =13.35mm / m?

Conventional Question IES-2000

Question: Two planes AB and BC which are at right angles are acted upon by tensile stress of
140 N/mm? and a compressive stress of 70 N/mm?2 respectively and also by shear
stress 35 N/mm?2. Determine the principal stresses and principal planes. Find also
the maximum shear stress and planes on which they act.

Sketch the Mohr circle and mark the relevant data.

Answer: Given 70N/mnf
0,=140MPa(tensile) c ; B
0,=-70MPa(compressive) .

35Nmm
Txy —35MPa 140N/mnf
Principal stresses; o,,0,;
A
o, +0 G, —OC 2
We know that, ¢,, = =*—> + [[2—2X| +72
s 2 2 y
2
- 1402_ 70 i\/[MO; 70] 4352 —35+110.7

Therefore 6,=145.7 MPa and ¢, = —75.7MPa
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Position of Principal planes 6,,0,
2
tan 29p _ Ty 2x35 =0.3333

6, —o, 140+70

Maximum shear stress, 7, = — ;2 _145 275'7 =110.7MPa

Mohr cirle:

OL=c, =140MPa

OM =¢, = —-70MPa

SM =LT =71, =35MPa u
Joining ST that cuts at 'N'

SN=NT=radius of Mohr circle =110.7 MPa

OV=c, = 145.7MPa
OV =0, =-75.7MPa

Conventional Question IES-2010
Q6. The data obtained from a rectangular strain gauge rosette attached to a stressed

steel member are ¢, =-220x10",¢,,=120x10"ande,, =220x10°. Given that the

value of E = 2x10°N/mm? and Poisson’s Ratio n=0.3, calculate the values of

principal stresses acting at the point and their directions. [10 Marks]
Ans. Use rectangular strain gauge rosette

Conventional Question IES-1998
Question: When using strain-gauge system for stress/force/displacement measurements how
are in-built magnification and temperature compensation achieved?
Answer: In-built magnification and temperature compensation are achieved by
(a) Through use of adjacent arm balancing of Wheat-stone bridge.
(b) By means of self temperature compensation by selected melt-gauge and dual element-
gauge.

Conventional Question AMIE-1998
Question: A cylinder (500 mm internal diameter and 20 mm wall thickness) with closed ends is
subjected simultaneously to an internal pressure of 0-60 MPa, bending moment
64000 Nm and torque 16000 Nm. Determine the maximum tensile stress and
shearing stress in the wall.
Answer: Given: d =500 mm =05 m; t =20 mm = 002 m; p =060 MPa = 0.6 MN/m2;
M = 64000 Nm = 0064 MNm; T= 16000 Nm = 0016 MNm.
Maximum tensile stress:
First let us determine the principle stresses 0, and o, assuming this as a thin cylinder.
o = pd 0.6x0.5
"2t 2x0.02
o, =p—d=M=3.75MN/m2
4t 4x0.02
Next consider effect of combined bending moment and torque on the walls of the cylinder.
Then the principal stresses o', and o', are given by

We know, =7.5MN/m?

and
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ayzgg{M+$W+T{
and o, =1—§3[M—\/M2 +T2}
T
' 16 2 2 2
o' =— [ 0.064+00.064" + 0.0167 | =5.29MN/m
7x(0.5
[ 16 2 2 2
and o', =— | 0.064-/0.064" +0.016% |=-0.08MN/m
7r><(0.5)

Maximum shearing stress,z__ :

max

O, — O,
We Know, 7, =%

o,=0,+0',=3.75-0.08 =3.67MN/m?(tensile)

_12.79-367 _, con o

Tmax
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3. Moment of Inertia and Centroid

Theory at a Glance (for IES, GATE, PSU)
3.1 Centre of gravity

The centre of gravity of a body defined as the point through which the whole weight of a body may be

assumed to act.

3.2 Centroid or Centre of area

The centroid or centre of area is defined as the point where the whole area of the figure is assumed to be

concentrated.

3.3 Moment of Inertia (MOI)

e About any point the product of the force and the perpendicular distance between them is known as
moment of a force or first moment of force.

e This first moment is again multiplied by the perpendicular distance between them to obtain second
moment of force.

e In the same way if we consider the area of the figure it is called second moment of area or area
moment of inertia and if we consider the mass of a body it is called second moment of mass or mass
moment of Inertia.

e Mass moment of inertia is the measure of resistance of the body to rotation and forms the basis
of dynamics of rigid bodies.

e Area moment of Inertia is the measure of resistance to bending and forms the basis of strength

of materials.

3.4 Mass moment of Inertia (MOI)

_ 2
I=) mr
l

e Notice that the moment of inertia ‘T’ depends on the distribution of mass in the system.

e The furthest the mass is from the rotation axis, the bigger the moment of inertia.

e For a given object, the moment of inertia depends on where we choose the rotation axis.

e In rotational dynamics, the moment of inertia ‘I’ appears in the same way that mass m does in

linear dynamics.
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o Solid disc or cylinder of mass M and radius R, about perpendicular axis through its centre,

1-1ur
2

e Solid sphere of mass M and radius R, about an axis through its centre, I = 2/5 M R?

e Thin rod of mass M and length L, about a perpendicular axis through
its centre.
1 L
I=—Mr
12
‘ ————p
L

e Thin rod of mass M and length L, about a perpendicular axis through its

end.

1=mr
3

3.5 Area Moment of Inertia (MOI) or Second moment of area

e To find the centroid of an area by the first moment of the area  * : —
about an axis was determined ([ x dA) : / X\
e Integral of the second moment of area is called moment of ro - Hia !

e Consider the area (A)

5 \
inertia (| x2dA) ! \‘ /

e By definition, the moment of inertia of the differential area o ,

about the x and y axes are dlxx and dlyy
o dl.=y2dAL«=]y2dA
o dly=x?dALy = x?dA

3.6 Parallel axis theorem for an area

Total Area = A

The rotational inertia about any axis is the sum of
second moment of inertia about a parallel axis

through the C.G and total area of the body times

square of the distance between the axes. he :
INN =Icc + Ah? T
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3.7 Perpendicular axis theorem for an area

If x, y & 2z are mutually perpendicular axes as shown, then e
IZZ(J):Ixx +1,
Z-axis is perpendicular to the plane of x — y and vertical to this page as

shown in figure. & .

® To find the moment of inertia of the differential area about the pole (point of origin) or z-axis, (r) is
used. (r) is the perpendicular distance from the pole to dA for the entire area
J =J‘ r? dA = J (x2 +y2)dA =Ixx +Iyy(Since rZ=x? +y2)

Where, J = polar moment of inertia

3.8 Moments of Inertia (area) of some common area

(i) MOI of Rectangular area Y
Moment of inertia about axis XX which passes
through centroid. L dy I
Take an element of width ‘dy’ at a distance y
from XX axis.
¥
.". Area of the element (dA) =bX dy. h
and Moment of Inertia of the element about XX X— CG. X
axis=0A x y* =b.y’ dy |
..Total MOI about XX axis (Note it is area
moment of Inertia) '
s s 3
bh Y
I, = [ by’dy=2[by’dy= = | b |
g 0
= 12
Similarl find, 1, = 20
imilarly, we may find, I, = 2
3 3
.".Polar moment of inertia (J) = I« + Lyy =&+ ho
12 12

For-2019 (IES, GATE & PSUs) Page 136 of 480 Rev.0



Chapter-3 Moment of InertRagad3Zentroid
If we want to know the MOI about an axis NN passing Y

through the bottom edge or top edge. N ‘
Axis XX and NN are parallel and at a distance h/2. i !

h2

Therefore Iny = Ixx+ Area X (distance) 2

3 2 3 ’ y -
:%J’_bxhx(hj :% ‘C-G-

_4N

‘ =

Case-I:Square area T
|

4 |

|

Ixx = a_
12

Case-II:Square area with diagonal as axis / \
4 d d

a / \

=~ ]9 X~ L. X

Case-III:Rectangular area with a centrally le B »|
rectangular hole b | f
Moment of inertia of the area = moment of inertia of BIG
rectangle — moment of inertia of SMALL rectangle

3 3 x - h __________ SR s v 7 -X H

BH® bh :
Ixx = - AL
12 12
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(ii) MOI of a Circular area Y

The moment of inertia about axis XX this passes through ' /
the centroid. It is very easy to find polar moment of inertia dr

about point ‘O’. Take an element of width ‘dr’ at a distance f X D
‘T’ from centre. Therefore, the moment of inertia of this = ky X

element about polar axis

d) =d(,, +1I)=area of ring x (radius)’ )
or d(J) =2zrdrxr? Y

Integrating both side we get
zR' D'
2 32

Due to summetry I, =1,

R
J =J.27rr3dr =
0

Therefore, I, = I, = —

zD* zD*

I~
Il
I~
Il
jab]
]
o,
-
Il

Case-I: Moment of inertia of a circular |‘r"
area with a concentric hole. /— | [
Moment of inertia of the area = moment of inertia of
BIG circle — moment of inertia of SMALL circle.
e S I D
L= o = D'  zd' d X o X
R VIRV l
_ 4 i
_a(D -d") \ / |
andJ = 2 (D'-d*) Y
32

Case-II:Moment of inertia of a semi-

circular area.

I, = % of the momemt of total circular lamina

N----- - --N

_ 1 zD" | zD'

2 64 128
We know that distance of CG from base is Y
|
4r 2D I

—=="—=h

3r 3w (say) I
|

1.e. distance of parallel axis XX and NN is (h)

.. According to parallel axis theory
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Iy =1, + Area x (distance)’

4 2
or D" _ I, +l 7D ><(h)2
128 20 4

zD* 1 (ﬂDZJ (sz

or =I_ +=x x| ==

128 2 4 3z
_ 4

Case — III: Quarter circle area

or

Ixx = one half of the moment of Inertia of the Semi-
circular area about XX.

Im=%x(0.11R4)=0.055 R X--=

I, =0.055R"

Inn= one half of the moment of Inertia of the Semi-

N--—-

circular area about NN.
1 zD* zD*
Iy =—x =
2 64 128

(iii) Moment of Inertia of a Triangular area
(a) Moment of Inertia of a Triangular area of

a axis XX parallel to base and passes through
C.G.

bh®

(b) Moment of inertia of a triangle about an
axis passes through base T
bh’ |
Iyy = Ni
12 N----
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(iv) Moment of inertia of a thin circular ring: Y
Polar moment of Inertia I
(J) =R® xarea of whole ring
=R?x27Rt=27R%
) — —X
'y

(v) Moment of inertia of a elliptical area

130 mm
- —Neutral Axis

3.9 Radius of gyration

Consider area A with moment of inertia I... Imagine
that the area is concentrated in a thin strip parallel to

the x axis with equivalent L.
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Ay

I = kfo or

kxx =radius of gyration with respect to the x axis.

Similarly Ul

I, = kfyA or

k=R 4R
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Moment of Inertia (Second moment of an area)

GATE-1. The second moment of a circular area about the diameter is given by (D is the
diameter) [GATE-2003]
zD* zD* zD* zD*

(b) 16 © 39 (d) ol

(a)

GATE-2a. The area moment of inertia of a square of size 1 unit about its diagonal is:
[GATE-2001]

1 1 1 1
(@) 3 ®) © 5 @ <

GATE-2b. Polar moment of inertia (lp), in cm¢, of a rectangular section having width, b = 2 cm and
depth,d =6 cm is [CE: GATE-2014]

GATE-2c. The figure shows cross-section of a beam subjected to bending. The area moment of

inertia (in mma3) of this cross-section about its base is [GATE-2016]

¥

T R4 R4
8

i

paiR ] All dimensions are in mm
le— 10 —>
GATE-2d. The cross-sections of two solid bars made of the /,__7__‘\

same material are shown in the figure. The square
cross-section has flexural (bending) rigidity I,
while the circular cross-section has flexural

rigidity l,. Both sections have the same cross-
sectional area. The ratio 1./1; is \ /
@ 1w (b) 2/ (c) /3 (d) m/6 [GATE-2016]

Radius of Gyration

Data for Q3-Q4 are given below. Solve the problems and choose correct

answers.

A reel of mass “m” and radius of gyration “k” is rolling down smoothly from rest with one end of
the thread wound on it held in the ceiling as depicted in the figure. Consider the thickness of
the thread and its mass negligible in comparison with the radius “r” of the hub and the reel

mass “m”. Symbol “g” represents the acceleration due to gravity. [GATE-2003]
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thread

r* (hub radius)

GATE-3. The linear acceleration of the reel is:

2 2 grk mgrz
@ —& () 2% ©——— @ e
(r2 +k2) (r2 +k2) (r2+k2) (r2 +k2)
GATE-4. The tension in the thread is:
2 mgrk z m,
(a) 8" (b) _msrk (c)ﬂ ) _mg

(r* + &%) (r2+k2) (r* +%%) (r2+k2)

GATE-5. For the section shown below, second moment of the area about an axis %distance

above the bottom of the area is [CE: GATE-2006]
b
d
bd? bd? 7bd? bd?
’¢ b d) —
(@) 18 (b) 5 @) 18 (@ 3

GATE-6. A disc of radius r has a hold of radius %cut-out as shown. The centroid of the

remaining disc(shaded portion) at a radial distance from the centre “0” is

[CE: GATE-2010]

(@ g <b>§ L

Previous 25-Years IES Questions

Centroid
IES-1. Assertion (A): Inertia force always acts through the centroid of the body and is
directed opposite to the acceleration of the centroid. [TES-2001]
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Reason (R): It has always a tendency to retard the motion.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut R is false
(d) Ais false but R is true

Radius of Gyration

IES-2. Figure shows a rigid body of mass
m having radius of gyration k

about its centre of gravity. It is to E
be replaced by an equivalent
dynamical system of two masses
placed at A and B. The mass at A
should be:
(a) LM (b) 2
a+b a+b A @ @ @,.-
©™x9 @ ™o e @ —e———— b~
3 b 2 a I l »
[TES-2003]
IES-3. Force required to accelerate a cylindrical body which rolls without slipping on a

horizontal plane (mass of cylindrical body is m, radius of the cylindrical surface in
contact with plane is r, radius of gyration of body is k and acceleration of the body is

a) is: [TES-2001]
(a) m(kz / r? +1).a (b) (mk2 /r2).a (c)mk*.a (d) (mk2 /r +1).a

IES-4. A body of mass m and radius of gyration k is to be replaced by two masses m; and m2
located at distances h: and h: from the CG of the original body. An equivalent
dynamic system will result, if [TES-2001]
(h +h, =k () h? +hZ = k? ©hh, =k? @ (hh, =k’

Previous 25-Years IAS Questions

Radius of Gyration

TAS-1. A wheel of centroidal radius of gyration 'k' is rolling on a horizontal surface with
constant velocity. It comes across an obstruction of height 'h' Because of its rolling
speed, it just overcomes the obstruction. To determine v, one should use the principle

(s) of conservation of [TAS 1994]
(a) Energy (b) Linear momentum
(c) Energy and linear momentum (d) Energy and angular momentum

OBJECTIVE ANSWERS

GATE-1. Ans. (d)

4 1)
GATE-2a. Ans. (e I, - % - 1)
: 12 12
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GATE-2b. Ans. 40 cm* use I, = L + Iy
GATE-2c. Ans. 1875.63 (Range given (1873 to 1879)

bh® zd* 7zd? (hjz
| = — — X

3 64 4 |2

10x10° 7x8" 7x8 (10)2 .

= — — X| — mm
3 64 4 2

=1875.63mm*

MOI of rectangular area = bh3/12 about its base and bh3/12 about its CG.
MOI of circular area = nd4/64 about its CG. But according to parallel axes theorem
about base it must be added by area X (distance)?
Area moment of Inertia is the measure of resistance to bending and forms the
basis of strength of materials.

GATE-2d. Ans. (c)

GATE-3. Ans. (a) For downward linear motion mg—-T = mf, where f = linear tangential acceleration = ra, a
= rotational acceleration. Considering rotational motion 7r = I«a.

2
or, T = mk® x LZ therefore mg — T = mf gives f = _8r
r (r2 + k? )
thread
reel
T —
1" (hub radius)
mg
2 2
GATE-4. Ans. (€) T = mk* x L = mp?x— 87 __m&k
r rZ(r2+k2) (r2+k2)

GATE-5. Ans. (¢)
Using parallel axis theorem, we get the second moment of inertia as
bd’ (d d]"' bd®  bd® Tbd’
=—+bx|———| =—+—-=
12 12 16 48

I
2 4

GATE-6. Ans. (¢)
The centroid of the shaded portion of the disc is given by
CAx + A,

A +A,
where x is the radial distance from Q.
A =nr’; x, =0;
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2 2
A :_M(Lj __m
? 2

4
r
X, =—
2
2
2
r° r nr
m"sz——x5 5
X = 2 = 2
g T 3nr
e — ——
4
r
= Xx=-—
6

IES-1. Ans. (¢) It has always a tendency to oppose the motion not retard. If we want to retard a motion
then it will wand to accelerate.

IES-2. Ans. (b)

IES-3. Ans. (a)

IES-4. Ans. (c¢)

IAS-1. Ans. (a)

e

T =
Previous Conventional Questions with Answers

Conventional Question IES-2004

Question: When are I-sections preferred in engineering applications? Elaborate your answer.

Answer: I-section has large section modulus. It will reduce the stresses induced in the material.Since I-
section has the considerable area are far away from the natural so its section modulus
increased.

For-2019 (IES, GATE & PSUs) Page 147 of 480 Rev.0



Page 148

4. Bending Moment and Shear Force

Diagram

Theory at a Glance (for IES, GATE, PSU)

4.1 Shear Force andBending Moment

At first we try to understand what shear force is and what is bending moment?
We will not introduce any other co-ordinate system. Y
We use general co-ordinate axis as shown in the
figure. This system will be followed in shear force and

bending moment diagram and in deflection of beam.

Here downward direction will be negative i.e. > X

negative Y-axis. Therefore downward deflection of the Tiie s albwvre Coxordiinatis spabemn

beam will be treated as negative.

Some books fix a co-ordinate axis as shown in the > X
following figure. Here downward direction will be

positive i.e. positive Y-axis. Therefore downward

deflection of the beam will be treated as positive. As

beam is generally deflected in downward directions

and this co-ordinate system treats downward g6 bhooks use above co-ordinate system
deflection is positive deflection.

Consider a cantilever beam as shown subjected to
external load ‘P’. If we imagine this beam to be cut by
a section X-X, we see that the applied force tend to
displace the left-hand portion of the beam relative to
the right hand portion, which is fixed in the wall.

This tendency is resisted by internal forces between
the two parts of the beam. At the cut section a
resistance shear force (Vx) and a bending moment .
(Mx) is induced. This resistance shear force and the
bending moment at the cut section is shown in the
left hand and right hand portion of the cut beam.

Using the three equations of equilibrium
ZFX =0, ZFy =0 and ZMi =0

We find that V, =—P and M, =—P.x

In this chapter we want to show pictorially the V.

variation of shear force and bending moment in a
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Chapter-4 Bending Moment and Bigat420rce Diagram S K Mondal’s
beam as a function of ‘x' measured from one end of

the beam.

Shear Force (V) = equal in magnitude but opposite in direction

to the algebraic sum (resultant) of the components in the e —
direction perpendicular to the axis of the beam of all external ‘ ] rr r l
loads and support reactions acting on either side of the section y

being considered.

Bending Moment (M) equal in magnitude but opposite in . .
direction to the algebraic sum of the moments about (the —l I— C c_4 G’:_F
centroid of the cross section of the beam) the section of all 1 - i } u

external loads and support reactions acting on either side of

the section being considered.

What are the benefits of drawing shear force and bending moment diagram?

The benefits of drawing a variation of shear force and bending moment in a beam as a function of ‘X'
measured from one end of the beam is that it becomes easier to determine the maximum absolute value of
shear force and bending moment. The shear force and bending moment diagram gives a clear picture in our
mind about the variation of SF and BM throughout the entire section of the beam.

Further, the determination of value of bending moment as a function of x' becomes very important so as to
determine the value of deflection of beam subjected to a given loading where we will use the formula,
o’y

El—
dx?

=M, .

4.2 Notation and sign convention
e Shear force (V)

Positive Shear Force
A shearing force having a downward direction to the right hand side of a section or upwards to the
left hand of the section will be taken as ‘positive’. It is the usual sign conventions to be followed for

the shear force. In some book followed totally opposite sign convention.
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The upward direction shearing The downward

force which is on the left hand

direction
shearing force which is on the
of the section XX is positive right hand of the section XX is

shear force. positive shear force.

Negative Shear Force
A shearing force having an upward direction to the right hand side of a section or downwards to the

left hand of the section will be taken as ‘negative’.

X
P |
|
|
|
[
[
[
[
.
[
|
|
|
|
X P
The downward direction The upward direction shearing

force which is on the right
hand of the section XX

shearing force which is on the
left hand of the section XX is

negative shear force.

1s

negative shear force.

¢ Bending Moment (M)
Positive Bending Moment
A bending moment causing concavity upwards will be taken as ‘positive’ and called as sagging

bending moment.

+\ /’ }I{ \"‘M
_ [
: J +M Cl : D +M
[
\ |
\ | /
: Sagging
X
If the bending moment of If the bending moment of A bending moment causing
the left hand of the section the right hand of the concavity upwards will be
XX is clockwise then it isa section XX is anti- taken as ‘positive’ and
positive bending moment. clockwise then it is a called as sagging bending
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Bending Moment and Bigat Force Diagram
Negative Bending Moment

X
|
|
|
|
|
|
|

X
If the bending moment of
the left hand of the section
XX is anti-clockwise then
it is a negative bending

moment.

\

If the bending moment of
the right hand of the
section XX 1is clockwise
then it 1s a negative

bending moment.

S K Mondal’s

-M [:Q-M

Hogging

A bending moment causing
convexity upwards will be
taken as ‘negative’ and called

as hogging bending moment.

Way to remember sign convention

Remember in the Cantilever beam both Shear force and BM are negative (-ive).

4.3 Relation between S.F (Vx), B.M. (Mx) & Load (w)

dV,

X =

dx

-W (Ioad)The value of the distributed load at any point in the beam is equal to

the slope of the shear force curve. (Note that the sign of this rule may change depending on the sign

convention used for the external distributed load).

dMm,

—_— = VX The value of the shear force at any point in the beam is equal to the slope of the

dx

bending moment curve.

4.4 Procedure for drawing shear force and bending moment diagram

Construction of shear force diagram

For-2019 (IES, GATE & PSUs)

From the loading diagram of the beam constructed shear force diagram.

First determine the reactions.

Then the vertical components of forces and reactions are successively summed from the left end of
the beam to preserve the mathematical sign conventions adopted. The shear at a section is simply
equal to the sum of all the vertical forces to the left of the section.

The shear force curve is continuous unless there is a point force on the beam. The curve then
“jumps” by the magnitude of the point force (+ for upward force).

When the successive summation process is used, the shear force diagram should end up with the
previously calculated shear (reaction at right end of the beam). No shear force acts through the

beam just beyond the last vertical force or reaction. If the shear force diagram closes in this fashion,
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then it gives an important check on mathematical calculations. i.e. The shear force will be zero at

each end of the beam unless a point force is applied at the end.

Construction of bending moment diagram

® The bending moment diagram is obtained by proceeding continuously along the length of beam from

the left hand end and summing up the areas of shear force diagrams using proper sign convention.

® The process of obtaining the moment diagram from the shear force diagram by summation is

exactly the same as that for drawing shear force diagram from load diagram.

® The bending moment curve is continuous unless there is a point moment on the beam. The curve
then “jumps” by the magnitude of the point moment (+ for CW moment).

® We know that a constant shear force produces a uniform change in the bending moment, resulting
in straight line in the moment diagram. If no shear force exists along a certain portion of a beam,
then it indicates that there is no change in moment takes place. We also know that dM/dx= Vi
therefore, from the fundamental theorem of calculus the maximum or minimum moment occurs

where the shear is zero.

® The bending moment will be zero at each free or pinned end of the beam. If the end is built in, the

moment computed by the summation must be equal to the one calculated initially for the reaction.

4.5 Different types of Loading and their S.F & B.M Diagram

(i) A Cantilever beam with a concentrated load ‘P’ at its free end.

Shear force: Y
At a section a distance x from free end consider the forces to P‘;_ix i y
the left, then (Vi) =- P (for all values of x) negative in sign XL _JL‘
i.e. the shear force to the left of the x-section are in downward W1 l X
direction and therefore negative. -I'T-"IE“ SF é;a]gram |

X
Bending Moment: W PL

B.M Diagram
Taking moments about the section gives (obviously to the left g
S.F and B.M diagram

of the section) M, = -P.x (negative sign means that the
moment on the left hand side of the portion is in the
anticlockwise direction and is therefore taken as negative
according to the sign convention) so that the maximum
bending moment occurs at the fixed end i.e. Mmax =- PL(at x

:L)
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(ii) A Cantilever beam with uniformly distributed load over the whole length

When a cantilever beam is subjected to a uniformly L x i
distributed load whose intensity is given w /unit length. Y wmrjlt fength
Shear force: P ’ X
Consider any cross-section XX which is at a distance of x from I

the free end. If we just take the resultant of all the forces on

the left of the X-section, then VxT .
Vx=-w.x for all values of x'. . l_“L "X
Atx=0, Vx=0 Mx SF Dia i

Atx =L, Vi=-wL (ie. Maximum at fixed end) : gram

Plotting the equation Vx = -w.x, we get a straight line : »X
because it is a equation of a straight line y (Vx) = m(- w) .x - ol
Bending Moment: B.M Diagram ! 2

Bending Moment at XX is obtained by treating the load to the
left of XX as a concentrated load of the same value (w.x) S.F and B.M diagram
acting through the centre of gravity at x/2.

Therefore, the bending moment at any cross-section XX is
2
X W.X
M, =(—wWX).==-
= (wx).Z =

Therefore the variation of bending moment is according toparabolic law.

The extreme values of B.M would be
atx=0, Mx=0

2
andx =L, M= —%

_wl?

Maximum bending moment, M max at fixed end

Another way to describe a cantilever beam with uniformly distributed load (UDL) over it’s whole length.

w |

Y ¥ YYY ¥YYYY YY Y O

R

¥y _

L

(iii) A Cantilever beam loaded as shown below draw its S.F and B.M diagram

In the region0 <x<a Y

Following the same rule as followed previously, we get P

V.=-P; and M,=-P.x a X
In the regiona <x <L P. L4-|

V,=-P+P=0; and M,=-P.x+P(x-a)=P.a

For-2019 (IES, GATE & PSUs) Page 153 of 480 Rev.0



Chapter-4 Bending Moment aradsiiEr Force Diagram S K Mondal’s
V] i
X
PP
M 4 S.F.Diagram
® 1

~l e

B.M Diagram

S.F and B.M diagram

(iv)Let us take an example: Consider a cantilever bean of 5 m length. It carries a uniformly distributed

load 3 KN/m and a concentrated load of 7 kN at the free end and 10 kN at 3 meters from the fixed end.

7 kM 10 kM 3 kN/m
4 y
)
=2 m= /
< 5 m -

Draw SF and BM diagram.
Answer:In the region 0 <x <2 m ®

. . . 7T kN | 10 kM 3 kMN/m
Consider any cross section XX at a distance x from free end. Lz :
Shear force (Vi) = -7- 3x ! : X

X v
So, the variation of shear force is linear. “?"‘I
at x=0, Vi=-7TkN = | 5m =
at x=2m,Vi=-7-3x2=-13kN }|(
at point Z Vx=-7-3x2-10=-23 Kn
Y

. x 3x7

Bending moment (M) = -7x - (3x). 2 = —5 " 7X
So, the variation of bending force is parabolic.
atx =0, Mx=0
2
atx=2m, Mx=-7x2-(3x2) X EZ-ZOkNm
In the region2m<x<5m 10 kN , 3 kN/m
Consider any cross section YY at a distance x from free end . I{NY 7 !
Shear force (Vx) =-7 - 3x —10=-17- 3x ! ; : X
4
So, the variation of shear force is linear. = % = f
=2 M- v

atx=2m, Vx:'23kN = 5m -

atx=5m, Vy=-32kN

Bending moment (Mx) = - 7x — (3x) x(gj -10 (x-2)

_ 3y -17x+20
2
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So, the variation of bending force is parabolic.

atx=2m, Mx=_g><22_17><2+20 =-20 kNm

atx=5m, Mx=-102.5 kNm

Y
10 kM 3 kM/m
7 kN ’
A
/ X
X
-32 kN
=X
=
=
F
L
3. e
——=x"=1Tx+20
2 \n

B.M Diagram

(v) A Cantilever beam carrying uniformly varying load from zero at free end and w/unit

length at the fixed end

wiunit length

TP

i L -

Consider any cross-section XX which is at a distance of x from the free end.

w
At this point load (wx) = r.X

wL

Xdx = —
2

s

L L
Therefore total load (W) = JWXdX = I
0 0
Shear force (V, ) =area of ABC (load triangle)

1(w wx?
=——|—x|x=-
2\ L 2L

.. The shear force variation is parabolic.
atx=0,V, =0

atx=L,V, = —% i.e. Maximum Shear force (V) = 5 I‘at fixed end
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Bending moment (M, ) = load x distance from centroid of triangle ABC

_owx® (x)_owx

TN (gJ__ES_L
. The bending moment variation is cubic.
atx=0, M, =0

2 2
atx=L, M =- i.e. Maximum Bending moment (M, )= at fixed end.

v X
| wi/unit length
I

o
A = F:: X
= L , =

Parabolic

5.F Diagram

B.M Diagram

Alternative way : ( Integration method)

d(Vv
We know that ( X):—Ioadz—ﬂ.x
dx L

or d(VX):—%.x dx

Integrating both side

Vx XW

d(V. =

[
orV, = —ﬂx—z
L 2

Again we know that
d(M 2
M) v WX

dx X 2L
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Integrating both side we get (at x=0,M,=0)

M twx?
!d(MX):—J;I.dx

3 3
or M, - WX W
2L 3 6L
(vi) A Cantilever beam carrying gradually varying load from zero at fixed end and w/unit

length at the free end

wiunit length

s
1
-~ - L _‘_I
- s L2 : wL
Considering equilibrium we get, M, = and Reaction (R, )= >

Considering any cross-section XX which is at a distance of x from the fixed end.

w
At this point load (W, )= T X

Shear force(V, ) =R, —area of triangle ANM

wL 1 (w wL  wx?
= — | —X|X=+— -
L 2 2L

2 2
.. The shear force variation is parabolic.

atx=0,V, = +W7L i.e. Maximum shear force, V,_,, = +W7L
atx=L,V, =0
wx? 2x
Bendi t (M )=R,.x- —.— -
ending momen ( X) A oL 3 A
_wL .- wx®  wl?
2 6L 3
.. The bending moment variation is cubic
2 2
at x=0, M, oWk i.e.Maximum B.M. (Mmax)z—WL

3
atx=L, M, =0

For-2019 (IES, GATE & PSUs) Page 157 of 480 Rev.0



Chapter-4 Bending Moment aradsiiEs Force Diagram S K Mondal’s

M, =2 XM
- | wiunit length
’ |
A 5 & X
G N
- L : |
V‘
* | wl wx
2 + jve IQ
|
S.F Diagram [
M. ¢ IM _wL ﬁ_wt
| :__," 2 }?L 3
_wl? -ive
3 B.M Diagram

(vii) A Cantilever beam carrying a moment M at free end

M ;
. [

e—— L —

Consider any cross-section XX which is at a distance of x from the free end.
Shear force: Vx = 0 at any point.
Bending moment (Mx) = -M at any point, i.e. Bending moment is constant throughout the length.

M i

< | F x
= K —m I
o 1X '

vi ?

MXT 5.F Diagram

M/ff/ffff’ff’f/ff .
Al A M

| B.M Diagram

(viii) A Simply supported beam with a concentrated load ‘P’ at its mid span.

P
|<—Ls" 2—:-;|:—L |2 —=
PS
. e P
Considering equilibrium we get, R,= Ry = E

Now consider any cross-section XX which is at a distance of x from left end A and section YY at a
distance from left end A, as shown in figure below.

Shear force:In the region 0 <x <L/2

Vi=Ra=+P/2 (it is constant)
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In the region L/2 <x <L

P
Vi=Ra-P :E -P=-P/2 (it is constant)
Bending moment: In the region 0 <x <L/2
P

M:= —.x (its variation is linear)

E .
atx=0, Mx=0 and atx=1L/2Mx :T i.e. maximum
ax 4

Maximum bending moment, M m at x = L/2 (at mid-point)

In the region L/2 <x <L
P PL

M; = E x—Px-L/2)= 7 - E .x (its variation is linear)

PL
atx:L/2,Mx=T and atx=L, Mx=0

%
Y P A
— /2
A _,l B X
b s
R, Re
-:—K—:-x
I
| ¥ » |
F: L A
vt !
* |
=y / / |
% -
-Pi2
Mx 5.F Diagram
: L4 ,x
B.M Diagram
(ix) A Simply supported beam with a concentrated load ‘P’ is not at its mid span.
P
fe—— & == b —!-l
ey
| L -
Pa

Considering equilibrium we get, Ra= T and RB:T

Now consider any cross-section XX which is at a distance x from left end A and another section YY at
a distance x from end A as shown in figure below.

Shear force: In the range 0 <x<a

Pb o
Vi=Ra= +T (it 1s constant)
In the range a<x <L
Pa .
Vi=Ra-P=- T (it 1s constant)
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Bending moment: In the range 0 <x<a

Mi=+Rax = T X (it 1s variation is linear)

Pab

atx=0,Mx=0 and atx=a, Mx :T (i.e. maximum)
In the range a<x <L

P
M; = Ra.x — P(x- a):Tb.X—P.X +Pa (Put b=L-a)

X
= P - _
a (1 Pa(1 J)

Pab
at x=a, MX=T and at x=L, M:=0

X

Y, p
e—d e b —!-I B
A X
b = Pa
R Ph . R, =—Z
AT " I L
L ® . |
F: L Y o
V4 !
P8 77 |
L
P
S.F Di L
M .F Diagram
'_Pab
L X
B.M Diagram

S K Mondal’s

(x) A Simply supported beam with two concentrated load ‘P’ from a distance ‘a’ both end.

The loading is shown below diagram

Take a section at a distance x from the left support. This section is applicable for any value of x just to the

left of the applied force P. The shear, remains constant and is +P. The bending moment varies linearly from

the support, reaching a maximum of +Pa.

A section applicable anywhere between the two applied forces. Shear force is not necessary to maintain

equilibrium of a segment in this part of the beam. Only a constant bending moment of +Pa must be resisted

by the beam in this zone.
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Such a state of bending or flexure is called pure bending.

Shear and bending-moment diagrams for this loading condition are shown below.

Y P P
A S
A,;;?a—}c Dﬁa
\ 4
x .
=X
S.F Diagram N
M. 4
P.a
»X

B.M Diagram

(xi) A Simply supported beam with a uniformly distributed load (UDL) through out its length

wiunitlength

L -

< L .

We will solve this problem by following two alternative ways.

(a) By Method of Section

wL
Considering equilibrium we get Ra = Rp = 7
Now Consider any cross-section XX which is at a distance x from left end A.
Then the section view X
|
A ,_LLLL1 l») M,
wLT |

> X!V
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oo wL Y .
Shear force: Vx = 7 — WX wlunitlength
(i.e. S.F. variation is linear) A B
e L
wlL Ryl=— R wl
at x=0, Vx:7 22— —=ly B_?
at x=L/2, Va=0 < L s
wL
at x=1, Vx:'7 UIL‘
W
L ‘?%% o
Bending moment:M = — X — @j _wlL
2 2 S.F Diagram 3
(1.e. B.M. variation is parabolic) Mxt E

at x=0, Mx=0

2
at x=L, Mx=0 Y
_ ) ) wl
Now we have to determine maximum bending = g @
moment and its position. L] > X

B.M Diagram
. d(M,) _ d(M,)
For maximum B.M: =0 ie. V, =0 =V,
dx dx
wL L
or— —-wx=0 or x=—=
2 2
2
wL
Therefore,maximum bending moment, Mm ax — at x = L/2

(a) By Method of Integration

Shear force:

We know that, ———==-w

or d(V, ) = -wdx

wL
Integrating both side we get (at x =0, Vx =?)

Bending moment:

d(M,) _y
dx X

We know that,
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or d(M,)=V,dx =(W7L—wadx

Integrating both side we get (at x =0, Vx =0)
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(xii) A Simply supported beam with a gradually varying load (GVL) zero at one end and w/unit

length at other span.

w/unitlength

B

A
e

- L =~

1
Consider equilibrium of the beam = E WL acting at a point C at a distance 2L/3 to the left end A.
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DM, =0 gives
R.L-WL g
2 3
wL
orR, =—
A6

Similarly >'M, =0 gives R, = WTL

w
The free body diagram of section A - XX as shown below, Load at section XX, (wx) =r X

W
W, = I X
Y X
u
X
X X
R wi i
AT F e y
2L "
. . . .1 w wx? .
The resulted of that part of the distributed load which acts on this free body is = E(X)fx = oL applied
at a point Z, distance x/3 from XX section.
wx?  wL  wx?
Shear force (Vx)= R, - =— -
rlovee V= Ra - 50 =6 " oL
Therefore the variation of shear force is parabolic
wL
atx=0, Vi=—
6
wL
atx=L, Vyx=-—
3
2 3
and Bending Moment (M,) = W—L.x WX X W—L.x _ W
6 2L 3 6 6L
The variation of BM is cubic
atx=0, Mx=0
atx=L, Mx=0
d(M d(M
For maximum BM; M =0 ie. V,=0 ( X) =V,
dx dx
or Wl wi or x—L
6 2L V3
3 2
and M, ., —W—Lx(ij—ﬂx(ij _wL
6 (V3) 6L (3) 93
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i =
- x— =X ~wl
R, + %L oW Rjt?
A —
_:B L 2 -
v
E
6 *X
y .
/0B wL wx*
S.F Diagram *= 78 2L
A ; L wx®
2 M - & — e,
p L =78 L
=X

B.M Diagram

(xiii) A Simply supported beam with a gradually varying load (GVL) zero at each end and w/unit
length at mid span.

W
Y
A 2= x
iy C i
R _WL L/z L”fz RE=E
A 4 b= e - 4

Consider equilibrium of the beam AB total load on the beam =2 x (1 X % X W] W7L

Therefore R, =Ry :WTL

2w
The free body diagram of section A —XX as shown below, load at section XX (wx) = T.X
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2
The resultant of that part of the distributed load which acts on this free body is =%.X.2TW.X =%

applied at a point, distance x/3 from section XX.
Shear force (Vx):

In the region 0 < x < L/2
2 2

(V,)=R, - W< _wL_wx

L 4 L

Therefore the variation of shear force is parabolic.

wL
"1
at x = L/4, V=0
In the region of L/2<x <L

atXZO, Vi

The Diagram will be Mirror image of AC.

Bending moment (Mx):

In the region 0 < x < L/2

M =W—L.x—(%.x.¥j.(x/3)=w—l'- WX

* 4
The variation of BM is cubic
atx=0, Mi=0

2
atx=L/2,Mx=WL
12

In the region I/2 <x <L
BM diagram will be mirror image of AC.

For maximum bending moment

M=O ie.V, =0 {.-d(Mx)zvx}
dx dx
2
W_L_WX =0 or X:E
2
2
and M__, _wb
12

wL’
max 1 2

NI

For-2019 (IES, GATE & PSUs) Page 167 of 480 Rev.0



Chapter-4 Bending Moment aradsii&s Force Diagram S K Mondal’s

W
y
A 2 =x
e C e
R wi L/E L”fz Rg = wE
AT gl= o =~ 4
V., A

=X
S.F Dlagranm WL,

2
® W':f”m

=

B.M Diagram

(xiv) A Simply supported beam with a gradually varying load (GVL) zero at mid span and w/unit

¥

]
e R

length at each end.

We now superimpose two beams as
(1) Simply supported beam with a UDL through Y
at its length

wiunit length

V )1 =——=WX \BABRARARARAABEARARIARLL)

- X

wL wx? A

w/iunit length

And (2) a simply supported beam with a gradually varying load (GVL) zero at each end and w/unit length at
mind span.

In the range 0 <x <L/2

wL  wx?
V) =V
( X)Z 4 L
_wL wx®

M) =—.x-—
(M), 4X 3L

Now superimposing we get
Shear force (Vx):
In the region of 0<x <L/2
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v, =(V,), - (V,), (%WJ[WTLWLJ

(x-L/2)
Therefore the variation of shear force is parabolic
wlL
atx = 0, Vi=+—
4

at x = L/2, V=0
In the region I/2 <x <L

The diagram will be mirror image of AC

Bending moment (Mx) = (MX )1 - (MX )2 =

_[W_L WXZJ_[WL WX3J_WX3 wx?  wL

27 2 T3l 2

X—
4 3L

The variation of BM is cubic

atx =0, M_=0

wx?

atx =L/2, M, =

wiunit length

ARLLEE AAREERAR. AL

H*I/’ *

S,F. Dmgnium

)

pEnaEEN UEE
TERTUHTRY T

T
P

- - 'PI"L

M / T\

B.IA Diagram

X

(xv) A simply supported beam with a gradually varying load (GVL) wi/unit length at one end

and wz/unit length at other end.

Y,
w./unit length

—
L T
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At first we will treat this problem by considering a UDL of identifying (w1)/unit length over the whole

length and a varying load of zero at one end to (w2- wi)/unit length at the other end. Then superimpose the

two loadings.

(W,-w, ) /unit length

Yy

v ¢ 4w, /unit length
E

A’IF h | l Y l Y ¥YyYy
anietr

Consider a section XX at a distance x from left end A

(1) Simply supported beam with UDL (w1) over whole length

(Vo), = W21L — W X
(M,), =W71L.X—§W1X2

And(ii) simply supported beam with (GVL) zero at one end (ws- w1) at other end gives

(W, —w,)  (w, —w,)x*

V) = _
( x)z 6 2L
L w, —w, )x°
(M, ), =(w, —w1).g.x _(26—L1
Now superimposing we get
2
Shear force(V, )= (V, ), +(V,), =WT1L+W?2L_W1X_(WZ —w) 2

.. The SF variation is parabolic

_ Wik wpl L

atx = 0, V 5(2W1+W2)

* 3 6
atx=L, V =- %(w1 +2w,)

X

Bending moment (IVIX ) = (Mx) T

.. The BM variation is cubic.

atx =0, M, =0
atx =L, M, =0
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v
w./unit length

‘ X

A

Y YY YYY ¥YYY¥Y Y Y ¥ 1"'Illl'lr1j|r"’"1Ilt Iength
A B

2W W, jI—\( Parabolic

X
S.F IZIIla\gra\\-\'Ej'I E(w1+2w2]
M Cubic

X

@

X
B.M Diagram

(xvi) A Simply supported beam carrying a continuously distributed load. The intensity of the

e s . X . .
load at any point is, w, =w Sln(ﬁTJ . Where X’ is the distance from each end of the beam.

W, =W sin [ X
Y o
/m—l Y ¥ ¥ m
. X
e L L i
. 2 ol 2

We will use Integration method as it is easier in this case.

V M
We know that d(dX ) =load and M:V

d(V
Therefore Q =-W sin X
dx L

d(V,)=-w sin(”Tdex
Integrating both side we get

wcos(”LX) ]
J‘d(VX):—WJ.sm( 3 jdx or V=+——"721 A= +W—COS(7TLX]+A

T

[where, A = constant of Integration]
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Again we know that

d(M
aM) o d(M,)=V, dx={"cos[ 7*|+ Aldx
dx V4 L
Integrating both side we get
wL . (7X
sm( L ) wL? X
M, =2 M= Ax+ B=—2$in(—)+AX+ B
K /4 L
L

[Where B = constant of Integration]
Now apply boundary conditions

At x=0, M:=0 and at x=1, Mx=0
This gives A=0and B=0

~. Shear force (V, )= W—Lcos(ﬂ—xj and Voo = WL atx =0
T T
2
And M, ="t sin(”—xj
T L
2
M. ="t atx=Le
T
W, =W Sin [ 2%
\r_. |_‘_ L -I
m-l;_l YYy m\
I X
I — T
2 2

B.M Diagram

(xvii) A Simply supported beam with a couple or moment at a distance ‘a’ from left end.

l M
R, =-
. s L
mLa_‘;_ e
M A L i
HA:E o -

For-2019 (IES, GATE & PSUs) Page 172 of 480 Rev.0



Chapter-4 Bending Moment and Bigat #3orce Diagram S K Mondal’s

Considering equilibrium we get
> "M, =0 gives
RgxL+M=0 or Ry = —%
and ) M, =0 gives

-R,xL+M=0 or R, =¥

Now consider any cross-section XX which is at a distance X’ from left end A and another section YY at a

distance X’ from left end A as shown in figure.

'\TJ
| X Y,
M
A ! 15‘1'1 ! 1 e ;{
—X—= 7 I S
R _r'-'1 le————— 2 = h——s R;F‘-
L E | |—
= L } ——
X —
Y
In the region 0 <x<a
M
Shear force (Vx) = Ra = f
. M
Bending moment (Mx) = Ra.x = f X
In the region a<x <L
M
Shear force (Vx) = Ra = f
. M
Bending moment (Mx) = Ra.x—M = f x-M
v
X Y,
A RN ! B
LE5—X—= ! M *
R,\—M ——a ; -t—h—:—:- ='=_t
X .
V4 Y
1 M’l_ - M__,L - x
5.F Diagram
M #
M i

X
hﬂi.hV

B.M Diagram
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(xviii) A Simply supported beam with an eccentric load

P
Ea—»{

A
I
FaN VAN
H—l2—>|<—l2-—=-+

Actual lpaded beam

When the beam is subjected to an eccentric load, the eccentric load is to be changed into a couple = Force x
(distance travel by force)

=P.a (inthiscase) and aforce=P
Therefore equivalent load diagram will be

A
[
iF'F'

R, =—+—
BaL

™ .

‘\_-f’ J]\
2—&-{,—-—1.2 —,:T‘
RE: -

o l—l

P.a
L

ra |

E guivalent loaded beam

Considering equilibrium
> M, =0 gives
-P.A/2) + P.a+RexL=0
orRs =E—Eand Ra+Rp=P gives Ra = E+E
2 L 2 L
Now consider any cross-section XX which is at a distance X’ from left end A and another section YY at a
distance X’ from left end A as shown in figure.

! X i Y
n | W= P.Eh B
P, SS————— i X
e 12X e 12—
L |
X Y

In the region 0 <x <L/2

Shear & Vo) P N P.a
ear 1orce x) =T —/—
2 L

Bending moment (Mx) = Ra.x = (g + %j .X

In the region L/2<x<L
P Pa P Pa
Shear force (Vx) =—+—-P =- —+—
2 L 2 L

Bending moment (Vx) =Ra.x-P.(x-L/2)-M
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! X i Y,
A | = P.a| B
AeY——x—= U i X
L .
X .i'r-
VJL
P Pa
L
p_Pa X
M 4 S.F. Diagram 2 L
FL,EBa
4 .2
PL_P3
*X
B.M Diagram

4.6 Bending Moment diagram of Statically Indeterminate beam

Beams for which reaction forces and internal forces cannot be found out from static equilibrium equations
alone are called statically indeterminate beam. This type of beam requires deformation equation in addition
to static equilibrium equations to solve for unknown forces.

Statically determinate - Equilibrium conditions sufficient to compute reactions.

Statically indeterminate - Deflections (Compatibility conditions) along with equilibrium equations

should be used to find out reactions.

Type of Loading & B.M Diagram

W (] M
Cpa—-x "

=~ N
M, %gad;iggcémwm;f;) M,

+
BM

—In
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A=Rp=——
2
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MA - = P M; 2
FE’ — Hyfg RA:%(3a+b)
| 2
¥ | R, =2 (3b+a)
‘ - BM. ﬂ L

EM

e
=

-

*  Unitlength
\w.rwznﬁﬁ

R L2 o H
n.;:_& | = g
: ' 3wL
- Ra=Rp= ——
: 16
,/:-\., 5wL

VAV

Bending Moment aradsiiga Force Diagram

Pab?
Ma=-—- B
Pa’b
Mg=-— E

S K Mondal’s

4.7 Load and Bending Moment diagram from Shear Force diagram

OR

Load and Shear Force diagram from Bending Moment diagram

If S.F. Diagram for a beam is given, then

(1) IfS.F. diagram consists of rectangle then the load will be point load

(1) If S.F diagram consists of inclined line then the load will be UDL on that portion

(1) If S.F diagram consists of parabolic curve then the load will be GVL

(iv) If S.F diagram consists of cubic curve then the load distribute is parabolic.

After finding load diagram we can draw B.M diagram easily.
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If B.M Diagram for a beam is given, then

(1) If B.M diagram consists of vertical line then a point BM is applied at that point.

(11) If B.M diagram consists of inclined line then the load will be free point load

(1) If B.M diagram consists of parabolic curve then the load will be U.D.L.

(iv) If B.M diagram consists of cubic curve then the load will be G.V.L.

(v) If B.M diagram consists of fourth degree polynomial then the load distribution is parabolic.

Let us take an example: Following is the S.F diagram of a beam is given. Find its loading diagram.

| |

(-) 6 kN

|

E!l D

e 3m ——

Answer: From A-E inclined straight line so load will be UDL and in AB = 2 m length load = 6 kN if UDL is

w N/m then w.x=6 or wx 2 =6 or w =3 kN/m after that S.F is constant so no force is there. At last a 6 kN

for vertical force complete the diagram then the load diagram will be

3 kN/m

2 m—— 3m—-T

As there is no support at left end it must be a cantilever beam.

: 3 kN/m

2 m—=— 3m——

——
(

W

o

4.8 Point of Contraflexure

In a beam if the bending moment changes sign at a point, the point itself having zero bending moment, the
beam changes curvature at this point of zero bending moment and this point is called the point of contra
flexure.

Consider a loaded beam as shown below along with the B.M diagrams and deflection diagram.
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wﬂmﬂmﬂﬁ
AR I[B
Fla L
{+)
B.M._Diagram
(=)
A, Ceflected shape of
o B the beam

In this diagram we noticed that for the beam loaded as in this case, the bending moment diagram is partly
positive and partly negative. In the deflected shape of the beam just below the bending moment diagram
shows that left hand side of the beam is ‘sagging' while the right hand side of the beam is ‘hogging’.

The point C on the beam where the curvature changes from sagging to hogging is a point of contraflexure.

® There can be more than one point of contraflexure in a beam.

Example: The point of contraflexure is a point where [ISRO-2015]
(a) Shear force changes sign (b) Bending moment changes sign

(c) Bending moment is maximum (d) None of the above

Answer. (b)

4.9 General expression

° EI(;—:(Z/:—Q)

. E|3—Z=VX

. EI%:MX

. 3—129=slope

e y=0 = Deflection
e Flexural rigidity = EI
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Shear Force (S.F.) and Bending Moment (B.M.)

GATE-1. A concentrated force, F is applied - L
(perpendicular to the plane of the figure) on
the tip of the bent bar shown in Figure. The
equivalent load at a section close to the fixed
end is: .
(a) ForceF
(b) Force F and bending moment FL
(¢) Force F and twisting moment FL
(d) Force F bending moment F L, and twisting F@ Y

moment FL

Y.

_EE

‘ L—»

[GATE-1999]

GATE-2. The shear force in a beam subjected to pure positive bending is
(positive/zero/negative) [GATE-1995]

GATE-2(i) For the cantilever bracket, PQRS, loaded as shown in the adjoining figure(PQ = RS =
L, and QR = 2L), which of the following statements is FALSE? [CE: GATE-2011]

(a) The portion RS has a constant twisting moment with a value of 2WL

(b) The portion QR has a varying twisting moment with a maximum value of WL.
(¢) The portiona PQ has a varying bending moment with a maximum value of WL
(d) The portion PQ has no twisting moment

Cantilever

GATE-4. A beam is made up of two p
identical bars AB and BC, by
hinging them together at B. The l
end A is built-in (cantilevered)

A

o C
and the end C is simply- ﬁ (9 |
supported. With the load P acting .-".-"t L/2 | i

as shown, the bending moment at . D e . :-"'.-".-T-".-"'.-
A is: , I
+————»

[GATE-2005]

PL 3PL
(a) Zero (b) — (c)

2 2

(d) Indeterminate
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Cantilever with Uniformly Distributed Load

GATE-5. The shapes of the bending moment diagram for a uniform cantilever beam carrying a
uniformly distributed load over its length is: [GATE-2001]
(a) A straight line (b) A hyperbola (c) An ellipse (d) A parabola

Cantilever Carrying load Whose Intensity varies

GATE-6. A cantilever beam carries the anti- W
symmetric load shown, where . is
the peak intensity of the
distributed load. Qualitatively, the 7 L B
correct bending moment diagram ﬁ ~_ |
for this beam is: J',FI \KIA\IW
L L _|
< > <

[GATE-2005]
(b)
ya \{

- o

Simply Supported Beam Carrying Concentrated Load

GATE-7. A concentrated load of P acts on a simply supported beam of span L at a distance —

from the left support. The bending moment at the point of application of the load is

given by [GATE-2003]
PL 2PL PL 2PL
a)— b)— c)— d)—
(a) 2 (b) 2 (c) 5 (d) 3
GATE-8. A simply supported beam carries a load 'P' L a P
through a bracket, as shown in Figure. The * P>
maximum bending moment in the beam is
(a) PI/2 (b) PI/2 + aP/2
(c) PI/2 + aP (d) PI/2 — aP T T
2L »

[GATE-2000, ISRO-2015]

Simply Supported Beam Carrying a Uniformly Distributed
Load

Statement for Linked Answer and Questions Q9-Q10:
A mass less beam has a loading pattern as shown in the figure. The beam is of rectangular cross-
section with a width of 30 mm and height of 100 mm. [GATE-2010]
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3000Nm™!

A By Y ¥y b cC
&

2,

2000
|

o

2000
|

\‘/
“|

GATE-9. The maximum bending moment occurs at

(a) Location B (b) 2675 mm to the right of A
(c) 2500 mm to the right of A (d) 3225 mm to the right of A

GATE-10. The maximum magnitude of bending stress (in MPa) is given by [ISRO-2015]
(a) 60.0 (b) 67.5 (c) 200.0 (d) 225.0

Data for Q11-Q12 are given below. Solve the problems and choose correct
answers -

A steel beam of breadth 120 mm and 120 KN/m

height 750 mm is loaded as shown in the

figure. Assume Estee1= 200 GPa.

15m

[GATE-2004]
GATE-11. The beam is subjected to a maximum bending moment of
(a) 3375 kNm (b) 4750 kNm (c) 6750 kNm (d) 8750 kNm

GATE-12. The value of maximum deflection of the beam is:
(a) 93.75 mm (b) 83.75 mm (c) 73.75 mm (d) 63.75 mm

Statement for Linked Answer and Questions Q13-Q14:
A simply supported beam of span length 6m and 75mm diameter carries a uniformly distributed
load of 1.5 kN/m [GATE-2006]

GATE-13. What is the maximum value of bending moment?
(a) 9 kNm (b) 13.5 kNm (c) 81 kNm (d) 125 kNm

GATE-14. What is the maximum value of bending stress?
(a) 162.98 MPa (b) 325.95 MPa (c) 625.95 MPa (d) 651.90 MPa

GATE-15.A cantilever beam OP is connected to another beam PQ with a pin joint as shown in
the figure. A load of 10 kN is applied at the mid-point of PQ. The magnitude of
bending moment (in kNm) at fixed end O is [GATE-2015]
(a) 2.5 (b) 5 (c) 10 (d) 25

10kN

20 & | o

| Zm 1

> %
GATE-15a. A vertical load of 10 kN acts on a hinge located at a distance of L/4 from the roller
support Q of a beam of length L (see figure).
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| 3L/4

The vertical reaction at support Q is [CE: GATE-2018]
(a) 0.0 kKN (b) 2.5 kN () 7.5 kN (d) 10.0 kN

Simply Supported Beam Carrying a Load whose Intensity
varies Uniformly from Zero at each End to w per Unit Run
at the MiD Span

GATE-16. A simply supported beam of length ' is subjected to a symmetrical uniformly varying
load with zero intensity at the ends and intensity w (load per unit length) at the mid

span. What is the maximum bending moment? [TAS-2004]
@ 3wl? ) wl? ()W|2 @ 5wl?
a — c)—

8 12 24 12

GATE-16a.For the simply supported beam of length L, subjected toa uniformly distributed
moment M kN-m per unit length as shown in the figure, the bending moment (in kN-
m) at the mid-span of the beam is [CE: GATE-2010]

M <NmM/m

| < I: >
(a) zero (b) M (c) ML, (d) %

GATE-16b. A simply supported beam of length L is subjected to a varying distributed load
sin(3mwx/L) Nm, where the distance x is measured from the left support. The
magnitude of the vertical reaction force in N at the left support is [GATE-2013]
(a) zero (b) L/3n (¢) Lin (d) 2L/

GATE-16c. For a loaded cantilever beam of uniform cross-section, the bending moment (in
N.mm) along thelength is M (x) = 5x2+10x, where x is the distance (in mm) measured
from the free end of thebeam. The magnitude of shear force (in N) in the cross-section
at x =10 mm is . [GATE-2017]

GATE-17. List-I shows different loads acting on a beam and List-Il shows different bending
moment distributions. Match the load with the corresponding bending moment

diagram.

List-I List-11 [CE: GATE-2003]
A. 1.
B. 2
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C. 3.

ey <

1

5.
Codes
A B C D A B C D
() 4 2 1 3 ®) 5 4 1 3
(¢ 2 5 3 1 (d) 2 4 1 3
GATE-18. The bending moment diagram for a beam is given below: [CE: GATE-2005]
b 200 kN-m
100 kN-m I
I I
I I
I ' 1 b/
1 '
[e—>le>le < >
0.5m 0.5m 1m 1m
The shear force at sections aa’ and bb' respectively are of the magnitude.
(a) 100 kN, 150 kN (b) zero, 100 kN
(c) zero, 50 kN (d) 100 kN, 100 kN

GATE-19. A simply supported beam AB has the bending moment diagram as shown in the
following figure: [CE: GATE-2006]

[— L—— L—>j— .—]

The beam is possibly under the action of following loads
(a) Couples of M at C and 2M at D (b) Couples of 2M at C and M at D

(c) Concentrated loads of %at C and % at D

(d) Concentrated loads of %at C and couple of 2M at D
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GATE-20. A simply-supported beam of length 3L is subjected to the loading shown in the figure.
P P
‘ L \ L L ‘
| A |
] ]

e Reeen [GATE-2016]

It is given that P =1 N, L = 1 m and Young’s modulus E = 200 GPa. The cross-section is a square
with dimension 10 mm X 10 mm. The bending stress (in Pa) at the point A located at the top surface
of the beam at a distance of 1.5 L from the left end is

(Indicate compressive stress by a negative sign and tensile stress by a positive sign.)

GATE-21. Match List-I (Shear Force Diagrams) beams with List-Il (Diagrams of beams with
supports and loading) and select the correct answer by using the codes given below

the lists: [CE: GATE-2009]
List-1 List-11
1
A. q/unit length q/unit length
OO Ta’a'a"a)

AN AN
qul\ qjl\ e L le—— L —le L
AR \I N 2
q al
2 S SR
q

AN AN

qu\ e L e—— L —le L ]

3.

q/unit length

-

- L e—— L — e L 3]
4.

}

+
B
o
+
o

< o
! SIS
NS
o
|

(SIS
SIS
—

P
P

— 1+ e~ L de—— L —>le L
Codes:
A B C D A B C D
@ 3 1 2 4 ® 3 4 2 1
© 2 1 4 3 d 2 4 3 1

GATE-22. For the overhanging beam shown in figure, the magnitude of maximum bending
moment (in kN-m) is [GATE-2015]
10kMN/m : 20kN
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Previous 25-Years IES Questions

Shear Force (S.F.) and Bending Moment (B.M.)

IES-1. A lever is supported on two kN
hinges at A and C. It carries a
force of 3 kN as shown in the
above figure. The bending

I'm
moment at B will be
(a) 3 kN-m (b) 2 kN-m A l B c
(¢) 1 kN-m (d) Zero e —e

bt m—sfet m—sfa—t m ]

[TES-1998]
IES-2. A beam subjected to a load P is shown in p— L/ 2 —tett— L/ 2 =~
the given figure. The bending moment at A
the support AA of the beam will be 4 T
(a) PL (b) PL/2 \ L2
(c) 2PL (d) zero
L 4
[TES-1997]

IES-3. The bending moment (M) is constant over a length segment (I) of a beam. The
shearing force will also be constant over this length and is given by [IES-1996]
(a) M1 (b) M/21 (c) M/41 (d) None of the above

IES-4. A rectangular section beam subjected to a bending moment M varying along its
length is required to develop same maximum bending stress at any cross-section. If
the depth of the section is constant, then its width will vary as [TES-1995]

(a) M ®) M (c) M2 ) 1M

IES-5. Consider the following statements: [TES-1995]
If at a section distant from one of the ends of the beam, M represents the bending
moment. V the shear force and w the intensity of loading, then
1.dM/dx =V 2.dVidx =w
3. dw/dx =y (the deflection of the beam at the section)
Select the correct answer using the codes given below:
(a) 1and 3 (b) 1 and 2 (c)2and 3 (d)1,2and 3

IES-5a Shear force and
bending moment 200 N
diagrams for a beam A B e D
ABCD are shown in 300 N
figure. It can be

concluded that Ie 10 m—)l‘b 25m _>|
(a) The beam has

three supports N
(b) End A is fixed
(¢) A couple of 2000

Nm acts at C 3000 Nm 3000 Nm
d A uniformly
distributed load v 1000 Nm

is confined to A

. B C D
portion BC only €10 m=>|€&10 m =>|€&——15m él
[IES-2010]
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Cantilever
IES-6. The given figure shows a beam BC simply supported at C and hinged at B (free end)

IES-7.

IES-8.

of a cantilever AB. The beam and the cantilever carry forces of

200 kg 100 kg

4
I l 8 } c
il L
Ae—1m —rp—1m—ebe—Im—sfo— 1M
100 kg and 200 kg respectively. The bending moment at B is: [TES-1995]
(a) Zero (b) 100 kg-m (c) 150 kg-m (d) 200 kg-m
Match List-I with List-II and select the correct answer using the codes given below
the lists: [IES-1993, 2011]
List-I List-II
(Condition of beam) (Bending moment diagram)
A.  Subjected to bending moment at the 1. Triangle
end of a cantilever
B. Cantilever carrying uniformly distributed 2. Cubic parabola
load over the whole length
C. Cantilever carrying linearly varying load 3. Parabola

from zero at the fixed end to maximum at
the support

D. Abeam having load at the centre and 4. Rectangle
supported at the ends

Codes: A B C D A B C D
(a) 4 1 2 3 (b) 4 3 2 1
() 3 4 2 1 (d) 3 4 1 2

If the shear force acting at every section of a beam is of the same magnitude and of

the same direction then it represents a [TES-1996]

(a) Simply supported beam with a concentrated load at the centre.

(b) Overhung beam having equal overhang at both supports and carrying equal concentrated
loads acting in the same direction at the free ends.

(¢) Cantilever subjected to concentrated load at the free end.

(d) Simply supported beam having concentrated loads of equal magnitude and in the same
direction acting at equal distances from the supports.

Cantilever with Uniformly Distributed Load

IES-9.

IES-10.

A uniformly distributed load o (in kN/m) is acting over the entire length of a 3 m long
cantilever beam. If the shear force at the midpoint of cantilever is 6 kN, what is the

value of w? [TES-2009]
(a) 2 (b) 3 (c) 4 (d)5
Match List-I with List-II and select the correct answer using the code given below the
Lists: [TES-2009]
Lisg-T List-[T
(Cantilever (Shear Force
Loading) Diagram)
P, Py A B c
A L [
P
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c £ s A B c
. 3——F—JA = S ,

o 44 B P . A B C
e R s
A B c
ST

Code: A B C D A B C D

(a 1 5 2 4 (b) 4 5 2 3

c 1 3 4 5 (d) 4 2 5 3

IES-11.

The shearing force diagram for a
beam is shown in the above figure.
The bending moment diagram is
represented by which one of the
following?

(a)

A

b
/B ()A\/B
C ) -
A/B A . B
| \l
C

A cantilever beam having 5 m length is so loaded that it develops a shearing force of

(©)

IES-12.

SF D B
[TES-2008]

A

20T and a bending moment of 20 T-m at a section 2m from the free end. Maximum
shearing force and maximum bending moment developed in the beam under this load

are respectively 50 T and 125 T-m. The load on the beam is:

(a)
(b)
(©
(d)

[TES-1995]
25 T concentrated load at free end

20T concentrated load at free end

5T concentrated load at free end and 2 T/m load over entire length

10 T/m udl over entire length

Cantilever Carrying Uniformly Distributed Load for a Part
of its Length

IES-13.

A vertical hanging bar of length LL and weighing w N/ unit length carries a load W at

the bottom. The tensile force in the bar at a distance Y from the support will be given

by

(a) W +wL

For-2019 (IES, GATE & PSUs)

[IES-1992]

(D)W +w(L-vy) (c)(W+w)y/L (d)W+VWV(|__y)
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Cantilever Carrying load Whose Intensity varies

IES-14. A cantilever beam of 2m length supports a triangularly distributed load over its
entire length, the maximum of which is at the free end. The total load is 37.5 kN.What
is the bending moment at the fixed end? [IES 2007]
(a) 50X 108 Nmm  (b) 12.5X 106 N mm (c) 100 x 106 N mm (d) 25x10¢ N mm

Simply Supported Beam Carrying Concentrated Load

IES-15. Assertion (A): If the bending moment along the length of a beam is constant, then the

beam cross section will not experience any shear stress. [TES-1998]
Reason (R): The shear force acting on the beam will be zero everywhere along the
length.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut R is false

(d) Aisfalse but R is true

IES-16. Assertion (A): If the bending moment diagram is a rectangle, it indicates that the
beam is loaded by a uniformly distributed moment all along the length.
Reason (R): The BMD is a representation of internal forces in the beam and not the
moment applied on the beam. [TES-2002]
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut R is false
(d) Aisfalse but R is true

IES-17. The maximum bending moment in a simply supported beam of length L loaded by a

concentrated load W at the midpoint is given by [TES-1996]

(a) WL (b) WL (0) WL (d) WL

a —_— c) — —_—

2 4 8

IES-18. A simply supported beam is W 2w w

loaded as shown in the above

figure. The maximum shear force !

in the beam will be

(a) Zero by W i

(c) 2W (d) 4W ,._c—ch_q.._g_.{‘_ca]

[TES-1998]

IES-19. If a beam is subjected to a constant bending moment along its length, then the shear

force will [TES-1997]

(a) Also have a constant value everywhere along its length
(b)  Be zero at all sections along the beam
(¢) Be maximum at the centre and zero at the ends (d) zero at the centre and maximum at

the ends
IES-20. A loaded beam is shown in W W
the figure. The bending
moment diagram of the L —

beam is best represented as:

L L i
'3 &

[~—L—--—2L—H—L—+

[IES-2000]
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) N\ PN N

IES-20(i). A beam ABCD 6 m long is supported at B and C, 3 m apart with overhangs AB =2 m
and CD = 1 m. It carries a uniformly distributed load of 100 KN/m over its entire
length: [TES-2015]

" ~100 nNII’] C :

O\ \C p"?\ DOV Y,

ey rr‘.——f—>k el e L I e
The maximum magnitudes of bending moment and shear force are
(a) 200 KN-m and 250 KN (b) 200 KN-m and 200KN
(c) 50 KN-m and 200 KN (d) 50 KN-m and 250 KN

IES-21. A simply supported beam has equal over-hanging lengths and carries equal
concentrated loads P at ends. Bending moment over the length between the supports

[TES-2003]
(a) Is zero (b) Is a non-zero constant
(c) Varies uniformly from one support to the other (d) Is maximum at mid-span
IES-21(i). A beam simply supported at equal distance from the ends carries equal loads at each

end. Which of the following statements is true? [TES-2013]
(@) The bending moment is minimum at the mid-span

(b) The bending moment is minimum at the support

(c) The bending moment varies gradually between the supports

(d) The bending moment is uniform between the supports

IES-22. The bending moment diagram for the case shown below will be q as shown in
i‘W W

A . B

a a a

(@) m ®) Vi

™N
© AN @

[IES-1992]
IES-23. Which one of the following W w
portions of the loaded beam
shown in the given figure is -— Y ————— | —
subjected to pure bending? A - !  E
(a) AB (b)DE T B C D T
(c) AE (d) BD -] —

[IES-1999]
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IES-24. Constant bending moment over span "I" will occur in [TES-1995]
| i
t N ! 1
{a) (b}
w w w
1 | | |
L__, ) 4 } [ {] ! ‘ rl"'J'
(c) {d)
IES-25. For the beam shown in the above g P
figure, the elastic curve between the
supports B and C will be:
(a) Circular (b) Parabolic
(c) Elliptic (d) A straight line a‘,;:}),- B % C
b ¢ i 2b p & ¥
A A A /|

[IES-1998]

IES-26. A beam is simply supported at its ends and is loaded by a couple at its mid-span as
shown in figure A. Shear force diagram for the beam is given by the figure.

[TES-1994]
n |
r V]
(A

: (8)

| I
L) R ]

(C) (D) (E)
(a) B M) C © D @ E

IES-27. A beam AB is hinged-supported at its ends and is loaded by couple P.c. as shown in
the given figure. The magnitude or shearing force at a section x of the beam is:

[TES-1993]
P
|
Fil ! 'CI B
- ™
. 4 : |
| £ i
e - ;
: |
- L e
(a0 b)) P (c) P/2L (d) P.c./2L

IES-27a.Which one of the following is the correct bending moment diagram for a beam which
is hinged at the ends and is subjected to a clockwise couple acting at the mid-span?
[IES-2018]

(a) (b) -

Positive BM Negative BM

© LN‘ (d) o/‘
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Simply Supported Beam Carrying a Uniformly Distributed
Load

IES-28. A freely supported beam at its ends carries a central concentrated load, and maximumbending
moment is M. If the same load be uniformly distributed over the beam length,then what is the
maximum bending moment? [TES-2009]

(@) M 0 M o0 (d) 2M
2 2 “ 73

Simply Supported Beam Carrying a Load who’s Intensity
varies uniformly from Zero at each End to w per
Unit Run at the MiD Span

IES-29. A simply supported beam is
subjected to a distributed W N/m
loading as shown in the
diagram given below:
What is the maximum shear
force in the beam?

(a) WL/3 (b) WL/2 ,,4”\,7_ &,

(c) 2WL/3 (d) WL/4
c — ]

—
[TES-2004]

Simply Supported Beam carrying a Load who’s Intensity
varies

IES-30. A beam having uniform cross-section carries a uniformly distributed load of intensity
q per unit length over its entire span, and its mid-span deflection is &.

The value of mid-span deflection of the same beam when the same load is distributed

with intensity varying from 2q unit length at one end to zero at the other end is:
[TES-1995]

(a) 1/3 6 (b) 1/2 6 (c) 2/38 (d)6

Simply Supported Beam with Equal Overhangs and
carrying a Uniformly Distributed Load

IES-31. A beam, built-in at both ends, carries a uniformly distributed load over its entire
span as shown in figure-I. Which one of the diagrams given below, represents
bending moment distribution along the length of the beam?

- udl
%mmm&mmg Fig-I
{a}/\‘

[TES-1996]

{c)
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The Points of Contraflexure

IES-32. The point' of contraflexure is a point where: [TES-2005]
(a) Shear force changes sign (b) Bending moment changes sign
(c) Shear force is maximum (d) Bending moment is maximum

IES-33. Match List I with List II and select the correct answer using the codes given below

the Lists: [TES-2000]

List-I List-11

A. Bending moment is constant 1. Point of contraflexure

B. Bending moment is maximum or minimum 2. Shear force changes sign

C. Bending moment is zero 3. Slope of shear force diagram is
zero over the portion of the beam

D. Loading is constant 4. Shear force is zero over the
portion of the beam

Code: A B C D A B C D
() 4 1 2 3 ® 3 2 1 4
© 4 2 1 3 @ 3 1 2 4

Loading and B.M. diagram from S.F. Diagram

IES-34. The bending moment diagram shown in Fig. I correspond to the shear force diagram
in [IES-1999]

—

g ———— (f) I_ ih-'ﬁ L--“'Hr (el -

IES-35. Bending moment distribution in a built beam is shown in the given

C .
N /\ i
B D
The shear force distribution in the beam is represented by [IES-2001]
(a) {h)
A c . A E
(c) \ (el E
-\\\ C
IES-36. The given figure shows the
shear force diagram for the
beam ABCD.
A B C D
Bending moment in the portion
BC of the beam
[TES-1996]
(a) Is a non-zero constant (b) Is zero
(c) Varies linearly from B to C (d) Varies parabolically from B to C
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IES-37. Figure shown above represents the
BM diagram for a simply supported
beam. The beam is subjected to
which one of the following?

(a) A concentrated load at its mid- A 5 ’L”’”””””;VB
length l e

(b) A uniformly distributed load over
its length P

(¢) A couple at its mid-length
(d)  Couple at 1/4 of the span from each
end

b S,

Il
=
3]
-
Fi
—_
-
N

o]
-
l

[TES-2006]
IES-38. If the bending moment diagram for

a simply supported beam is of the
form given below.

Then the load acting on the beam A \\|C 8
is:

(a) A concentrated force at C
(b) A uniformly distributed load over
the whole length of the beam

(¢ Equal and opposite moments B.M. Diagram
applied at A and B
(d) A moment applied at C [IES-1994]

IES-39. The figure given below shows a bending moment diagram for the beam CABD:

_az11/1[./]/1////..//////_{;/11:‘///.f.'.a’

C A B )
Load diagram for the above beam will be: [TES-1993]
(a) l B l
k 1l F a L
c A ig 3
(b) T I
thiss ; IERERE

|

¢ D
(d) ! i

C fA TE g

IES-40. The shear force diagram shown in the following figure is that of a [TES-1994]
(a)  Freely supported beam with symmetrical point load about mid-span.
(b)  Freely supported beam with symmetrical uniformly distributed load about mid-span
(¢)  Simply supported beam with positive and negative point loads symmetrical about the mid-
span
(d) Simply supported beam with symmetrical varying load about mid-span
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—% —~

02:1,22;;;2:;’1 0

] 7
0 Pt —

IES-40(i). A part of shear force diagram of the beam is shown in the figure

147N
3m ‘ ‘ ‘ |
AL ‘ ’5 _ - Tm C
—6kIN
If the bending moment at B is -9kN, then bending moment at C is [IES-2014]
(a) 40kN (b) 58kN (c) 116kN (d) -80kN

Statically Indeterminate beam
IES-41 Which one of the following is NOT a statically indeterminate structure?

!
T /]

y A7 B
@) -A—: p————- — = e e -=-B (b) 4 C T
‘ 4
© -—; y Steel g F
‘ @ 4 Aliminium
- /
). [ES-2010]
z
Previous 25-Years IAS Questions
Shear Force (S.F.) and Bending Moment (B.M.)
TAS-1. Assertion (A): A beam subjected only to end moments will be free from shearing force.
[IAS-2004]
Reason (R): The bending moment variation along the beam length is zero.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut R is false
(d) Ais false but R is true
TAS-2. Assertion (A): The change in bending moment between two cross-sections of a beam is

equal to the area of the shearing force diagram between the two sections.[IAS-1998]
Reason (R): The change in the shearing force between two cross-sections of beam due
to distributed loading is equal to the area of the load intensity diagram between the
two sections.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A
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(¢) Aistrue but R is false
(d) Ais false but R is true

TAS-3. The ratio of the area under the bending moment diagram to the flexural rigidity
between any two points along a beam gives the change in [IAS-1998]
(a) Deflection (b) Slope (c) Shear force (d) Bending moment
Cantilever
IAS-4. A beam AB of length 2 L having a P
concentrated load P at its mid-span
is hinge supported at its two ends A A B

and B on two identical cantilevers as q
shown in the given figure. The K

correct value of bending moment at L L L L

Ais
(a) Zero (b) PLI12
(c) PL (d) 2 PL [TAS-1995]

IAS-5. A load perpendicular to the plane of the handle is applied at the free end as shown in
the given figure. The values of Shear Forces (S.F.), Bending Moment (B.M.) and
torque at the fixed end of the handle have been determined respectively as 400 N, 340
Nm and 100 by a student. Among these values, those of [TAS-1999]
(a) S.F., B.M. and torque are correct
(b) S.F.and B.M. are correct
(c) B.M. and torque are correct
(d) S.F. and torque are correct

Cantilever with Uniformly Distributed Load

TIAS-6. If the SF diagram for a beam is a triangle with length of the beam as its base, the
beam is: [TAS-2007]
(a) A cantilever with a concentrated load at its free end
(b) A cantilever with udl over its whole span
(¢) Simply supported with a concentrated load at its mid-point
(d) Simply supported with a udl over its whole span

IAS-7. A cantilever carrying a uniformly distributed load is shown in Fig. I.
Select the correct B.M. diagram of the cantilever. [TAS-1999]
Rl Sl Y AR A i A SRR G ST i, Ve, ks A Y
3 Figure - 1
P
(a)
///(C}/ @
TAS-8. A structural member ABCD is loaded ;I A B
as shown in the given figure. The +
shearing force at any section on the j a
length BC of the member is: D ¥ C
(a) Zero () P
(c) Pa/k (d) Pk/a ‘ k
P

[IAS-1996]

For-2019 (IES, GATE & PSUs) Page 195 of 480 Rev.0



Chapter-4

Bending Moment afrddshe® Force Diagram S K Mondal’s

Cantilever Carrying load Whose Intensity varies

IAS-9.

The beam is loaded as shown in Fig. I. Select the correct B.M. diagram

[TIAS-1999]
-‘_'_‘_,_i—'"-

A TB AC

+

Cb);“‘\-;/

/\
N

Simply Supported Beam Carrying Concentrated Load

IAS-10.

TAS-11.

TIAS-12.

Assertion (A): In a simply supported beam carrying a concentrated load at mid-span,
both the shear force and bending moment diagrams are triangular in nature without
any change in sign. [TAS-1999]
Reason (R): When the shear force at any section of a beam is either zero or changes
sign, the bending moment at that section is maximum.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Aisfalse but R is true

For the shear force to be uniform throughout the span of a simply supported beam, it

should carry which one of the following loadings? [TAS-2007]

(a) A concentrated load at mid-span

(b) Udl over the entire span

(¢) A couple anywhere within its span

(d) Two concentrated loads equal in magnitude and placed at equal distance from each
support

Which one of the following figures represents the correct shear force diagram for the
loaded beam shown in the given figure I? [TAS-1998; IAS-1995]

W W

A Bl C'l D

) 3

1—L—+7 3L 4>|*'—L—':
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Simply Supported Beam Carrying a Uniformly Distributed
Load

IAS-13. For a simply supported beam of length fl' subjected to downward load of uniform
intensity w, match List-I with List-II and select the correct answer using the codes

given below the Lists: [IAS-1997]
List-I List-II
5w
A.  Slope of shear force diagram
384E |
B. Maximum shear force 2. w
4
. . Wit
C. Maximum deflection 3. ?
. . . Wi
D. Magnitude of maximum bending moment 4, ?
Codes: A B C D A B C D
(a 1 2 3 4 (b) 3 1 2 4
(¢ 3 2 1 4 (d) 2 4 1 3

Simply Supported Beam Carrying a Load whose Intensity
varies Uniformly from Zero at each End to w per Unit Run
at the MiD Span

IAS-14. A simply supported beam of length 'l' is subjected to a symmetrical uniformly varying
load with zero intensity at the ends and intensity w (load per unit length) at the mid

span. What is the maximum bending moment? [TAS-2004]
@ 3wl? ) wl? ()W|2 @ 5wl?
a — c)—

8 12 24 12

Simply Supported Beam carrying a Load whose Intensity

varies

IAS-15. A simply supported beam of span 1 is subjected to a uniformly varying load having
zero intensity at the left support and w N/m at the right support. The reaction at the

right support is: [IAS-2003]
( )W| b wli ()W| @ wl
a)— — c)— —

2 5 4 3

Simply Supported Beam with Equal Overhangs and
carrying a Uniformly Distributed Load

IAS-16. Consider the following statements for a simply supported beam subjected to a couple
at its mid-span: [TAS-2004]
1. Bending moment is zero at the ends and maximum at the centre
2. Bending moment is constant over the entire length of the beam
3. Shear force is constant over the entire length of the beam
4. Shear force is zero over the entire length of the beam
Which of the statements given above are correct?
(a) 1,3 and 4 (b) 2, 3 and 4 (c) 1and 3 (d) 2 and 4

IAS-17. Match List-I (Beams) with List-II (Shear force diagrams) and select the correct
answer using the codes given below the Lists: [TAS-2001]
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List1 List I
P Q S T P Q R 8 T
S |
. Ns Q R g - ) 2 P Q. X S T
P Q R S T P g R 8 T
o B 1
D P Q R S T 4. F Q . 8 T
P Q R F T
5 ;
Codes: A B C D A B C D
(a 4 2 5 3 (b) 1 4 5 3
e 1 4 3 5 (d) 4 2 3 5

The Points of Contraflexure

TAS-18.

IAS-19.

A point, along the length of a beam subjected to loads, where bending moment
changes its sign, is known as the point of [IAS-1996]
(a) Inflexion (b) Maximum stress (c) Zero shear force (d) Contra flexure

Assertion (A): In a loaded beam, if the shear force diagram is a straight line parallel
to the beam axis, then the bending moment is a straight line inclined to the beam
axis. [TAS 1994]
Reason (R): When shear force at any section of a beam is zero or changes sign, the
bending moment at that section is maximum.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut Ris false

(d) Aisfalse but R is true

Loading and B.M. diagram from S.F. Diagram

TAS-20.

TAS-21.

For-2019

The shear force diagram of a 14 kN

loaded beam is shown in the
following figure: 2 KN
The maximum Bending Moment of -
the beam is: +—JIm—we—Im—»
(a) 16 kN-m ®) 11 kN-m A C B
(c) 28 kN-m (d) 8 kN-m 13 \ldk\
-19 kN
[TAS-1997]
The bending moment for a loaded beam is shown below: [IAS-2003]
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The loading on the beam is represented by which one of the followings diagrams?

(a) ()
{ ¢ v 4 4

( (d)

c)
— N
Mﬂ ' !
f f

IAS-22. Which one of the given bending moment diagrams correctly represents that of the

loaded beam shown in figure? [TAS-1997]
P
Al B
e——L/2 »ie L2—
@ ®) © @

TAS-23. The shear force diagram is shown
+ above for a loaded beam. The
+ _i corresponding bending moment

— diagram is represented by

[IAS-2003]

-+

N VAN v
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+

+ \

A\
IAS-24. The bending moment diagram for a simply supported beam is a rectangle over a
larger portion of the span except near the supports. What type of load does the beam

carry? [TAS-2007]
(a) A uniformly distributed symmetrical load over a larger portion of the span except near the
supports

(b) A concentrated load at mid-span

(¢) Two identical concentrated loads equidistant from the supports and close to mid-point of
the beam

(d) Two identical concentrated loads equidistant from the mid-span and close to supports
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OBJECTIVE ANSWERS

GATE-1. Ans. (c)
GATE-2. Ans. Zero
GATE-2(i).Ans. (b)
GATE-4. Ans. (b)
GATE-5. Ans. (d)

0
i .
I
I
1
el )
" RS S 5

GATE-6. Ans. (c)

o
| Nw

L
B e _

M2w

G A O O A A
M, = wx®  wx®
2 6L

GATE-7. Ans. (d)

FI
kax%
v _Pab__\3)7\3) 2pL > b —>

¢ I L 9 T C T
) | |

GATE-8. Ans. (b)

GATE-9. Ans. (c)
3000 N/m

v

i

1 RZ
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R,+R, = 3000 x2 = 6000N

R, x4-3000x2x1=0

R, = 1500,

S.F. eq". at any section x from end A.

R, —3000x(x-2)=0 {for  x>2m}
Xx=25m.

GATE-10. Ans. (b)
Binding stress will be maximum at the outer surface
So taking y = 50 mm

andl_Id3 mx50
- d
N /2

. =15x10°[2000+ x]—?

Mo = 3.375x10° N —mm

B 3.375x10° x50x12

30x100°

2 2
GATE-11. Ans. ()M, _, % %kNmzssmkNm

=67.5MPa

bh® _ 0.12x(0.75)°
12 12
5w 5 120x10° x15* M= 93.75mm
" 384 El 384 200x10° x4.22x10°
w|2 _1.5x6’
8
_32M _32x6.75x10°

GATE-14. Ans. (a) o 3 Pa =162.98MPa
 zd 7Z'><(0.075)

GATE-12. Ans. (a) Moment of inertia (I) = =4.22x10"°m*

GATE-13. Ans. (a) M,

=6.75kNm But not in choice. Nearest choice (a)

GATE-15. Ans. (¢)

Jrom

- t
10N

1

KM Sk

SKN

PR e —

M=5x2=10KN
GATE-15a. Ans. (a) In the simply supported part no force et all.
GATE-16. Ans. (b)
GATE-16a. Ans. (a)

Let the reaction at the right hand support be V, upwards. Taking moments about left hand
support, we get
VyxL-ML=0
= Vi, =M
Thus, the reaction at the left hand support V; will be M downwards.

. Moment at the mid-span

=—M><E+M><£=O
2 2
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Infact the bending moment through out the beam is zero.

GATE-16b.Ans. (b)

GATE-16c¢. Ans. 110 Range (110 to 110)

GATE-17. Ans. (d)
GATE-18. Ans. (c¢)

The bending moment to the left as well as right of section aa'is constant which means shear

dM,
dx

=V,=10x+10 =10x10 +10=110

force is zero at aa’.

Shear force at bb’ :%;100 =50kN

GATE-19. Ans. (a)
The shear force diagram is

C D
A I I B
] L|
M - M
L p . L
I SFD 1
| 1
| 1
1 1
— 2M
| M 1
L | ]
R
| 1
| 1
Ra Loading diagram Rp
3SM M
Fa=fe=p =7

GATE-20. Ans. 0 (Zero)
It is a case of BM at the mid span of a simply supported beam, at this point BM changes sign so
value is zero.

GATE-21. Ans. (a)

GATE-22. Ans.40 kNm

IES

IES-1. Ans. (a)

IES-2. Ans.(b) Load P at end produces moment & in ;:1
2 ? P
anticlockwise direction. Load P at end
produces moment of PL in clockwise P | PL P
direction. Net moment at AA is PL/2. ? v PxL
R *,

IES-3. Ans. (d) Dimensional analysis gives choice (d)
3

TES-4. Ans. (a)¥ —const. and |- %

IES-5. Ans. (b)

IES-5a  Ans. (¢) A vertical increase in BM diagram entails there is a point moment similarly a vertical

increase in SF diagram entails there is a point shear force.

IES-6. Ans. (a)

IES-7. Ans. (b)

IES-8. Ans. (¢)

IES-9. Ans. (¢)
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E PN
T le—— 2

Shear force at mid point of cantilever

2
N oa><3:6
- o=2%2 _4kN/m

IES-10. Ans. (b)
IES-11. Ans. (b) Uniformly distributed load on cantilever beam.

X x
[ w A length

S

ey oy

»

M

B.M |-wWiF
w% ,

IES-12. Ans. (d)
IES-13. Ans. (b)
IES-14. Ans. (a)

2m

'

7
447 ngm — »

¥

4
M =37.5% gKNm = 50X 106 Nmm

IES-15. Ans. (a)
IES-16. Ans. (d)
IES-17. Ans. (c)
IES-18. Ans. (c)
IES-19. Ans. (b)
IES-20. Ans. (a)
IES-20(i).Ans. b
IES-21. Ans. (b)
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Chapter-4 Bending Moment and Biga2@®orce Diagram S K Mondal’s
§ !
] |
ww
ﬂ)}o‘
////Ma’ly//
i

IES-21(i). Ans. (d)

IES-22. Ans. (a)

IES-23. Ans. (d) Pure bending takes place in the section between two weights W

IES-24. Ans. (d)

IES-25. Ans. (a)

IES-26. Ans. (d)

IES-27. Ans. (d) If F be the shearing force at section x (at point A), then taking moments about B, F x 2L =
Pc

or F= Pe Thus shearing force in zone x = Pe
2L 2L

IES-27a.Ans. (c)

R, = MIL

IES-28. Ans. (b)
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Chapter-4 Bending Moment aradsizés Force Diagram S K Mondal’s
BM,., = WL =M
4

Max

Where the Load is U.D.L.
Maximum Bending Moment

-(25)

_%_1(WL)_M
8 2 2

g8 2 4
TES-29. Ans. (d) Total load =~ xLx W = WL
2 2
2
WL WL T W |2 WL WX
4 2L 4 L
2
WL/ WL
Smax at x=0 :T

IES-30. Ans. (d)

IES-31. Ans. (d)

IES-32. Ans. (b)

IES-33. Ans. (b)

IES-34. Ans. (b) If shear force is zero, B.M. will also be zero. If shear force varies linearly with length, B.M.
diagram will be curved line.

IES-35. Ans. (a)

IES-36. Ans. (a)

IES-37. Ans. (c¢)

IES-38. Ans. (d) A vertical line in centre of B.M. diagram is possible when a moment is applied there.

IES-39. Ans. (a) Load diagram at (a) is correct because B.M. diagram between A and B is parabola which is
possible with uniformly distributed load in this region.

IES-40. Ans. (b) The shear force diagram is possible on simply supported beam with symmetrical varying

load about mid span.
IES-40(i) Ans. (a)
IES-41 Ans. (¢)

1AS

IAS-1. Ans. (a)
IAS-2. Ans. (b)
IAS-3. Ans. (b)
IAS-4. Ans. (a)Because of hinge support between beam AB and cantilevers, the bending moment can't be

transmitted to cantilever. Thus bending moment at points A and B is zero.
IAS-5. Ans. (d)

SF =400N and BM=400x (0.4 + 0.2) = 240Nm
Torque =400x0.25=100Nm
IAS-6. Ans. (b)
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Chapter-4 Bending Moment and Biga2@orce Diagram S K Mondal’s

“carali s
30
20------- .4*_
10 I
0 } P oo
2
IAS-7. Ans. (¢) M, = —wx x X __WX
2 2
;l. X
Y VY i Y i
] !
e
IAS-8. Ans. (a)
IAS-9. Ans. (d)
IAS-10. Ans. (d) A is false.
¥ <

T
[ ]
E
o
[ ] .

SFD

IAS-11. Ans. (¢)
IAS-12. Ans. (a)
IAS-13. Ans. (d)

Y [
wliz wl'2
———— | —_—
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Chapter-4 Bending Moment aradsiz®s Force Diagram S K Mondal’s
IAS-14. Ans. (b)
IAS-15. Ans. (d)
IAS-16. Ans. (¢)

10 N 10 Nm X
i = e
F
<;7 x 10N
—— 1m
+ 10N
SFD
P
BMD

IAS-17. Ans. (d)
IAS-18. Ans. (d)
IAS-19. Ans. (b)
IAS-20. Ans. (a)

IAS-21. Ans. (d)
IAS-22. Ans. (¢) Bending moment does not depends on moment of inertia.
IAS-23. Ans. (a)
IAS-24. Ans. (d)
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Previous Conventional Questions with Answers

Conventional Question IES-2005

Question: A simply supported beam of length 10 m carries a uniformly varying load whose
intensity varies from a maximum value of 5 kN/m at both ends to zero at the centre
of the beam. It is desired to replace the beam with another simply supported beam
which will be subjected to the same maximum 'bending moment’ and ‘shear force' as
in the case of the previous one. Determine the length and rate of loading for the
second beam if it is subjected to a uniformly distributed load over its whole length.
Draw the variation of 'SF' and 'BM' in both the cases.

Answer:

X
5KN/m ; 5KN/m

A

10m
R. Rs

Total load on beam :SX% = 25kN

R, =R, = 2—25 —12.5kN

Take a section X-X from B at a distance x.

For 0 < x <5m we get rate of loading

w=a+ bx [as lineary varying]

at x=0, w=5kN /m

and atx=5,w=0

These two bounday condition givesa=5and b =-1
cSw=5-x

We know that shear force(V), (;—V =—w
X

2
X
orV:f—a;dx:—f(S—x)dx:—5x+?+c1
at x=0,F=125kN (R;) soc, =12.5
2

V= -Bx + X? 125

It is clear that maximum S.F = 12.5 kN

For a beam d—M:V
dx
x2 5x? X3
or, M—dex:f(—5x+?+12.5)dx—- S+ 125X +C,

at x=0,M=0givesC, =0
M=12.5x - 2.5x* +x*/6
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wiunit length
ALLEIRERIEEXERIR BRI
)
W.
V. ! wiunit leng :
AN
- - PK
S.F. I}lagmm _ -WLff
M / \
X

Page 210
Bending Moment and Shear Force Diagram S K Mondal’s

for Maximum bending moment at Z—':(A: 0
or-5x+X?2+12.5 =0

or,x* —10x+25=0

or,x =5 means at centre.

So, M, =125x2.5-2.5x5” +5%/6=20.83 kNm

X CIKNmM
? ) /T
R, L R,
X

Now we consider a simply supported beam carrying uniform distributed load
over whole length (w KN/m).
Here R, =R; = WL

S.F.at section X-X

W/
V, =+——wx

2 w
V.. =12.5kN
B.M at section X-X

We o Wx?2
M, = +—Xx—
X 2 2

2 2

aM, WL w (L] WL 5683 —— iy
dx 2 2 |2 8

Solving(i) & (ii) we get L=6.666m and w=3.75kN/m

B.M Diagram
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Conventional Question IES-1996
Question:

Bending Moment and Shear Force Diagram

Page 211
S K Mondal’s

A Uniform beam of length L is carrying a uniformly distributed load w per unit

length and is simply supported at its ends. What would be the maximum bending
moment and where does it occur?

Answer: By symmetry each

W/

reactionis equal i.e. Ra=Rg= T

B.M at the section x-x is

We o Wx?
My=+—— X —
2 2

For the B.M to be maximum we

X

X

have to =0 that gives.

W—g—wX:O
—+

or x:% i.e. at mid point.
wl

2
v/ @ |t
2XA 2421

Conventional Question AMIE-1996
Question:

And Mmax=

support

wiunit run

1
Ry =wl/z2

Parabolic
curve

+ wid/ g

1311111}//,- o

Bending Moment Diagram

Calculate the reactions at A and D for the beam shown in figure. Draw the bending

moment and shear force diagrams showing all important values.

4 kN

1 kN/m

0.5m

D

- ..-'1’"4 kN
" 30°

AN

)

Answer:

2m + 2m + 2m+1m_|

Equivalent figure below shows an overhanging beam ABCDF supported by a roller support at

A and a hinged support at D. In the figure, a load of 4 kN is applied through a bracket 0.5 m
away from the point C. Now apply equal and opposite load of 4 kN at C. This will be
equivalent to a anticlockwise couple of the value of (4 x 0.5) = 2 kNm acting at C together with
a vertical downward load of 4 kN at C. Show U.D.L. (1 kN/m) over the port AB, a point load of

2 kN vertically downward at F, and a horizontal load of 2\/§ kN as shown.
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Chapter-4

Bending Moment aradsiziea Force Diagram

3 kN J kN
F7 777
F
o+ A
# A
/ll'}fll'l'f-H
VAV A A A A A A A 5///
E - A
~ -1
2kN  2kN
3 kN _
S. F. diagram
4 kNm 6 kNm
2-5kNm 4 kNm

2 kNm

B.M. diagram

For reaction and A and D.
Let ue assume Ra=reaction at roller A.
Rpv vertically component of the reaction at the hinged support D, and

Rpn horizontal component of the reaction at the hinged support D.
Obviously Rpr= 2\/§ kN (—)

In order to determine Ra, takings moments about D, we get

R, x6+2x1=1x2x(§+2+2)+2+4x2

or R, =3kN
Also R, +Ry, =(1x2)+4+2=8

or R,y = 5kN vetrically upward

-.Reaction at D, R, = \/(RZDV)+ (Row ) =[5% + (243 )2 —6.08kN

Inclination with horizontal= 6 = tan™ o 55.3°

2.3

SF.Calculation:
Ve =-2kN
V, =-2+5=3kN
V;=3-4=-%kN
V; =—1kN
V, =—1—(1><2)=—3kN

B.M.Calculation:
M =0
M, =-2x1=-2kNm
Mg =[-2(1+2)+5x2]+2=6kNm
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Chapter-4 Bending Moment and Biga? f3orce Diagram S K Mondal’s
The bending moment increases from 4kNm in (i, e.,—2(1+2)+5><2)

to 6kNm as shown
=-2(1+2+2)+5(+2)-4x2+2=4kNm

MB

M, =—2(1+2+2+§J+5(2+2+1)—4(2+1)+2—1><1><%
=2.5kNm

M, =0

Conventional Question GATE-1997
Question: Construct the bending moment and shearing force diagrams for the beam shown in

the figure.
20 kN/m 50 kN 40 kN

Answer: )

]

15kN 1 :
1

A I I

A 1 ]

"f!’fﬂ'? 4

2R

7 Fi i

s / i
Al #

y — !

g /] I
" 7]

g / '

2] I

I

i

i

- e o om wm el e e omm omm oam =

- o e o S mm mm omm

F'67.5 kNm
' B.M Diagram

Calculation: First find out reaction at B and E.
Taking moments, about B, we get
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Bending Moment aradsieiadr Force Diagram

REx4.5+2oxo.5x0—;’+100=5ox3+4ox5

or Rg =55kN

Also, R; +R: =20x0.5+50+40
or Rz =45kN [ Re =55kN]
S.F. Calculation: V: =—40kN

Ve =—40+55=15kN
V, =15-50 =-35kN
V; =-35+45=10kN
B.M.Calculation: M; =0
M- =0
Mg =-40x0.5=-20kNm
Mp =—-40x2+55%x1.5=2.5kNm
M, =-40x4 +55%x3.5-50x2=-67.5kNm
The bending moment increases from —62.5kNm to 100.

M, =—20x0.5x 0_;’ = —2.5kNm

Conventional Question GATE-1996
Two bars AB and BC are connected by a frictionless hinge at B. The assembly is
supported and loaded as shown in figure below. Draw the shear force and bending
moment diagrams for the combined beam AC. clearly labelling the important

Question:

Answer:

values. Also indicate your sign convention.

100 kN 100 kN

A8 ] | <

o)

1.5m 2m im m

BEEAALAELANA ALY

S K Mondal’s

There shall be a vertical reaction at hinge B and we can split the problem in two parts. Then

the FBD of each part is shown below

100 kN 100 kN

M |
2m 1rn-+—1rn-l-
[s)
A B[G

1.5m T I I

R, A
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Chapter-4 Bending Moment and Biga? fforce Diagram S K Mondal’s
125 kN

+

25 kN

Frrrrrrr

::::::a VITTi7I7

75 kN 75 kN
S. F. Diagram

A B

A

112.5 kNm B. M. Diagram

Calculation: Referring the FBD, we get,
Fy =0, and R,+R, =200kN
From ZMB=O,100><2+100><3—R2><4=0

or R, :?:QSKN

- R, =200 —125 = 75kN
Again, R, =R, =75kN
and M=75x1.5=112.5kNm.

Conventional Question IES-1998
Question: A tube 40 mm outside diameter; 5 mm thick and 1.5 m long simply supported at 125
mm from each end carries a concentrated load of 1 kN at each extreme end.

(i) Neglecting the weight of the tube, sketch the shearing force and bending
moment diagrams;

(ii) Calculate the radius of curvature and deflection at mid-span. Take the modulus
of elasticity of the material as 208 GN/m?

Answer: (i) Given, d) =40mm=0.04m; d =d; -2t =40-2x5=30mm=0.03m,
W =1kN; E=208GN/m? =208 x10°N/m?*; 1=1.5;a=125mm=0.125m
w W

LT T

* /
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Chapter-4 Bending Moment aradsiziaé Force Diagram S K Mondal’s
w

|
FRFFY.

S.F. diagram w

Wa : Wa
B.M. diagram
Calculation:
(ii) Radius of coordinate R

As per bending equation:
M_o_E
I 'y R
El .
or R=— ———{i
o ()
Here,M =W xa=1x10°x0.125 =125Nm

|=6l4(dg—d;‘)

T 4 4 .
- 6—4[(0.04) ~(0.03)" | -8.59x10° m*
Substituting the values in equation (i), we get

8 -8
R:208><10 x8.59x10 _142.9m
125

Deflection at mid — span:
d’y
EIF=MX =-Wx+W (x—-a)=-Wx+Wx-Wa=-Wa
X
Integrating, we get

EI:—y =-Wax +C,

X
When, X = 1d_y =0
2 dx
0=—Wa%+C1 or C, =?
Eld—y =-Wax + Wal
dx
Integrating again, we get
x*  Wal

Ely=-Wa—+—x+C
y > 2 2
When x=a,y=0
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Chapter-4 Bending Moment and Biga? force Diagram S K Mondal’s

3 2
0=_Wa +Wa|+02
2 2
3 2
or C2:Wa _WaI
2 2
Wax? Walx |Wa® Wwa?
Ely=— + + -
2 2 2 2
Wal| x* Ix a® al
El 2 2 2 2

At mid - span,i,e., x=1/2

Wa{_(ll2)2 Ix(1/2) a2 al}

Y=& 2 2

+
2 2 2 2

Wal| P a?> al
= -—4 —— —

El 8 2 2
3 1x1000x0.125 1.52+O.1252_0.125x1.5
208x10°x8.59x10°%| 8 2 2
=0.001366m =1.366mm

It will be in upward direction

Conventional Question IES-2001

Question: What is meant by point of contraflexure or point of inflexion in a beam? Show the
same for the beam given below:

17.5kN/m [ZOKN
A/\‘évv\/‘\ € B D
] 4M | aM L 2n_)
Answer: In a beam if the bending moment changes sign at a point, the boint itself having zero bending

moment, the beam changes curvature at this point of zero bending moment and this point is
called the point of contra flexure.

17.5kN/m lZOkN
AN—\/_\/‘\/—\ c B D
] M ! 4M — s

\J

From the bending moment diagram we have seen that it is between A & C.
[If marks are more we should calculate exact point.]

BMD
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D. Deflection of Beam

Theory at a Glance (for IES, GATE, PSU)

5.1 Introduction

® We know that the axis of a beam deflects from its initial position under action of applied forces.

® In this chapter we will learn how to determine the elastic deflections of a beam.
Selection of co-ordinate axes

We will not introduce any other co-ordinate system.

We use general co-ordinate axis as shown in the Y

figure. This system will be followed in deflection of

beam and in shear force and bending moment

diagram. Here downward direction will be negative

1.e. negative Y-axis. Therefore downward deflection of » X

the beam will be treated as negative. We use above Co-ordinate system

To determine the value of deflection of beam
subjected to a given loading where we will use the
2

formula, Eld y M, .

e

Some books fix a co-ordinate axis as shown In the

following figure. Here downward direction will be = X
positive i.e. positive Y-axis. Therefore downward

deflection of the beam will be treated as positive. As

beam is generally deflected in downward directions

and this co-ordinate system treats downward

deflection is positive deflection. Some books use above co-ordinate system

To determine the value of deflection of beam

subjected to a given loading where we will use the

2

d
formula, E/d—}z/ =-M,.
X
Why to calculate the deflections?
® To prevent cracking of attached brittle materials
® To make sure the structure not deflect severely and to “appear” safe for its occupants
® To help analyzing statically indeterminate structures

® Information on deformation characteristics of members is essential in the study of vibrations of
machines
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Chapter-5 DeflectionPap8289n S K Mondal’s
Several methods to compute deflections in beam

e Double integration method (without the use of singularity functions)
o Macaulay’s Method (with the use of singularity functions)

o Moment area method

o Method of superposition

¢ Conjugate beam method

e C(Castigliano’s theorem

e  Work/Energy methods

Each of these methods has particular advantages or disadvantages.

Methods to find
deflection

\ 4 A 4 V}
< Double integration > ( Geometrical > (Energy Method>
Moment area Conjugate
method beam method

Castlglian’s
theorem

Assumptions in Simple Bending Theory
e Beams are initially straight
e The material is homogenous and isotropic i.e. it has a uniform composition and its mechanical
properties are the same in all directions
o The stress-strain relationship is linear and elastic
e  Young’s Modulus is the same in tension as in compression
e Sections are symmetrical about the plane of bending

e Sections which are plane before bending remain plane after bending

Non-Uniform Bending
e In the case of non-uniform bending of a beam, where bending moment varies from section to section,
there will be shear force at each cross section which will induce shearing stresses
e Also these shearing stresses cause warping (or out-of plane distortion) of the cross section so that

plane cross sections do not remain plane even after bending
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Chapter-5 DeflectRag@PBram
5.2 Elastic line or Elastic curve

We have to remember that the differential equation of the elastic line is

Proof: Consider the following simply supported beam with UDL over its length
Y

Elastic line

Elastic line
From elementary calculus we know that curvature of a line (at point Q in figure)
dy
1 dx2 .
R T . a2 where R =radius of curvature
{1 + (dy] }
dx

For small deflection, d_y ~0

~

dx
2
R dx?

Bending stress of the beam (at point Q)
—(M, ).
o - Ix) y
From strain relation we get
1

O,
=——% and ¢, =—~*
y

1M
R El

For-2019 (IES, GATE & PSUs) Page 220 of 480

S K Mondal’s

Rev.0



Chapter-5 DeflectionPap822m S K Mondal’s

2
Therefore d—}zl M,
dx® El
2
or Bl Y _m,
X

5.3 General expression

2
From the equation El % =M, we may easily find out the following relations.
X
4

e EI ((jj Z/ =—w Shear force density (Load)
X

3

. Eld—szX Shear force
dx

2

e EI d—Z =M, Bending moment
dx
d_y: 0 = slope

e y=¢ = Deflection, Displacement
e Flexural rigidity = El

5.4 Double integration method (without the use of singularity functions)

o V= _[ —adX

o M= IVXdX

o EI d—zzl =M,
dx

1
6 =Slope =— | M _dx
p EII .

o = Deflection :j Gdx

4-step procedure to solve deflection of beam problems by double integration method

Step 1: Write down boundary conditions (Slope boundary conditions and displacement boundary

conditions), analyze the problem to be solved
d?y

Step 2: Write governing equations for, El F
X

MX

Step 3: Solve governing equations by integration, results in expression with unknown integration constants

Step 4: Apply boundary conditions (determine integration constants)
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Chapter-5 DeflectRag@pBeam
Following table gives boundary conditions for different types of support.

S K Mondal’s

Types of support and Boundary Conditions

Figure

Clamped or Built in support or Fixed end :
( Point A)

Deflection,(y)=0

Slope,(6)=0

Moment,(M)=0 i Afinitevalue

.'f"

Free end: (Point B)

Deflection,(y)+#0 ie.Afinitevalue
Slope,(0) =0 i.e. Afinitevalue
Moment,(M ) =0

Roller (Point B) or Pinned Support (Point A) or
Hinged or Simply supported.

Deflection,(y)=0
Slope,(6) =0 i.e Afinitevalue
Moment,(M ) =0

End restrained against rotation but free to
deflection

Deflection,(y) =0 i.e Afinitevalue
Slope, (6)=0
Shear force,(V)=0

Flexible support
Deflection,(y) =0 i.e Afinitevalue

K., =—— Rotational spring

d
Slope,(0)#0 i.e.Afinitevalue | ) ) 'i M=K, d_y
dy X
Moment,(M )=k — -
( ) ' dx ,-"'"H’#’, U Ky
Shear force,(V)=k.y Linear spring
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Chapter-5 DeflectionPafy8228n S K Mondal’s
Using double integration method we will find the

deflection and slope of the following loaded beams
one by one.

(1) A Cantilever beam with point load at the free end.

(1) A Cantilever beam with UDL (uniformly distributed load)

(i11) A Cantilever beam with an applied moment at free end.

(iv) A simply supported beam with a point load at its midpoint.

(v) A simply supported beam with a point load NOT at its midpoint.

(vi) A simply supported beam with UDL (Uniformly distributed load)

(vil)) A simply supported beam with triangular distributed load (GVL) gradually varied load.
(viil) A simply supported beam with a moment at mid span.

(ix) A simply supported beam with a continuously distributed load the intensity of which at any

. [ X
point X’ along the beam is W, =W SIN T

(i) A Cantilever beam with point load at the free end.
We will solve this problem by double integration method. For that at first we have to calculate (Mx).

Consider any section XX at a distance ‘X’ from free end which is left end as shown in figure.

Y

We know that differential equation of elastic line

2
Bl 9Y oM, = px
dx

Integrating both side we get
d’y
[El P [x dx
2

or Bl p XA 0
dx 2
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Chapter-5 DeflectRag@2Beam S K Mondal’s
Again integrating both side we get

EIJ'dy=I(PX?2+AJ dx
3

or Ely=- P%+AX+B .............. (ii)

Where A and B is integration constants.

Now apply boundary condition at fixed end which is at a distance x = L from free end and we also know that

at fixed end
at x=L, y=0
at x=1L, ﬂ =0
dx
. PL®
from equation (i) EIL = - ?+ AL+B ... (iii)
2

from equation (1) EI.(0) = - Ty +A L (iv)

2 3
Solving (ii1) & (iv) we get A = % and B=- i
Px® . PU’x PL
6ElI 2EI 3El

The slope as well as the deflection would be maximum at free end hence putting x = 0 we get

Therefore, y=-

3

Ymax = - ﬁ (Negative sign indicates the deflection is downward)
PL?
Slope)max = @ max = ——
(Slope) 2E|

Remember for a cantilever beam with a point load at free end.

_PU
3EN

Downward deflection at free end, 5

_PL°

And slope at free end, ( 9) _-
2El
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Chapter-5 DeflectionPab&228n S K Mondal’s
(ii) A Cantilever beam with UDL (uniformly distributed load)

We will now solve this problem by double integration method, for that at first we have to calculate (Mx).

Consider any section XX at a distance ‘X’ from free end which is left end as shown in figure.

X wx?
M = —(W.X).E =

X
We know that differential equation of elastic line

dy  wx?

a2 2
Integrating both sides we get

dx 6
Again integrating both side we get

Eljdy j[——+A]

or Ely= V;);

[where A and B are integration constants]

Now apply boundary condition at fixed end which is at a distance x = L from free end and we also know that
at fixed end.
at x=L, y=0

d
at x=1, —y=
dx
o -wL® +wl®
from equation (1) we get EIx (0) = +AorA= 5
L wL*
from equation (i1) we get Ely =- 2 +AL+B
4
or B=- &
8

The slope as well as the deflection would be maximum at the free end hence putting x = 0, we get
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4
Vo = _\g—llgl [Negative sign indicates the deflection is downward]
wL®
slope) =0, =—=
( p )max max 6EI

Remember: For a cantilever beam with UDL over its whole length,

Maximum deflection at free end 5

~wl

Maximum slope, ( 9) — @

(iii) A Cantilever beam of length ‘L’ with an applied moment ‘M’ at free end.

7i

Consider a section XX at a distance X’ from free end, the bending moment at section XX is
My =-M

We know that differential equation of elastic line

2
or EI9Y =
dx
Integrating both side we get
d’y
or Ele}jM dx

or Elﬂ =-Mx+A ...(I)
dx
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Again integrating both side we get

Elfdy = [(Mx+A)dx

2

or Ely=—"X Ax+B i)

Where A and B are integration constants.
applying boundary conditions in equation (i) &(ii)
at x=1, ﬂzo gives A =ML

dx

2 2
at x=L,y=0 gives B= %—MLZ :_%
2 2
2 2
Therefore deflection equation is y = - Mx”  MLx ML
2El El  2EI

Which is the equation of elastic curve.

_M*
2E|

M

 El

Let us take a funny example: A cantilever beam AB of length ‘L’ and uniform flexural rigidity EI has a

..Maximum deflection at free end 5

(It is downward)

.. Maximum slope at free end (6)

bracket BA (attached to its free end. A vertical downward force P is applied to free end C of the bracket.

Find the ratio a/L required in order that the deflection of point A is zero. [ISRO - 2008, GATE-2014]
| L B
ARS
C
o
} a
Vp
We may consider this force ‘P’ and a moment (P.a) act on free end A of the cantilever beam.
M=P.a } L B
A s
Vp
: [3 ) [3 b M PL3
Due to point load ‘P’ at free end ‘A’ downward deflection (5 ) = ﬁ
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2 2
Due to moment M = P.a at free end ‘A’ upward deflection (5 ) = % = %
For zero deflection of free end A
PL® (P a)l?
3EI 2El
a 2
or—=—
L 3

(iv) A simply supported beam with a point load P at its midpoint.

A simply supported beam AB carries a concentrated load P at its midpoint as shown in the figure.

- L g

We want to locate the point of maximum deflection on the elastic curve and find its value.
In the region 0 <x <L/2

Bending moment at any point x (According to the shown co-ordinate system)

-2

and In the region /2 <x <L

P
Mx = —(X -L/ 2)
2
We know that differential equation of elastic line
2
El— dy _P — X (In the region 0 < x < L/2)
a2 2

Integrating both side we get

orEljﬂz’:jExdx

dy P x? X LA )
dx 2 2
Again integrating both side we get

Eljdy j( X +Ajdx

3
or Ely = %+Ax+B(ii)

or El

[Where A and B are integrating constants]
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Now applying boundary conditions to equation (i) and (ii) we get

at x=0, y=0
at x=1/2, %:o

X
2
A=- PL andB=0
16
3 12
.. Equation of elastic line, y = P PL X
12 16

_ PL’
43E|
Jk

~ 16E|

Maximum deflection at mid span (x = L/2) 5

and maximum slope at each end (9)

(v) A simply supported beam with a point load ‘P’ NOT at its midpoint.

A simply supported beam AB carries a concentrated load P as shown in the figure.

Y

- L -

We have to locate the point of maximum deflection on the elastic curve and find the value of this deflection.

r

Taking co-ordinate axes x and y as shown below

y

'y
=
4

Elastic line

i 12 :!: 12 >
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For the bending moment we have

In the region 0<x < a, M, = [?).X
: P.a
And, In the region a<x < L,M, = _T(L - X)

So we obtain two differential equation for the elastic curve.

2
gdy_Pa, for 0<x < a
dx L
2
and Eld—zz—E.(L-x) for a<x < L
dx L
Successive integration of these equations gives
2
El %z%.%+A1 ...... (i) for o<x<a
X
El %:P.ax-%szrAz ...... (ii) fora<x<lL
X
3
Ely =?.%+A1X+B1 ...... (i) for 0<x<a
x> Pa x® .
EIy:P.a;—T.E+A2x+BZ ..... (iv) fora<x<L

Where A1, A2, B1, Beare constants of Integration.
Now we have to use Boundary conditions for finding constants:
BCS (a) at x=0,y=0

(b)atx=L,y=0

(c) atx =a, (%j = Same for equation (1) & (ii)
X

(d) at x = a, y = same from equation (iil) & (iv)

We get AF%(Lz—bz); AZ:%(2L2+a2)

and B, =0; B, =Pa’ / 6El
Therefore we get two equations of elastic curve
_ Pbx/. o >
EIy—-E(L -b*-x*) (v) for 0<x<a
Pb|(L 3 .
Ely=—||=|(x-a > —b*)x-x°|...(vi for a<x<L
Y GLHbj( )b } v

For a > b, the maximum deflection will occur in the left portion of the span, to which equation (v) applies.
Setting the derivative of this expression equal to zero gives

\/a(a+2b) B J(L-b)(L+b) I o
3 - 3 '\ 3

at that point a horizontal tangent and hence the point of maximum deflection substituting this value of x

2 1.2\3/2
into equation (v), we find, y_, = P.b( -b))™"
9.3. EIL
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Case -I: if a =b = 1/2 then

C-(u2)

Maximum deflection will be at x =

i.e. at mid point
2 3/2
P.(L2)x L - (L2} s
93EIL  48EI

andy, . = (5) =

(vi) A simply supported beam with UDL (Uniformly distributed load)
A simply supported beam AB carries a uniformly distributed load (UDL) of intensity w/unit length over its

whole span L as shown in figure. We want to develop the equation of the elastic curve and find the

maximum deflection & at the middle of the span.

Taking co-ordinate axes x and y as shown, we have for the bending moment at any point x

2
M, = wk x-w.
2 2
Then the differential equation of deflection becomes
2 2
B 9Y oy W WX
dx 2 2
Integrating both sides we get
2 3
E dy _wb x® w x +A (i)

Again Integrating both side we get

wL x* w x* ;
Ely=——-——+Ax+B ... (i)
2 6 212
Where A and B are integration constants. To evaluate these constants we have to use boundary conditions.
at x=0,y=0 gives B=0

3
at x=1/2, d—yZO gives A:_£
dx 24

Therefore the equation of the elastic curve

wk ., ow o, owl® o owx

y=—-—X— X - X =
12EI 24E| 12EI 24El

The maximum deflection at the mid-span, we have to put x = L/2 in the equation and obtain

[L3 —2L.x% + x3]
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5wl
384El

And Maximum slope 8, = &; at the left end A and at the right end b is same putting x = 0 or x = L Therefore

wL’
we get Maximum slope (0 ) = ﬁ

(vii) A simply supported beam with triangular distributed load (GVL) gradually
varied load.
A simply supported beam carries a triangular distributed load (GVL) as shown in figure below. We have to

Maximum deflection at mid-span, 5 (It is downward)

find equation of elastic curve and find maximum deflection (5 ) .

< L2 =i: L2 ———

In this (GVL) condition, we get

d'y w .
El - =lbad=——x ... i
dx* L ()
Separating variables and integrating we get
d’y wx? y
El —=(V, )=- +tA L ii
dx® (V2) 2L ()

Again integrating thrice we get

2 3
El d—32’:|v|x - WX iAx+B L (iii)
dx 6L
4 2
g Y W A e (iv)
dx  24L 2
5 3 2
EIy=—WX +AX +BX +Cx+D ... (V)
120L 6 2
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Where A, B, C and D are integration constant.

Boundary conditions at x =0, M =0, y=0
atx =1L, Mx=0,y=0 gives
wL 3
A=Y g c=-™W poy
6 360

WX
360EIL

Therefore y = - {7L4 —10L%x% + 3X4} (negative sign indicates downward deflection)

d
To find maximum deflection & , we have d—y =0
X

wL!
And it gives x = 0.519 L and maximum deflection ()= 0.00652 =

(viii) A simply supported beam with a moment at mid-span
A simply supported beam AB is acted upon by a couple M applied at an intermediate point distance ‘a’ from

the equation of elastic curve and deflection at point where the moment acted.

¥
i
=L
A ls L .
El—as-.._b_’*é:"'
R _Ejl-. L -
AL
M

Considering equilibrium we get R, = T and R = T

Taking co-ordinate axes x and y as shown, we have for bending moment

M
In the region 0<x<a, M, = E.X
) M
In the region a<x<L, MX:EX-M

So we obtain the difference equation for the elastic curve

2
d—gzM.x forO<x<a
dx L
2
andEId—gzM.x—M fora<x<L
dx* L
Successive integration of these equation gives
2
%z%.%+A1 (i) forO<x<a
X
2
E%z%zX—-MHAZ ..... (ii) fora<x<L
X
M x®
andEIy=r.—+A1x+B1 ...... (iii) forO<x<a
o
3 2
Ely=M X _MC A x+B, ...(v) forasx<L
L o 2
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Where A1, A2, B1 and Bz are integration constants.

To finding these constants boundary conditions
(a) at x=0, y=0
(b) at x=L, y=0

(c) at x=a, (%) = same form equation (i) & (i)
X

(d) at x=a, y = same form equation (iii) & (iv)

2 2
A =-Ma+ M, Ma® -, ML Ma
3 2L 3 2
_ Ma?

2

With this value we get the equation of elastic curve

B,=0, B,

y=-W{6aL-3az—x2—2L2} for0<x<a
6L
.. deflection of x = a,
= &{SaL -2a° —L2}
3EIL

(ix) A simply supported beam with a continuously distributed load the intensity

of which at any point ‘x’ along the beam is w, = wsin(%x)

-
W, =W Sin | ZX|
Y L
/m—l Y Yy m
. X
it L L o
. 2 e 2

At first we have to find out the bending moment at any point ‘X’ according to the shown co-ordinate system.
We know that

d(V,) =-wsin (ﬂTXJ

dx

Integrating both sides we get
fd(v,)=—[w sin[%xjdx +A

orV, = +W—L.cos(”—xj+A
V4 L

and we also know that

szx =W—Lcos(ﬁ—xj+A
dx T L

Again integrating both sides we get
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jd(MX) =_[ {W—Lcos(”—XJ + A}dx
V4 L

2
or M, = wi sin(%xj+Ax+B

2
T

Where A and B are integration constants, to find out the values of A and B. We have to use boundary

conditions
at x=0, M:=0
and atx =1L, M:=0

2

wl? . (7x
From these we get A =B =0. Therefore M, = Sln(ﬁrj
s

So the differential equation of elastic curve

2 2
SR ARV sin(”—x)

ax® 7l L

Successive integration gives

3
Elﬂz—%cos(ﬂ—x}rC ....... (i)
dx V4 L
4
Ely =& sin(ﬂ—xj+Cx+D ..... (ii)
V4 L

Where C and D are integration constants, to find out C and D we have to use boundary conditions
at x=0, y=0
at x=L, y=0

and that give C=D =0

3
Therefore slope equation Elﬂ = —% cos UL
dx V4 L
4
and Equation of elastic curve y =-— V\:L sin ot
7 El L

(-ive sign indicates deflection is downward)

Deflection will be maximum if Sin (”ij 1s maximum
sin(%xj =1 or x=L/2

4

and Maximum downward deflection (5 ) = (downward).

7*El
5.5 Macaulay's Method (Use of singularity function)

® When the beam is subjected to point loads (but several loads) this is very convenient method for

determining the deflection of the beam.

® In this method we will write single moment equation in such a way that it becomes continuous for

entire length of the beam in spite of the discontinuity of loading.

® After integrating this equation we will find the integration constants which are valid for entire

length of the beam. This method is known as method of singularity constant.
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Procedure to solve the problem by Macaulay’s method

Step — I: Calculate all reactions and moments

Step — II: Write down the moment equation which is valid for all values of x. This must contain brackets.

Step - III: Integrate the moment equation by a typical manner. Integration of (x-a) will be
(xa) [ _— o (xa)
T not ? —aX | and integration of (x-a)2 will be 3 SO on.

Step — IV: After first integration write the first integration constant (A) after first terms and after second
time integration write the second integration constant (B) after A.x . Constant A and B are valid for all
values of x.

Step - V: Using Boundary condition find A and B at a point x = p if any term in Macaulay’s method, (x-a) is

negative (-ive) the term will be neglected.

(i) Let us take an example: A simply supported beam AB length 6m with a point load of 30 kN is applied
at a distance 4m from left end A. Determine the equations of the elastic curve between each change of load
point and the maximum deflection of the beam.
¥
| 30KM
4m Cl 2m g
I )
X

10kN 20kN

A

Answer: We solve this problem using Macaulay’s method, for that first writes the general momentum

equation for the last portion of beam BC of the loaded beam.

d’y .
El 5 =M, =10x [-30(x - 4)| N.m ()
By successive integration of this equation (using Macaulay’s integration rule

e.g .[(x —a)dx = M)

2
We get
dy 2 2 2 .
El = =5x 1 A 154y’ Nm? (il
and Ely= §x3 +AX+B |-5(x-4F|Nm® .. (iii)

Where A and B are two integration constants. To evaluate its value we have to use following boundary
conditions.
atx=0, y=0
and atx=6m, y=0

Note: When we put x = 0, x - 4 is negativre (—ive) and this term will notbe considered for x = 0, so our

5
equation will be EI y = §X3 +AXx+B, andatx=0,y=0gives B=0

For-2019 (IES, GATE & PSUs) Page 236 of 480 Rev.0



Chapter-5 DeflectionPab®23m S K Mondal’s
But when we put x = 6, x-4 is positive (+ive) and this term will be considered for x = 6, y = 0 so our equation

5
will be EI y = gx3+Ax+o_5(x_4)3
This gives

EI .(0) = 2.63 +A6+0-56-4)°

or A=-53
So our slope and deflection equation will be

Bl Y 52 - 53 - 15(x - 4’
dx

and El yzgx?’- 53x +0 |- 5(x - 4)’

Now we have two equations for entire section of the beam and we have to understand how we use these
equations. Here if x < 4 then x — 4 is negative so this term will be deleted. That so why in the region

0<x<4m we will neglect (x — 4) term and ourslope and deflection equation will be
d
El &Y —5x2-53
dx
S 3
and Ely :§X - 53x
But in the region4m < X < 6m, (x — 4) is positive so we include this term and our slope and deflection

equation will be

Bl Y 5y 53- 15(x - 4)°
dx

5
Ely :§x3- 53x - 5(x - 4)3
Now we have to find out maximum deflection, but we don’t know at what value of <’ it will be maximum.

For this assuming the value of ‘x’ will be in the region0 < x < 4m..

d
Deflection (y) will be maximum for that d—y =0 or 5x*- 53 =0 or x = 3.25 m as our calculated x is in the
X

region 0 < X <4m; at x = 3.25 m deflection will be maximum

5
or EI ymax = 5 x 3.253 — 53 x 3.25
115 S .
or Ymax = - E (-ive sign indicates downward deflection)

But if you have any doubt that Maximum deflection may be in the range of 4 < Xx<6m, use Ely = 5x2 — 53x

— 5 (x — 4)3 and find out x. The value of x will be absurd that indicates the maximum deflection will not

occur in the region4 < Xx<6m.

d
Deflection (y) will be maximum for that d—y =0
X

or  5x2-53-15(x-4)’=0

or 10x2 -120x + 293 =0
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or x =341 mor 8.6 m

Both the value fall outside the region 4 <X <6m and in this region 4 <X <6m and in this region

maximum deflection will not occur.

(i) Now take an example where Point load, UDL and Moment applied simultaneously in a
beam:

Let us consider a simply supported beam AB (see Figure) of length 3m is subjected to a point load 10 kN,

UDL =5 kN/m and a bending moment M = 25 kNm. Find the deflection of the beam at point D if flexural

rigidity (EI) = 50 KNm2.

10kN

C \D F

+«——1m p|4| 1m e im —»
R=-0.83 kN R= 15.83 kN

Answer: Considering equilibrium
> 'M, =0 gives
-10x1-25- (5x1)><(1+1+1/2)+RB><3=0
or R; =15.83kN
R, + Ry =10+5x1 gives R, =-0.83kN

We solve this problem using Macaulay’s method, for that first writing the general momentum equation for

the last portion of beam, DB of the loaded beam.

2 _ 2
El % =M, = -0.83x [-10(x-1)| +25(x-2) S(x2)’

0

By successive integration of this equation (using Macaulay’s integration rule

e.g _[(x —a)dx = M)

2
We get
dy__% 2 i a2 B _é o)
El ==X +A [5(x-1)] +25(x-2)| 2 (x-2)
- _083 OV £ (x— 22 — 2 (x— 2
and Ely 5~ +Ax+B‘3(x 1) +2(x 2) 24(x )

Where A and B are integration constant we have to use following boundary conditions to find out A & B.
atx=0, y=0
atx=3m, y=0

Therefore B=0

and 0 =-

0'83><33+A><3 +0 ‘-§><23
6 3

+12.5><12|—%><14

or A=1.93
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Ely =-0.138x +1.93x |-1.67(x 1)’ | +12.5(x-2)° |-0.21(x ~2)’

Deflextion atpoint D at x = 2m
Ely, =-0.138x2° +1.93x2-1.67x 1 =-8.85
8.85 8.85
El  50x10°
=0.177mm(downward).

m (—ive sign indicates deflection downward)

or y, =-

(iii) A simply supported beam with a couple M at a distance ‘a’ from left end

If a couple acts we have to take the distance in l ’
the bracket and this should be raised to the . ."F_“M .Rx T
power zero. 1..e. M(x — a)°. Power is zero because [.thE—Q;L i

(x — a)° =1 and unit of M(x — a)° = M but we i T "

introduced the distance which is needed for

Macaulay’s method.

d’y
Bl 5 =M= R,x-M(x-a)’

Successive integration gives

2
gl &M X, A M(xa)
dx L 2

M(x-a)2
2

Where A and B are integration constants, we have to use boundary conditions to find out A & B.

EIy=Mx3+AX+B-
6L

at x=0,y=0 gives B=0

M(L-a)’
at X:L,y:O gives A= u_%
2L 6
¥
ot
M L »
a_*;__‘_b___,ﬁ.
M4, L .
R.-‘l =T

8. Moment area method

e This method is used generally to obtain displacement and rotation at a single point on a beam.
e The moment area method is convenient in case of beams acted upon with point loads in which case

bending moment area consist of triangle and rectangles.
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) A c B
Loading A ~

M,

B.M.dlag

t e ™
\ & K
T%\ i
y \i\
I~
LY
.

e Angle between the tangents drawn at 2 points A&B on the elastic line, 0 s

0 aB :%x Area of the bending moment diagram between A&B

Agm,
El

e Deflection of B related to 'A'

i.e. slope O,5 =

M
yBa=Moment of a diagram between B&A taking about B (or w.r.t. B)

Ag XX
El

i.e. deflection Yg, =

Important Note

If A = Area of shear force (SF) diagram

A, = Area of bending moment (BM) diagram,

x A

El

Some typical bending moment diagram and their area (A) and distance of C.G

Then, Change of slope over any portion of the loaded beam =

from one edge(x)is shown in the following table. [Note the distance will be

different from other end]

Shape BM Diagram Area Distance from C.G

1. Rectangle

- b
T A=Dbh X—E

K
=
¥
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2. Triangle —bi3—+ — b
] X=3
3
h
[ ]
C.G l
= b =
3. Parabola _ b
X =—
4
4. Parabola
5.Cubic Parabola
6.y =k xn
7. Sine curve

Determination of Maximum slope and deflection by
Moment Area- Method

(i) A Cantilever beam with a point load at free end

Area of BM (Bending moment diagram)

2
(A)=pLxPL=">
Therefore

2
Maximum slope(6) = A_PL (at free end) M
El 2EI »X
. . Ai ‘a
Maximum deflection (5)=—-
El B.M Diagram

(at free end)
El 3EI
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(ii) A cantilever beam with a point load not at free end

2
Area of BM diagram (A) = % xaxPa= Pi
Therefore
2 =l
Maximum slope(6) = A _Pa’ (at free end) ) L I
El 2EI M =_{,_a"
AX "Tkh'- -3
Maximum deflection (&) = 5 A ; =X
2 \1\1@ Pa
Pa a .
— X(L-] ) B.M Diagram
2 3 Pa a
= = | L-=| (at free end)
El 2El 3
(iii) A cantilever beam with UDL over its whole length
2 3 ¢ ® - I
Area of BM diagram(A) = 1 x L x & = & Y] wiunit length
3 2 6 ’
Therefore X
3
Maximum slope(8) = A_wb (at free end)
El 6El
. . AX
Maximum deflection (5):E J »X
Y (3 C.Glam —“;T
6 X(4Lj L B.M Diagram |
= = (at free end)
El 8El

(iv) A simply supported beam with point load at mid-spam

Area of shaded BM diagram Y * p
1 L PL PL "
Ay, L PL_PC — /2
A)=33"7 "7
Therefore
2
Maximum SIOpe(H) = A = PL (at each ends)
El 16El

Maximum deflection (5) :&

El
P2 L
16 °3) P
= (at mid point)

El  48El B.M Diagram
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(v) A simply supported beam with UDL over its whole length

Area of BM diagram (shaded) Y, .
2 (L wk2) wl w/unitlength
A)==x| = x| — |=—
()3(2j(8j 24 A hoccockonoen .y
Therefore Rf:: wL P wil
. A wl 2 ——ly BT g
Maximum slope(0)=—=—— (at each ends)
El 24El _ 1
A)_( = i |
Maximum deflection (6):E MxL;FE_E_,.
82
wL 5 L T —.Parabolic
— | X| =%x— e
(24] (8 2) 5 wL* o wk
- = (at mid point) g
El 384 EI
. X
B.M Diagram

9. Method of superposition

Assumptions:
e Structure should be linear
e Slope of elastic line should be very small.
e The deflection of the beam should be small such that the effect due to the shaft or rotation of the

line of action of the load is neglected.

Principle of Superposition:
* Deformations of beams subjected to combinations of loadings may be obtained as the linear
combination of the deformations from the individual loadings
*  Procedure is facilitated by tables of solutions for common types of loadings and supports.

Example:
w

” l‘f L/2 __,L L/2 —>]

Superpose the deformations due to Loading I and Loading II as shown.

For the beam and loading shown, determine
the slope and deflection at point B.

Loading 1 Loading 11
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Loading 1

Deflectrag@bBeam

[ KEE]

Loading I
i B (63) \1'L3
. _ B " 6Er

: 5 Loading II
},\‘\ :‘,,, W ) B 11‘L3
B —L0s) ( C’]]'E

o 11'L4
YB T TREr
Gt wrt
7C T 128ET

In beam segment CB, the bending moment is
zero and the elastic curve is a straight line.

3
wL
6)=6c)y =
By B o 48EI
(ysln (v) uL ‘ L)_ 7wt
VB = 128E1 " 18E1\ 384E]
Loading 1 Loading 11
10 A 1w A
A EREER! 'EEEEEEEEEEEE] [
A : ‘ ;Ii =1 2 ==
k—ro 4’!";/‘:’2#‘ 1 -~ ~—m—-l~—1 /’—J
!

!/l T(0y);

¥
| g
T — X + Ui
= L+ —__ >
A L A | sl A
B ~Lo, B

Combine

the two solutions,

3 3
\ Wi Wl
8 =8g), +(0g ) =——+
5=8)r + ) =~ o5 * s
) (A (o 1114 711‘L4
yp=(p)+\¥ply =__SE] + 3S4E]

10. Conjugate beam method

In the conjugate beam method, the length of the conjugate beam is the same as the length of the actual
beam, the loading diagram (showing the loads acting) on the conjugate beam is simply the bending-

moment diagram of the actual beam divided by the flexural rigidity EI of the actual beam, and the

L(fg);

?1113
48ET

g =

ey
384E]

S K Mondal’s

corresponding support condition for the conjugate beam is given by the rules as shown below.

Corresponding support condition for the conjugate beam

Existing support condition Corresponding support condition
of the actual beam for the conjugate beam

Rule 1 Fixed end Free end

Rule 2 Free end Fixed end

Rule 3 Simple support at the end Simple support at the end

Rule 4 Simple support not at the end Unsupported hinge

Rule 5 Unsupported hinge Simple support
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Conjugates of Common Types of Real Beams

Conjugate beams for statically determinate Conjugate beams for Statically
real beams indeterminate real beams
Real Beam Conjugare Beam Real Beam Conjugate Beam
£ pe = LT == i - -
(a)
in
|

T

| |

gl

(b)

(c) Y L U & T & T - < ke N

()

I'l
}

t_
1
b

By the conjugate beam method, the slope and deflection of the actual beam can be found by using

the following two rules:

The slope of the actual beam at any cross section is equal to the shearing force at the
corresponding cross section of the conjugate beam.
The deflection of the actual beam at any point is equal to the bending moment of the conjugate

beam at the corresponding point.

Procedure for Analysis

Construct the M / EI diagram for the given (real) beam subjected to the specified (real) loading. If a
combination of loading exists, you may use M-diagram by parts

Determine the conjugate beam corresponding to the given real beam

Apply the M / EI diagram as the load on the conjugate beam as per sign convention

Calculate the reactions at the supports of the conjugate beam by applying equations of
equilibrium and conditions

Determine the shears in the conjugate beam at locations where slopes is desired in the real
beam, Vconj = Oreal

Determine the bending moments in the conjugate beam at locations where deflections is

desired in the real beam, Mconj = yreal

The method of double integration, method of superposition, moment-area theorems, and Castigliano’s

theorem are all well established methods for finding deflections of beams, but they require that the

boundary conditions of the beams be known or specified. If not, all of them become helpless. However,

the conjugate beam method is able to proceed and yield a solution for the possible deflections of the beam

based on the support conditions, rather than the boundary conditions, of the beams.
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(i) A Cantilever beam with a point load ‘P’ at its free end.

For Real Beam: At a section a distance ‘X’ from free end
consider the forces to the left. Taking moments about the
section gives (obviously to the left of the section) My =-P.x
(negative sign means that the moment on the left hand side

of the portion is in the anticlockwise direction and is

therefore taken as negative according to the sign convention)

<(-)1pL
B.M Diagram

so that the maximum bending moment occurs at the fixed

endi.e.Mmax=-PL(atX:L)

wiunit length

s
i
"= L ———————
2 wlL
Considering equilibrium we get, M, = and Reaction (R A) = >
Considering any cross-section XX which is at a distance of x from the fixed end.

W
At this point load (W, )= T X

Shear force (V, ) =R, —area of triangle ANM

whk 1 (w wL  wx?
= -—|—Xx|x=+ -

2 2L 2 2L

.. The shear force variation is parabolic.

atx=0,V, :+W7L i.e. Maximum shear force, V= +W7L
atx=L,V, =0
) wx® 2x
Bending moment (M, ) = R,.x- ——.= - M,
2L 3
~wL o owx® wl?
2 6L 3
.. The bending moment variation is cubic
L2 wL?

at x=0, M, :_WT i.e.Maximum BM. (M, ,)=———.

atx=L, M =0
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Beam Deflection

GATE-1. A lean elastic beam of given flexural
Undeflected F

position

\ v
\

the deflected centre line of the beam?

(@5 (b) 4

(c) 3 (d) 2 Eié

[GATE-1999]

rigidity, EI, is loaded by a single force F

as shown in figure. How many boundary

conditions are necessary to determine

GATE-1(3G).Two identical cantilever beams are supported as shown, with their free ends in
contact through a rigid roller. After the load P is applied, the free ends will have
[GATE-2005]

lp
.

7

S
——

SN

(a) Equal deflections but not equal slopes

(b) Equal slopes but not equal deflections

(¢) Equal slopes as well as equal deflections
(d) Neither equal slopes nor equal deflections

GATE-1(@i). The ‘plane section remains plane’ assumption in bending theory implies:
(a) strain profile is linear [CE: GATE-2013]
(b) stress profile is linear
(c) both strain and stress profiles are linear
(d) shear deformations are neglected

Double Integration Method

GATE-1(@ii). A cantilever beam of length L, with uniform cross-section and flexural rigidity, EI,
is loaded uniformly by a vertical load, w per unit length. The maximum vertical

deflection of the beam is given by [GATE-2014]
wl! wl! wL! wl!
b d
@ SI ©) TomI O EI @ SiEl

GATE-1(iv). A cantilever beam having square cross-section of side a is subjected to an end
load. If a is increased by 19%, the tip deflection decreases approximately by
(a) 19% (b) 29% (c) 41% (d) 50% [GATE-2016]

GATE-1(v)The following statement are related to bending of beams [CE: GATE-2012]
I. The slope of the bending moment diagram is equal to the shear force.
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II. The slope of the shear force diagram is equal to the load intensity
II1. The slope of the curvature is equal to the flexural rotation
IV. The second derivative of the deflection is equal to the curvature.
The only FALSE statement is
(@)1 (b) II (o) III @ 1v

GATE-2. A simply supported beam carrying a concentrated load W at mid-span deflects by 6:
under the load. If the same beam carries the load W such that it is distributed
uniformly over entire length and undergoes a deflection 62 at the mid span. The ratio
61: 62 is: [TES-1995; GATE-1994]

(a)2:1 (b) \/5: 1 (©1:1 (d)1:2

GATE-3. A simply supported laterally loaded beam was found to deflect more than a specified
value. [GATE-2003]
Which of the following measures will reduce the deflection?
(a) Increase the area moment of inertia
(b) Increase the span of the beam
(¢)  Select a different material having lesser modulus of elasticity
(d) Magnitude of the load to be increased

GATE-4. A cantilever beam of length L is subjected to a moment M at the free end. The momentof
inertia ofthe beam cross section about the neutral axis is | and the Young’s modulus is E. The
magnitude ofthe maximum deflection is
(@) ML? ML? 2ML? amL?

(b) (©) (d)

[GATE-2012]
2El El El El

GATE-4(@i) A cantilever beam with square cross-section of 6 mm side is subjected to a load of 2
kN normal to the top surface as shown in the figure. The young’s modulus of
elasticity of the material of the beam is 210 GPa. The magnitude of slope (in radian)

at Q (20 mm from the fixed end) is [GATE-2015]
20mm 2N
0 l
;: Q P
~ 100 mm "
o

GATE-4(ii)The flexural rigidity (EI) of a cantilever beam is assumed to be constant over the
length of the beam shown in figure. If a load P and bending moment % are applied at

the free end of the beam then the value of the slope at the free end is
[GATE-2014, IES-1997]

—
“z
% )=
< T. " >
1 PL2 P12 3 P12 5 P12
2 b 2 D2
@ 3 & ® ©3 FI @ 2

GATE-4iii.A force P is applied at a distance x from the end of the beam as shown in the figure.
What would be the value of x so that the displacement at ‘A’ is equal to zero?
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L
le

X

% A
L{P

() 0.5L (b) 0.25L (c) 0.33L (d) 0.66L, [GATE-2014]

Statement for Linked Answer Questions GATE-5 and GATE-6:

A triangular-shaped cantilever beam of t

2 { P
uniform-thickness is shown in the figure. Z
The Young’s modulus of the material of the / 1
beam is E. A concentrated load P is applied 1 -
at the free end of the beam

Z

¢ X !
af ]

[GATE-2011]
GATE-5. The area moment of inertia about the neutral axis of a cross-section at a distance x
measure from the free end is

( )bxts ) bxt® ( )bxt3 - xt®
a)—— — c)— —
6/ 12/ 24/ 12
GATE-6.The maximum deflection of the beam is[GATE-2011]
(@) 24Pl ®) 12PI, © 8P’ @ 6P’
Ebt? Ebt? Ebt? Ebt?

GATE-7. For the linear elastic beam shown in the figure, the flexural rigidity, EI is 781250
kN-m”*. When w = 10 kN/m, the vertical reaction R, at A is 50 kN. The value of R, for

yiuffﬁuum

[ 5m PR Rigid
platform
(a) 500 kN (b) 425 kN
(c) 250 kN (d) 75 kN
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GATE-7a. A beam of length L is carrying a uniformly distributed load w per unit length. The
flexural rigidity of the beam is EI. The reaction at the simple support at the right end
is [GATE-2016]

w

wL 3wL wL wL
(@) T (b) e (c) 4 (d) 8

GATE-8. Consider the beam AB shown in the figure below. Part AC of the beam is rigid while
Part CB has the flexural rigidity EI. Identify the correct combination of deflection at
end B and bending moment at end A, respectively [CE: GATE-2006]

I

| L >le L >

PL’ PL’

U 9opL b) - PL
@ SEr ® Shr
3 3

© 2P opr, @ P pr,
3EI 3EI

Statement for Linked Answer Questions 8(i) and 8(ii):
In the cantilever beam PQR shown in figure below, the segment PQ has flexural rigidity EI and
the segment QR has infinite flexural rigidity. [CE: GATE-2009]

pgﬂ
f—— .} L—H

GATE-8(i) The deflection and slope of the beam at Q are respectively [CE: GATE-2009]
‘AIIS ‘AIIZ ‘ATI3 ‘NTI2
(@) > and 3 b) and
6 EI 2EI 3EI 2EI
WL? WI2 wr’ 3WL?
d d d
© 551 4 @ g1 ™ R
GATE-8(ii) The deflection of the beam at R is [CE: GATE-2009]
SWL? 5WL’
b
@ =5 ©) g1
TWL? swL?
(c) (d)
3EI 6 EI

Common Data for Questions 9 and 10:
Consider a propped cantilever beam ABC under two loads of magnitude P each as shown in the
figure below. Flexural rigidity of the beam is EI. [CE: GATE-2006]
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A

I«

GATE-9. The reaction at C is
(a) ?(SP;LG (upwards)

9Pa (upwards)

© 8L

GATE-10. The rotation at B is
(@) 5PLa
16 EI
59PLa
16 EI

(clockwise)

(0

(clockwise)

T« I= >

[CE: GATE-2006]

() _?(I;La (downwards)

(d) % (downwards)

[CE: GATE-2006]
5PLa
16 EI
59PLa

16 EI

(anticlockwise)

(b

(anticlockwise)

(d)

GATE-11. The stepped cantilever is subjected to moments, M as shown in the figure below. The
vertical deflection at the free end (neglecting the self weight) is [CE: GATE-2008]

LRLELREEY

2E1

El

rFy
2

MI?
8EIl

(@

©)

Y
/
—
=
ML?

4Kl

L
> H
ML

Yo (d) Zero

(©

Statement for Linked Answer Questions 12 and 13:
Beam GHI is supported by three pontoons as shown in the figure below. The horizontal cross-

sectional area of each pontoon is 8m®, the flexural rigidity of the beam is 10000 kN-m? and the

unit weight of water is 10kN/ m®.

P=

48 kN

GATE-12. When the middle pontoon is removed, the deflection at H will be

(@) 0.2 m
(¢) 0.6 m

For-2019 (IES, GATE & PSUs)
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When the middle pontoon is brought back to its position as shown in the figure above, the
reaction at H will be [CE: GATE-2008]
(a) 8.6 kN (b) 15.7 kN (c) 19.2 kN (d) 24.2 kN

GATE-13a. The figure shows a simply supported beam PQ of uniform flexural rigidity EI

GATE-14.

GATE-16.

GATE-17.

GATE-18.

carrying two moments M and 2M.
M 2M
g t‘ L/3 P‘GJ L/3 Pl‘g L3 —b-l_g

The slope at P will be

(@0 (b) ML/(9EI) (c) ML/(6EI) (d) ML/(BEI) [CE: GATE-2018]
A cantilever beam with flexural rigidity of 200 Nm? is loaded as shown in the figure.
The deflection (in mm) at the tip of the beam is [GATE-2015]

P 500N

/ !

/

’

/ T

“————* |

/] 50 mm ! i

A————— 100mm ————!

The simply supported beam is subjected to a uniformly distributed load of intensity w per unit
length, on half of the span from one end. The length of the span and the flexural stiffness are
denoted as [ and El respectively. The deflection at mid-span of the beam is

4 4

@—— YL ) > YL [CE: GATE-2012]
6144 El 768 El
© 2w @ 2w
384 Kl 192 El

For the cantilever beam of span 3 m (shown below), a concentrated load of 20 kN
applied at thefree end causes a vertical displacement of 2 mm at a section located at a
distance of 1 m from thefixed end. If a concentrated vertically downward load of 10
kN is applied at the section located at adistance of 1 m from the fixed end (with no
other load on the beam), the maximum verticaldisplacement in the same beam (in
mm) is [CE: GATE-2014]

A simply supported beam of uniform rectangular cross-section of width b and depth A
is subjected to linear temperature gradient, 0° at the top and T° at the bottom, as
shown in the figure. The coefficient of linear expansion of the beam material is o.
The resulting vertical deflection at the mid-span of the beam is [CE: GATE-2003]
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[i:::;r1=
"TEBryyQickat
< A 4 ’
2 2
(@) agf upward b) ag}f‘ upward
2 2
@) oTh downward (d) ag‘; downward

S K Mondal’s

GATE-19. The beam of an overall depth 250 mm (shown below) is used in a buildingsubjected to
twodifferent thermal environments. The temperatures at the top and bottom surfaces
of the beam are36°C and 72°C respectively. Considering coefficient of thermal
expansion (a) as 1.50x10-5 per °C,the vertical deflection of the beam (in mm) at its

mid-span due to temperature gradient is

. 36 °C
I L i}
T3 °C
< 1.5m Sig 15m «

[CE: GATE-2014]

1250 mim

Previous 25-Years IES Questions

Double Integration Method

IES-1. Consider the following statements:
In a cantilever subjected to a concentrated load at the free end

1. The bending stress is maximum at the free end

[TES-2003]

2. The maximum shear stress is constant along the length of the beam

3. The slope of the elastic curve is zero at the fixed end
Which of these statements are correct?
(a)1,2and 3 (b) 2 and 3 (c)1land 3

IES-1(3i).

(d) 1 and 2

If E = elasticity modulus, I = moment of inertia about the neutral axis and M =

bending moment in pure bending under the symmetric loading of a beam, the radius

of curvature of the beam:

[TES-2013]

1. Increases with E
3. Decreases with 1

2. Increases with M
4. Decreases with M

Which of these are correct?

(@) 1and 3 (b) 2and 3 (¢) 3and 4

IES-2.

(d) 1 and 4

A cantilever of length L, moment of inertial. Young's modulus E carries a

concentrated load W at the middle of its length. The slope of cantilever at the free

end is:
(@) WL (b) WL (© WL
a — C
2EI 4El 8EI
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IES-3. The two cantilevers A P
lF

and B shown in the /
/
r— | — = — L——al B gq—L—--ﬂ— |_——|

figure have the same
uniform cross-section A

ANNNNN

and the same
material.Free end
deflection of cantilever [TES-2000]
'A' is 6.
The value of mid- span deflection of the cantilever ‘B’ is:
(a) 15 )25  (¢)5 ()26
2 3
IES-4. A cantilever beam of rectangular cross-section is subjected to a load W at its free end.
If the depth of the beam is doubled and the load is halved, the deflection of the free
end as compared to original deflection will be: [TES-1999]
(a) Half (b) One-eighth (c) One-sixteenth (d) Double

IES-5. A simply supported beam of constant flexural rigidity and length 2L carries a
concentrated load 'P' at its mid-span and the deflection under the load iso. If a
cantilever beam of the same flexural rigidity and length 'L' is subjected to load 'P' at

its free end, then the deflection at the free end will be: [TES-1998]
1
(a)59 (b) & (c) 25 (d)45
IES-6. Two identical cantilevers are ' ’ P
loaded as shown in the g
respective figures. If slope at Z+—— L—— 7 L
the free end of the cantilever in Mo PL/2 2
figure E is 0, the slope at free
and of the cantilever in figure  Figure E Figure F
F will be:
[TES-1997, GATE-2014]
1 1 2
(-0 (b) =0 (c) =0 d) @
3 2 3

IES-7. A cantilever beam carries a load W uniformly distributed over its entire length. If the
same load is placed at the free end of the same cantilever, then the ratio of maximum
deflection in the first case to that in the second case will be:

[TES-1996]
(a) 3/8 (b) 8/3 (c) 5/8 (d) 8/5
IES-8. The given figure shows a
cantilever of span 'L' subjected to
a concentrated load 'P' and a E
moment 'M' at the free end.
Deflection at the free end is E
given by
[TES-1996]
P2 ML? ML PL3 ML2  PL® ML? PL3
(@) ——+ (b) +— © + (d) +
2El  3El 2El  3El 3El 2El 2El  48El

IES-9. For a cantilever beam of length 'L', flexural rigidity EI and loaded at its free end by a
concentrated load W, match List I with List IT and select the correct answer.
List I List II

A. Maximum bending moment 1. Wl

B. Strain energy 2. WI2/2E1

C. Maximum slope 3. WI3/3EI

D. Maximum deflection 4. W212/6EI

Codes: A B C D A B C D
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IES-10.

IES-11.

TES-11(i).

IES-12.

IES-13.

IES-14.

IES-15.

DeflectionPah8258n S K Mondal’s
(a 1 4 3 2 (b) 1 4 2 3
() 4 2 1 3 (d) 4 3 1 2
Maximum deflection of a cantilever beam of length ‘I’ carrying uniformly distributed
load w per unit length will be: [IES- 2008]
(a) w4/ (EI) (b) w 14/ (4 EI) (c) w 14/ (8 EI) (d) w 14/ (384 EI)

[Where E = modulus of elasticity of beam material and I = moment of inertia of beam cross-
section]

A cantilever beam of length ‘I’ is subjected to a concentrated load P at a distance of I/3
from the free end. What is the deflection of the free end of the beam? (EI is the

flexural rigidity) [TES-2004]
@) 2PI® ®) 3PI° © 14PI? @ 15PI°
a ¢

81El 81El 81EI 81EI

A simply supported beam of length [ is loaded by a uniformly distributed load w over
the entire span. It is propped at the mid span so that the deflection at the centre is

zero. The reaction at the prop is: [TES-2013]
5 1 5 1
— b) = — d) —

(@) 16wl ()2wl @) 8wl ( )10wl

A 2 m long beam BC carries a single 100 kgf

concentrated load at its mid-span
and is simply supported at its ends
by two cantilevers AB =1 m long and D
CD =2 m long as shown in the figure. A

The shear force at end A of the B c
cantilever AB will be pimee—2 m ——2m —~
(a) Zero (b) 40 kg

(c) 50 kg (d) 60 kg [IES-1997]

Assertion (A): In a simply supported beam subjected to a concentrated load P at mid-
span, the elastic curve slope becomes zero under the load. [TES-2003]
Reason (R): The deflection of the beam is maximum at mid-span.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Aisfalse but R is true

At a certain section at a distance 'x' from one of the supports of a simply supported
beam, the intensity of loading, bending moment and shear force arc Wx, Mx and Vx
respectively. If the intensity of loading is varying continuously along the length of

the beam, then the invalid relation is: [TES-2000]
M dM d*Mm dv
SI =—* (b)V,=—F* W, =——2%  (d)W, =—>
(a) Ope QX V ( ) X dX (C) X dXZ ( ) X dX

X
The bending moment equation, as a function of distance x measured from the left
end, for a simply supported beam of span L m carrying a uniformly distributed load

of intensity w N/m will be given by [IES-1999]
(a) :WTL(L-X)-%(L-X)st (b)M:WTL(x)-%(X)sz
(c) :%L(L-x)z-%(L-fom (d)M:WTL(x)Z-WTLXNm
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IES-16. A simply supported beam with width 'b' and depth ’d’ carries a central load W and
undergoes deflection 6 at the centre. If the width and depth are interchanged, the
deflection at the centre of the beam would attain the value [TES-1997]

@)% (b)(%)z 5 (o) (%)35 (d)[%)m 5

IES-17. A simply supported beam of rectangular section 4 cm by 6 cm carries a mid-span
concentrated load such that the 6 cm side lies parallel to line of action of loading;
deflection under the load is 6. If the beam is now supported with the 4 cm side
parallel to line of action of loading, the deflection under the load will be:[IES-1993]

(a) 0.44 6 (b) 0.67 6 (¢)1.58 (d) 2.256

IES-18. A simply supported beam carrying a concentrated load W at mid-span deflects by 6:
under the load. If the same beam carries the load W such that it is distributed
uniformly over entire length and undergoes a deflection 62 at the mid span. The ratio
61: 62 is: [TES-1995; GATE-1994]

(a) 2: 1 ®) \2:1 ©1:1 @ 1: 2

IES-18a. A beam of length L and flexural rigidity EI is simply supported at the ends and
carries a concentrated load W at the middle of the span. Another beam of length L
and flexural rigidity EI is fixed horizontally at both ends and carries an identical
concentrated load W at the mid-span. The ratio of central deflection of the first beam
to that of second beam is [TES-2014]
(a1 (b) 2 (c) 0.25 d) 4

IES-18b. A uniform bar, simply supported at the ends, carries a concentrated load P at mid-
span. If the same load be, alternatively, uniformly distributed over the full length of
the bar, the maximum deflection of the bar will decrease by [IES-2017 Prelims]
(a) 25.5% (b) 31.5% (c) 37.5% (d) 50.0%

Moment Area Method

IES-19. Match List-I with List-II and select the correct answer using the codes given below

the Lists: [TES-1997]
List-I List-11
A. Toughness 1. Moment area method
B. Endurance strength 2. Hardness
C. Resistance to abrasion 3. Energy absorbed before fracture in a
tension test
D. Deflection in a beam 4. Fatigue loading
Code: A B C D A B C D
(a) 4 3 1 2 b 4 3 2 1
© 3 4 2 1 @ 3 4 1 2

Previous 25-Years IAS Questions

Slope and Deflection at a Section

TAS-1. Which one of the following is represented by the area of the S.F diagram from one

end upto a given location on the beam? [TAS-2004]
(a) B.M. at the location (b) Load at the location
(c) Slope at the location (d) Deflection at the location

Double Integration Method

IAS-2. Which one of the following is the correct statement? [IAS-2007]
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If for a beam d_ =0 for its whole length, the beam is a cantilever:
X

(a) Free from any load (b) Subjected to a concentrated load at its free end
(c) Subjected to an end moment  (d) Subjected to a udl over its whole span

IAS-3. In a cantilever beam, if the length is doubled while keeping the cross-section and the
concentrated load acting at the free end the same, the deflection at the free end will
increase by [TAS-1996]

(a) 2.66 times (b) 3 times (c) 6 times (d) 8 times

Conjugate Beam Method

TAS-4. By conjugate beam method, the slope at any section of an actual beam is equal to:
[TAS-2002]
(a) EI times the S.F. of the conjugate beam (b) EI times the B.M. of the conjugate beam
(c) S.F. of conjugate beam (d) B.M. of the conjugate beam

IAS-5. I=375x106m%1=0.5m
E =200 GPa
Determine the stiffness of the |
beam shown in the above figure 21
(a) 12 X 108 N/m 1
(b) 10 X 108 N/m
(c) 4 x 108 N/m
(d) 8 x 108 N/m

F

ole .
I " [ >

[IES-2002]
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OBJECTIVE ANSWERS

2

GATE-l.Ans.(d)EIj—)ZI:M.Since it is second order differential equation so we need two boundary
X

conditions to solve it.

GATE-1@). Ans. (a) As it is rigid roller, deflection must be same, because after deflection they also will
be in contact. But slope unequal.

GATE-1(@i). Ans. (a)
GATE-1(iii). Ans. (a)
GATE-1(iv). Ans. (d)
3 4 3
s=Pb & 5=APL
3El 12

4 4 4
5 |a, 1.19a, ) (1.19

4
% Decrease = =% x100% = 41— (ij x100% = 50.13%
0, 1.19
GATE-1(v). Ans. (¢)
We know that
E_w
dx
aM_q
dX
2
gr.9Y M
dx
d’y M
dx* EI
Also M _ o _E M_1
I y R EI R
d’y 1
dx*> R
3 5 w 1* 5
WI | 5WiI
GATE-2. Ans. (d) J, = = and 0, = = Therefore &1: 6:=8: 5
48El 384El 384El
. . WP
GATE-3. Ans. (a) Maximum deflection (6) = @

To reduce, §, increase the area moment of Inertia.
GATE-4. Ans. (a)

GATE-4(i) Ans. 0.158 Use double integration method.
GATE-4(ii)Ans. (b)
GATE-4(iii)Ans. (c) Refer theory of this book, “Let us take an funny example” ISRO-2008
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GATE-5. Ans.(b)At any distance x

GATE-6.

GATE-T7.

GATE-7a.

GATE-8.

GATE-8(i)

DeflectionPaf;8258n S K Mondal’s

X-Section at x distance
Area moment of inertia about
Neutral-axis of cross-section
b_ s
1l xt _ bat’
¥ 12 121

Ans.(d)From strain energy method

1 2
U= M dx [Here, M = Px]
) oEI
Lo pry? 61 P 61P* [ 3I°Pp*
-] bat® . EbD [xdx= Ebt’ 2 Ebf
09K x dx 0
1
Deflection at free end
oU 6P
5 =
oP Ebt®
Ans. (b)

The deflection at the free end for
wLl' 10x(5)* x1000
= =1mm
8EI 8 x 781250
The gap between the beam and rigid platform is 6 mm. Hence, no reaction will be developed
when w = 10 kN/m
Now, deflection at the free end for w(100 kN/m) willbe =10 X 1 mm =10 mm
But, this cannot be possible because margin of deflection is only 6m.
Thus, w = 100 kN/m will induce a reaction Ry at B.

(10 kN/ m) =

4 P L‘i
wli Bli Permissible deflection
S8EI 3EI
N 100x (5)"  Ryx (5’ 6
8x 781250 3x781250 1000
10 6 R, x125
N _

1000 1000 3x 781250
= R, =75 kN
R, =(100 x 5 — 75) = 425 kN

wL* R 3wL
or R=——

Ans.(b) —=—
8El 3ElI 8
Ans. (a)
Part AC of the beam is rigid. Hence C will act as a fixed end. Thus the deflection at B will be
given as dy = P_L3
3EI

But the bending moment does not depend on the rigidity or flexibility of the beam

BM at P=P x 2L = 2PL

Ans. (a)

The given cantilever beam can be modified into a beam as shown below
N

0
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wL? N WL x IZ
3EI 2KI
_2WI + 3WL?  5WIL)
- 6EI ~ BEI
Q_WLZ L WLxL WL +2WL _ 3WL
2EI EI 2EI 2EI

Deflection at Q =

Slope at

GATE-8(ii) Ans. (¢)
Since the portion QR of the beam is rigid, QR will remain straight.
Deflection of R = Deflection at Q + Slope at Q X L

_5WI . 3WIL? Lo 5WL’ + 9WL?
6EI  2EI 6EI

_14WL  TWD'

- 6EI  3EI

GATE-9. Ans. (c)
The moment at point B= 2 Pa

In the cantilever beam ABC, the deflection at C due to meoment 2Pa will be given as
5 = 2PaxL(L+£j

¢ EI 2
_3Pal’

~EI
. The reaction at C will be upwards

_R(2L)* 8RL

(downwards)

upwards
¢ 3El 3El (Up )

Thus, 5, =90

3Pal? 3 8RI’

EI  3EI
= R= %(upwards)
GATE-10. Ans. (a)

The rotation at B
(1) Due to moment

0, = % (clockwise)

(i1) Due to reaction R
RI? RLI’ 3RI? 27 PaL

0, = + = == (anti clockwise)
> 2KI EI 2EI 16 EI
Oy = 0 — 0y,
= (2 - ﬁj Pal_ 5 PaL (clockwise)
16/ EI 16 EI
GATE-11. Ans. (¢)
Using Moment Area Method
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s
N \
; 7 i
—
L L
— L —>i L >|
+
2M : M
BMD
[
|
1 M
| El
£l dlaghram

Deflection at B w.r.t. A = Moment of area of % diagram between A and B about B

M L ML?
=—xLx—==
El 2 2El

GATE-12. Ans. (b)

The reactions at the ends are zero as there are hinges to left of G and right of I. Hence when the

middle pontoon is removed, the beam GHI acts as a simply supported beam.
48 kN

i ! [’
924 kKN 24 kN

The deflection at H will be due to the load at H as well as due to the displacement of pontoons at

G and I in water. Since the loading is symmetrical, both the pontoons will be immersed to same
height. Let it be x.

. x X area of cross section of pontoon X unit weight of water = 24
= xX8%x10=24
= x=0.3m
Also, deflection at H due to load
P’ 48x(10)°
T48EI  48x10°
*. Final deflection at H=0.3+0.1=0.4 m
GATE-13. Ans. (c)
Let the elastic deflection at H be 8.
3
®-RL )
48 EI
The reactions at G and I will be same, as the beam is symmetrically loaded.
Let the reaction at each G and I be Q.
Using principle of buoyancy, we get
x X area of cross-section of pontoon X y, =Q

=0.1m

5=

= xX8x10=Q
Q g
= =— (7
m (@)
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O =P
O —P

o —

Also, we have

Q+Q+R=P
= 2Q + R =48 ... (i)
Also, (x + ) X area of cross-section of Pontoon xy, =R
= x+0= R
80
= Q +8= R [from (i7)]
80 80
= B-R -1 [from (ii)]
2 x 80 80
2R -48+R
= d=——"-""—
160
3R - 48
= o=
160
p— 3 p—
(48-R) ><410 _3R-48 [from (3]
48 x10 160
= R=19.2 kN

GATE-14. Ans. 0.26
2
Deflection = 521 (L-a/3) a=0.05m and L=0.100m = & =0.2604mm

AN ) ’ S ) e
~ s ~ -
~-J—” ~~— —‘

GATE-13a. Ans. (c¢)
GATE-16. Ans. (b)

= 20=20'
5 wl*
= _—
384 El
5 wl!
= =
768 El

GATE-17. Ans. 1.0 mm
GATE-18. Ans. (d)
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. T

The average change in temperature = )
. . T
The compression in the top most fibre = o x L x 3

Similarly, the elongation in bottom most fibre o x L x g

Strain, g, = LoT _of
Lx2 2
Therefore deflection at midpoint is downward. Now, from the equation of pure bending, we have
M_E_o
I R y
=  Curvature, —= 2
R Ey
_ Strain { _h }
y Ty
_28 _aT
h h
Also, from the property of circle, we have
2
Deflection, 5= R
8R
2 2
= L— x oc_T = o TL downward
8 h 8h

GATE-19. Ans. 2.38 to 2.45 mm use same funda like GATE-18

IES
IES-1. Ans. (b)
IES-1(i). Ans. (d)
L 2
W [2] w2
IES-2. Ans. (c) 0 = -
2El 8El
3 2 3
IES-3. Ans. (¢) 0 = WL + WL L= SWL
3El 2El 6El
W(2x*> x° 5w
Ymia = =1 e = =0
EIl 2 6 ).. ©El

W W12 4w
3ElI  3Eah’ Eah’
AWIP 1 4awl’

3 1% 3
2Ea(2h) 16 Eah

IES-4. Ans. (¢) Deflectionin cantilever =

If h is doubled, and W is halved, New deflection =

IES-5. Ans. (¢) & for simpl rtedb W(2L) _we
-5. . or simply supported beam = =
ne R PLy Supp 48El 6El
) ) wL?
and deflection for Cantilever = £ =20

_ , _ ML (PL/2)L PL?
IES-6. Ans. (d) When a B. M is applied at the free end of cantilever, & = £l = £l = SEI
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PL
When a cantilever is subjected to a single concentrated load at free end, then 8 = £l
wi> wPk 3
IES-7. Ans. (a) + =—
8ElI 3El 8
IES-8. Ans. (b)
IES-9. Ans. (b)
IES-10. Ans. (c¢)
IES-11. Ans. (c¢) Moment Area method gives us
. i : L (2P (2 (1, 4
* 23 i B Area_ 2 \ 3 313 9
A In="g X5 El
* 13—
—— _PF 2.7 _14PP
o | El 9 9 B81El 2
(2 2% ! . 2l
1373 - : wl =
g | . wa [l a (3) | 2/3
B.M Diagram Alternatively Y, = ———= —-
El |2 6 El 2 6
WP 4 (9-2)
= X — X
El 9 18
14 WP
81 EI

IES-11(i). Ans. (¢)

IES-12. Ans. (c) Reaction force on B and C is same 100/2 = 50 kg. And we know that shear force is same
throughout its length and equal to load at free end.

IES-13. Ans. (a)

IES-14. Ans. (a)

IES-15. Ans. (b)

3 3
IES-16.Ans. (b) Deflection at center J = wi = wi
A8EI [deJ
48E| —
12
3 3 3 2 2
In second case, deflection = o' = 4\2/:5' - = Wldb3 = Wlbd3 2—2: (;—2
48E| — 48E| —
12 12
IES-17. Ans. (d) Use above explanation
w
5/ — |I
WP [ | j _ 5WP

Therefore 61: 62 = 8: 5

IES-18. Ans.(d) 6, =
IES-18a. Ans.(d)

= an > = =
48El 384El  384El

Deflection of simply supported beam with concentrated load at the mid span :%:;

Deflection of beam fixed horizontally at both ends with concentrated load at the mid spanZ%
LP

Ratio of central deﬂections=% =4
192ElI

IES-18b. Ans. (c)
IES-19. Ans. (¢)
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IAS

IAS-1. Ans. (a)
IAS-2. Ans. (c¢) udl or point load both vary with x. But
if we apply Bending Moment (M) = const.
Mg yoow
and— = W N
dx ) M

IAS-3. Ans. (d)
g P
j L

3
=P—L3 s ool® i= L—2 =8
3El o,

IAS-4. Ans. (¢)
IAS-5. Ans. (c) Stiffness means required load for unit deformation.BMD of the given beam

| WL
2WL I

Loading diagram of conjugate beam

WL WL
El El

i -
=

The deflection at the free end of the actual beam = BM of the at fixed point of conjugate beam

— EXLX& X&—f— %XL X L+£ + EXLX% X L_l_& _3W|_3
Y 2 El 3 2El 2 2 2El 3 2El

2EI  2x (200x10°)x(375%10°°)
3L 3x(0.5)°

W
Or stiffness = — = =4x10"°N/m

Previous Conventional Questions with Answers

Conventional Question GATE-1999

Question: Consider the signboard mounting shown in figure below. The wind load acting
perpendicular to the plane of the figure is F = 100 N. We wish to limit the deflection,
due to bending, at point A of the hollow cylindrical pole of outer diameter 150 mm
to 5 mm. Find the wall thickness for the pole. [Assume E = 2.0 X 101! N/m?]
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Answer:

Page 266
Deflection of Beam S K Mondal’s

im

57}’/

Given: F =100 N; do = 150 mm, 0.15 my = 5 mm; E = 2.0 X 101! N/m?

Thickness of pole, t

The system of signboard mounting can be considered as a cantilever loaded at A i.e. W = 100
N and also having anticlockwise moment of M = 100 x 1 = 100 Nm at the free end.Deflection of
cantilever having concentrated load at the free end,

_we i
3El  2El
3 3
£ 10° - 100x511 .\ 100x511
3x2.0x10"xl 2x2.0x10" x|
3 3
or = 1_3 100x5 —+ 1005 —|=5.417x10°m*
5x10°|3x2.0x10"  2x2.0x10
_ T (44 qh
But |_64(o|0 d’)
5.417x10° = (015 - d)
64
or d =0.141m or 141 mm
(_Gp-d _150-141_,
2 2

Conventional Question IES-2003

Question:

Answer:

Find the slope and deflection at the free end of a cantilever beam of length 6m as

loaded shown in figure below, using method of superposition. Evaluate their
numerical value using E = 200 GPa, I = 1x10-4m* and W =1 kN.
We have to use superposition

WY
theory. -
1st consider j lﬂw lzw lﬁu
P (BW)x2° 8w A B 5
° = 3E| 3E| El g Zm LG
2 2 H
ec:PL :(3W).2 :6W &
2El 2El El
Deflection at A due to this load(s,) =3, + 6,..(6 — 2) = BW + oW 32W

X 4 =
El El El

For-2019 (IES, GATE & PSUs) Page 266 of 480 Rev.0



Page 267

Chapter-5 Deflection of Beam S K Mondal’s
2" consider: P
(2w)x4® 128w A ’l
B = = / B A
3El 3El 4 .
g _(2w) x4 16W / am c :
® 281 El < >!
Deflection at A due to this load(s,) bm
224W
=6, + 0, x(6—4)=
B B ( ) 3E|
3 consider : W
W x6° 72w
(8:) =8y =— ==
3ElI El A
W x6° 18W
QA = = ——
2El El 6rm

Apply Superpositioning Formula
6W 16W 18W 40W 40%103

=0t 0 O =BT BT YR T (200w10) w100 02T

32W  224W  T2W  536W

0=0+0,+0 ="+ "5~ 3g
3
5= >36x10 —8.93mm
3%(200%10°)x 10

Conventional Question IES-2002

Question: If two cantilever beams of identical dimensions but made of mild steel and grey cast
iron are subjected to same point load at the free end, within elastic limit, which one

will deflect more and why?

Answer: Grey cost iron will deflect more.

1 L

We know that a cantilever beam of length 'L' end load 'P' will deflect at free end

Tt
»

E ~125GPa and E,;, i.. =200 GPa

Castlron

Conventional Question IES-1997

Question: A uniform cantilever beam (EI = constant) of length L is carrying a concentrated

load P at its free end. What would be its slope at the (i) Free end and (ii) Built in
end
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P12 P

2El
(ii) Built-in end, 6 =0

Answer: () Free end, 0=

ANSNNARNN
w
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6.|] Bending Stress in Beam

Theory at a Glance (for IES, GATE, PSU)

6.1 Euler Bernoulli’s Equation or (Bending stress formula) or Bending Equation

c_M_E

v | R

Where o = Bending Stress
M = Bending Moment
I =Moment of Inertia
E = Modulus of elasticity
R =Radius of curvature

y = Distance of the fibre from NA (Neutral axis)

6.2 Assumptions in Simple Bending Theory

All of the foregoing theory has been developed for the case of pure bending i.e. constant B.M along the

length of the beam. In such case
e The shear force at each c/s is zero.
e Normal stress due to bending is only produced.
e Beams are initially straight
e The material is homogenous and isotropic i.e. it has a uniform composition and its mechanical
properties are the same in all directions
o The stress-strain relationship is linear and elastic
e  Young’s Modulus is the same in tension as in compression
e Sections are symmetrical about the plane of bending

e Sections which are plane before bending remain plane after bending

6.3

£ oOX
Comprqgswe

IV
|

L
ALY

Tensile

o

— T

Nt
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Mc,
Gmax - Gt -
I
Mc, - . .
Opin =0, = | (Minimum in sense of sign)

6.4 Section Modulus (2)

e Z1is a function of beam c¢/s only

e Zis other name of the strength of the beam

e Section modulus is the first moment of area about the axis of bending for a beam cross-section

o The strength of the beam sections depends mainly on the section modulus

M

z

¢ Rectangular c/s of width is "b" & depth "h" with sides horizontal, Z = T

e The flexural formula may be written as, G —

3
a
e Square beam with sides horizontal, Z = —

3

a
672

e Square c¢/s with diagonal horizontal, Z =

. . 7d?®
e Circular c/s of diameter "d", Z =
32
A log diameter "d" is available. It is proposed to cut out a strongest beam —
from it. Then
,_ b(d*-b?) »
6
bd® d "
Therefore, Zmax= —— for b= —
9 \/5 —

6.5 Flexural Rigidity (El)
Reflects both

e Stiffness of the material (measured by E)

e Proportions of the ¢/s area (measured by I)
6.6 Axial Rigidity = EA

6.7 Beam of uniform strength

It is one is which the maximum bending stress is same in every section along the longitudinal axis.
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For it M « bh?
Where b = Width of beam

h = Height of beam

To make Beam of uniform strength the section of the beam may be varied by
e Keeping the width constant throughout the length and varying the depth, (Most widely used)
e Keeping the depth constant throughout the length and varying the width
¢ By varying both width and depth suitably.

6.8 Bending stress due to additional Axial thrust (P).

A shaft may be subjected to a combined bending and axial thrust. This type of situation arises in various

machine elements.

If P = Axial thrust

D

\

Then direct stress (o, ) = P/ A (stress due to axial thrust)

This direct stress (0, ) may be tensile or compressive depending upon the load P is tensile or compressive.

And the bending stress (o,) = Ty is varying linearly from zero at centre and extremum (minimum or

maximum) at top and bottom fibres.

If P is compressive then

: P My .
e At top fibreo = K + T (compressive)
e At mid fibre o= K (compressive)
. P My .
e At bottom fibre o = K —T (compressive)

6.9 Load acting eccentrically to one axis

P (Pxe)y . . N

* Ou=——"+—"" where ‘€’ is the eccentricity at which ‘P’ is act.
A I
P (Pxe)y

b Omin = Z - |
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Condition for No tension in any section

2

e For no tension in any section, the eccentricity must not exceed
[Where d = depth of the section; k = radius of gyration of c/s]

h
o For rectangular section (b xh), € < 6 i.e load will be 2e = gof the middle section.

d
e For circular section of diameter ‘d’, € < g i.e. diameter of the kernel, 2e = Z

For hollow circular section of diameter ‘d’, e < i.e. diameter of the kernel, 2e <

8D
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Bending equation

GATE-1. A1m X 10 mm X 10 mm cantilever beam is subjected to a uniformly distributed load
per unit length of 100 N/m as shown in the figure below. The normal stress (in MPa)
due to bending at point P is . [PI: GATE-2016]

Point P

100 N/m

o

A

AN I

r -__I
lm i
1

GATE-2. A simply supported beam of width 100 mm, height 200 mm and length 4 m is carrying
a uniformly distributed load of intensity 10 kN/m. The maximum bending stress (in
MPa) in the beam is (correct to one decimal place) [GATE-2018]

10 kN/m

|

|

GATE-3. A cantilever beam has the l]ﬂi\’-
square cross section 10mm X

7
10 mm. It carries a transverse J ]:lﬂmm
load of 10 N. Considering only ° 1m 1m ‘ é
the bottom fibres of the beam, . ,J

the correct representation of 10mm
the longitudinal variation of [GATE-2005]
the bending stress is:

(a) T (b) -
60 MPa M l 60 MPa V| ’
(c) ‘ ‘ (d)
400 MPa l/

i

400 MPa
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GATE-4. A homogeneous, simply supported prismatic beam of width B, depth D and span L is
subjected to a concentrated load of magnitude P. The load can be placed anywhere
along the span of the beam. The maximum flexural stress developed in beam is

2 PL 3 PL
= b) — CE: GATE-2004
(@) 3 BD? (b) 2 BD? [ 1
4 PL 3 PL
el d) 2 1=
© 3 BD? @ 2 BD?

GATE-4a. A cantilever beam of length 2 m with a square section of side length 0.1 m is loaded
vertically at the free end. The vertical displacement at the free end is 5 mm. The
beam is made of steel with Young’s modulus of 2.0x10!! N/m2. The maximum bending
stress at the fixed end of the cantilever is [CE: GATE-2018]

(a) 20.0 MPa (b) 37.5 MPa (c) 60.0 MPa (d) 75.0 MPa

GATE-4b. An 8 m long simply-supported elastic beam of rectangular cross-section (100 mm X 200
mm) is subjected to a uniformly distributed load of 10 kN/m over its entire span. The
maximum principal stress (in MPa, up to two decimal places) at a point located at the
extreme compression edge of a cross-section and at 2 m from the support is

[CE: GATE-2018]

GATE-5. Consider a simply supported beam with a uniformly distributed load having a
neutral axis (NA) as shown. For points P (on the neutral axis) and Q (at the bottom of
the beam) the state of stress is best represented by which of the following pairs?

—|—————————————- - = NA

[ L b L » [CE: GATE-2011]
(@) (®)

e S R KO
ot -3 - G

GATE-6. Two beams, one having square cross section and another circular cross-section, are
subjected to the same amount of bending moment. If the cross sectional area as well
as the material of both the beams are the same then [GATE-2003]

(a) Maximum bending stress developed in both the beams is the same

(b) The circular beam experiences more bending stress than the square one
(¢) The square beam experiences more bending stress than the circular one
(d) As the material is same both the beams will experience same deformation

[ET
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A beam with the cross-section given below is subjected to a positive bending
moment(causing compression at the top) of 16 kN-m acting around the horizontal
axis. The tensile force acting on the hatched area of the cross-section is

75 mm
/
///////‘ 25 mm
50 mm
50 mm 50 mm
[CE: GATE-2006]
(a) zero (b) 5.9 kN (c) 8.9 kN (d) 17.8 kN

Section Modulus

GATE-8. The first moment of area about the axis of bending for a beam cross-section is
(a) moment of inertia (b) section modulus [CE: GATE-2014]
(c) shape factor (d) polar moment of inertia

GATE-9. Consider a beam with circular cross-section of diameter d. The ratio of the second
moment of area about the neutral axis to the section modulus of the area is
(@3 (b) = (o)d (d)md [GATE-2017]
GATE-10. Match the items in Columns I and 1I [GATE-2006]
Column-I Column-II
P. Addendum 1. Cam
Q. Instantaneous centre of velocity 2. Beam
R. Section modulus 3. Linkage
S. Prime circle 4. Gear
(aP-4,Q-2,R-3,S-1 b)P-4,Q-3,R-2,S-1
c©P-3,Q-2,R-1,S—-4 dDP-3,Q—4,R-1,5S-2

Combined direct and bending stress

GATE-11. For the component loaded with a force F as shown in the figure, the axial stress at

the corner point P is:

[GATE-2008, ISRO-2015]

\_\Mlh%
T : P F
|
i
L
L d
I
2b
F(3L-b) F(BL+b) F (3L —4b) F (3L —2b)
@ ® © 4 @5
GATE-12. The maximum tensile stress at the section X-X shown in the figure below is
For-2019 (IES, GATE & PSUs) Page 275 of 480 Rev.0



Chapter-6

Bending StrésgeeBeam S K Mondal’s
|<_L —P|<—L L
3 3 o 3 "

o
o

Z ] d/2
7 H d
P I S p—————— —’
7 ' dr2
2 :
X
L L
I« 5 e 5 |
8P 6P
oL b) 2= CE: GATE-2008
(@) vd (b) v [ ]
4P 2P
2t d) 2=
(¢ P (d) o

Previous 25-Years IES Questions

Bending equation

IES-1. Consider the following statements [TES-2014]
1. Cross-section of a member of truss experiences uniform stress
2. Cross-section of a beam experiences minimum stress
3. Cross-section of a beam experiences linearly varying stress
4. Cross-sections of truss members experience only compressive stress.
Which of the above statements are correct?

(a) 1 and 2 (b) 1 and 3 (c)1and 4 (d) 3 and 4

IES-1(3).

IES-2.

IES-3.

Beam A is simply supported at its ends and carries udl of intensity w over its entire
length. It is made of steel having Young's modulus E. Beam B is cantilever and carries
a udl of intensity w/4 over its entire length. It is made of brass having Young's
modulus E/2. The two beams are of same length and have same cross-sectional area. If
oa and os denote the maximum bending stresses developed in beams A and B,

respectively, then which one of the following is correct? [TES-2005]
(a) oalos (b) oalos< 1.0
(c) oalo> 1.0 (d) oa/os depends on the shape of cross-section

If the area of cross-section of a circular section beam is made four times, keeping the
loads, length, support conditions and material of the beam unchanged, then the
qualities (List-I) will change through different factors (List-II). Match the List-I with
the List-II and select the correct answer using the code given below the Lists:

List-I List-IT [TES-2005]

A. Maximum BM 1. 8

B. Deflection 2. 1

C. Bending Stress 3. 1/8

D. Section Modulus 4. 1/16

Codes: A B C D A B C D
(a 3 1 2 4 (b) 2 4 3 1
() 3 4 2 1 (d) 2 1 3 4

Consider the following statements in case of beams: [TES-2002]

1. Rate of change of shear force is equal to the rate of loading at a particular
section

2. Rate of change of bending moment is equal to the shear force at a particular
suction.

3. Maximum shear force in a beam occurs at a point where bending moment is

either zero or bending moment changes sign
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Which of the above statements are correct?
(a) 1 alone (b) 2 alone (¢c) 1and 2 (d)1,2and 3
Match List-I with List-II and select the correct answer using the code given below the
Lists: [TES-2006]
List-I (State of Stress) List-II (Kind of Loading)
—>

1. Combined bending and torsion of circular
shaft

]
£&—
2. Torsion of circular shaft
B. < —
| E—

3. Thin cylinder subjected to internal
— pressure

c <

o< He

-

l

Tie bar subjected to tensile force

P I—
Codes: A B C D A B C D

(a) 2 1 3 4 (b) 3 4 2 1

() 2 4 3 1 (d) 3 1 2 4
A T-section beam is simply supported and subjected to a uniformdistributed load
over itswhole span. Maximum longitudinal stress at [TES-2011]
(a) Top fibre of the flange (b) The junction of web and flange
(¢) The mid-section of the web (d) The bottom fibre of the web

A rotating shaft carrying a unidirectional transverse load is subjected to:
(@) Variable bending stress (b) Variable shear stress [TES-2013]
(c) Constant bending stress (d) Constant shear stress

Statement (I): A circular cross section column with diameter ‘d’ is to be axially loaded
in compression. For this the core of the section is considered to be a concentric

circulation area of diameter ‘%'. [TES-2013]

Statement (II): We can drill and take out a cylindrical volume of material with

diameter %’in order to make the column lighter and still maintaining the same

buckling (crippling) load carrying capacity.

(a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct
explanation of Statement (I)

(b) Both Statement (I) and Statement (II) are individually true but Statement (II) is not the
correct explanation of Statement (I)

(c) Statement (I) is true but Statement (II) is false

(d) Statement (I) is false but Statement (II) is true
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Section Modulus

IES-5. Two beams of equal cross-sectional area are subjected to equal bending moment. If
one beam has square cross-section and the other has circular section, then
(a) Both beams will be equally strong [TES-1999, 2016]
(b) Circular section beam will be stronger
(¢) Square section beam will be stronger
(d) The strength of the beam will depend on the nature of loading

IES-6. A beam cross-section is used in e b/2-™
two different orientations as
shown in the given figure:
Bending moments applied to the
beam in both cases are same. The "" b .'1
maximum bending stresses b
induced in cases (A) and (B) are
related as: /

(@) op=do, () o, =20, _l_ '

O, O,
©o,="2  @o,=-f A B

2 4

o
bo

[IES-1997]

IES-6(i1). A beam with a rectangular section of 120 mm X 60 mm, designed to be placed
vertically is placed horizontally by mistake. If the maximum stress is to be limited,
the reduction in load carrying capacity would be [TES-2012]

1 1 1 1
(@) 1 (b) 3 () 3 (d) 3

IES-6(ii). A cantilever of length 1.2 m carries a concentrated load of 12 kN at the free end. The
beam is of rectangular cross section with breadth equal to half the depth. The
maximum stress due to bending is not to exceed 100 N/mm?2. The minimum depth of

the beam should be [TES-2015]
(a) 120 mm (b) 60 mm (c) 75 mm (d) 240 mm
IES-7. A horizontal beam with square cross-section is simply supported with sides of the

square horizontal and vertical and carries a distributed loading that produces
maximum bending stress ¢ in the beam. When the beam is placed with one of the

diagonals horizontal the maximum bending stress will be: [TES-1993]
1
(a) 5° b) o ©) 2o d) 20

IES-7(i). The ratio of the moments of resistance of a square beam (Z) when square section is
placed (i) with two sides horizontal (Z:1) and (ii) with a diagonal horizontal (Z: ) as

shown is [TES-2012]
Z1_ Z1_ é_
(a)Z—Z—l.O (b)Z—z—Z.O (d)ZZ—15
x--.B......-..
A<—p—>D
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A bar of rectangular cross section (bx2b) and another beam of circular cross-section
(diameter=d) are made of the same material, and subjected to same bending moment
and have the same maximum stress developed. The ratio of weights of rectangular

bar and circular bar [TES-2014]
1 2
27)3 33
(@ (3—) ) N7 © 37 @ ——
T 1
2(rr)3
For a rectangular beam, if the beam depth is doubled, keeping the width, length and
loading same, the bending stress is decreased by a factor [TES-2015]
(a) 2 (b) 4 (c) 6 (d)8

Which one of the following combinations of angles will carry the maximum load as a
column? [TES-1994]

(a) (b) |
(e} [ ]
D (d)

IES-9a.

IES-9b.

IES-10.

IES-10a.

Assertion (A): For structures steel I-beams preferred to other shapes.

Reason (R): In I-beams a large portion of their cross-section is located far from the
neutral axis. [IES-1992, IES-2014]

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Aisfalse but R is true

In the design of beams for a given strength, consider that the conditions of economy
of use of the material would avail as follows: [IES-2017 Prelims]

1. Rectangular cross-section is more economical than square section area of the beam.

2. Circular section is more economical than square section.

3. I-section is more economical than a rectangular section of the same depth.

Which of the above are correct?

(a)1,2and 3 (b) 1 and 2 only (c) 2 and 3 only (d) 1 and 3 only

A beam of length L simply supported at its ends carrying a total load W uniformly
distributed over its entire length deflects at the centre by 6§ and has a maximum
bending stress o. If the load is substituted by a concentrated load Wi at mid span
such that the deflection at centre remains unchanged, the magnitude of the load W
and the maximum bending stress will be [TIES-2015]

(a) 0.3 Wand 0.3¢ (b) 0.6 Wand 0.50 () 0.3Wand 0.6 0 (d) 0.6 Wand 0.3 0

A beam AB simply supported at its ends A and B, 3 m long, carries a uniformly
distributed load of 1 kN/m over its entire length and a concentrated load of 3 kN at 1
m from A: [TES-2015]

1 kN/m

If ISJB 150 with Ixx — 300cm* is used for the beam, the maximum value of bending stress is
(a)75 MPa (b) 85 MPa (c) 125 MPa (d) 250 MPa
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IES-10b. A beam of rectangular section (12 em wide X 20 cm deep) is simply supported over a
span of 12 m. It is acted upon by a concentrated load of 80 kN at the midspan. The
maximum bending stress induced is: [IES-2017 Prelims]
(a) 400 MPa (b) 300 MPa (c) 200 MPa (d) 100 MPa

Combined direct and bending stress

IES-11. Assertion (A): A column subjected to eccentric load will have its stress at centroid
independent of the eccentricity. [TES-1994]
Reason (R): Eccentric loads in columns produce torsion.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut R is false
(d) Aisfalse but R is true

IES-11(i). For the configuration of loading shown in the given figure, the stress in fibre AB is

given by: [TES-1995]
. ( P P.e.SJ _
(a) P/A (tensile) (b) I\ ——— |(Compressive)
P Peb5 ) _
(c) (Z + |_j (Compressive) (d) P/A (Compressive)
5~
P~ |"IT P T
e=1
X . . - . i X deemeg 10
A B l
mm, fixed to the ground carries an

eccentric load P of 1600 N as shown in
the figure.

If the stress developed along the edge
CD is -1.2 N/mm?, the stress along the
edge AB will be:

(a) —1.2 N/mm?

fal
IES-12. A column of square section 40 mm x 40 p
a-l e i-f
I
]
I
1
§
1]
i
I
i
I
1
I
(b) +1 N/mm? '

]
R e

(c) +0.8 N/mm? 1
(d) —0.8 N/mm? A I D
- -- 140 mm
B : C
I 40 mm I
[TES-1999]
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IES-13. A short column of symmetric cross- P
section made of a brittle material is e
subjected to an eccentric vertical load P T
at an eccentricity e. To avoid tensile !
stress in the short column, the
eccentricity e should be less than or equal
to: I
(a) h/12 () h/6 L
(¢) h/3 (d) h/2

1
LITTEETEETN T iy
_-Jel.._

X
f— K —
[IES-2001]

IES-14. A short column of external diameter D and internal diameter d carries an eccentric
load W. Toe greatest eccentricity which the load can have without producing tension

on the cross-section of the column would be: [TES-1999]
D+d D®+d? D?+d? D®+d?
(@) (b) —— ©) —(— d | ——
8 8d 8D 8
IES-15 The ratio of the core of a rectangular section to the area of the rectangular section

when used as a short column is [IES-2010]
(a) L (b) L (c) L (d) L
a) — — c) — —

9 36 18 24

Previous 25-Years IAS Questions

Bending equation

IAS-1. Consider the cantilever loaded as shown below: [TAS-2004]
~—— w kN/m

4 1Lyl y el
7

—s W2

Cross-section of
the cantilever

What is the ratio of the maximum compressive to the maximum tensile stress?
(a) 1.0 (b) 2.0 (c) 2.5 (d) 3.0

E

TAS-2. A 0.2 mm thick tape goes over a frictionless pulley of 25 mm diameter. If E of the
material is 100 GPa, then the maximum stress induced in the tape is: [TAS 1994]
(2)100 MPa (b) 200 MPa (c)400 MPa (d) 800 MPa
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—
1 ,f)«\“‘

Section Modulus

IAS-3.

TAS-4.

IAS-5.

TAS-6.

A pipe of external diameter 3 cm and internal diameter 2 cm and of length 4 m is
supported at its ends. It carries a point load of 65 N at its centre. The sectional

modulus of the pipe will be: [IAS-2002]
657 657 657 657
(a) ——Ccm (b) ——Cm (c) ——Cm (d) ——cm
64 32 96 128

A Cantilever beam of rectangular cross-section is 1m deep and 0.6 m thick. If the
beam were to be 0.6 m deep and 1m thick, then the beam would. [TAS-1999]

(a) Be weakened 0.5 times

(b) Be weakened 0.6 times

(¢) Be strengthened 0.6 times

(d) Have the same strength as the original beam because the cross-sectional area remainsthe

same
A T-beam shown in the given figure is Ae—— 100—>iB}
subjected to a bending moment such that | | 20
plastic hinge forms. The distance of the C
neutral axis from D is (all dimensions are
in mm) . ;_1, T
(a) Zero 150
(b) 109 mm
(¢) 125 mm l
(d) 170mm
DL
—»0je

[IAS-2001]

Assertion (A): I, T and channel sections are preferred for beams. [IAS-2000]

Reason(R): A beam cross-section should be such that the greatest possible amount of
area is as far away from the neutral axis as possible.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Ais false but R is true
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If the T-beam -cross-section | 120mm | i
shown in the given figure has ¢ 4
bending stress of 30 MPa in the _T_| | o
top fiber, then the stress in the 30mm _f
bottom fiber would be (G is }_ ___________ _
centroid) G
(a) Zero
(b) 30 MPa 110mm
(¢) —80 MPa
(d) 50 Mpa
. A—
s 1{mm
[TAS-2000]
Assertion (A): A square section is more economical in bending than the circular
section of same area of cross-section. [TAS-1999]

Reason (R): The modulus of the square section is less than of circular section of same
area of cross-section.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Aisfalse but R is true

Bimetallic Strip

TIAS-9.

A straight bimetallic strip of copper and steel is heated. It is free at ends. The strip,

will: [TAS-2002]
(a) Expand and remain straight (b) Will not expand but will bend
(c) Will expand and bend also (d) Twist only

Combined direct and bending stress

IAS-10.

TAS-11.

A short vertical column having a
square cross-section is subjected to
an axial compressive force, centre
of pressure of which passes
through point R as shown in the P

above figure. Maximum _—
compressive stress occurs at point
(@) S
b Q
() R
(d) P
[IAS-2002]
A strut's cross-sectional area A is subjected to load P a point S (h, k) as shown in the
given figure. The stress at the point Q (x, y) is: [IAS-2000]
P Phy Pkx ;
T
X y
y X
P Phy Pkx ¥ §
) —+——+—
T
@ PP _Ply
AL
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OBJECTIVE ANSWERS

GATE-1. Ans. 300 MPa (Range given 290 to 310)
GATE-2. Ans. (30)
My 10><(X)><0.005
I (0.01)°
12

¥ =60.(x) MPa

GATE-3. Ans. (a)M, =Px -2 oo
y

Atx=0; =0
Atx=1m; o =60MPa
And 1t 1s linear as o © X

GATE-4. Ans. (d)
When the concentrated load is placed at the midspan, maximum bending moment will develop

at the mid span.

Now, czMy [ M:E}
I 4
PL D
_ 4 2 _ 3PL
~ BD* 2BD?
12
GATE-4a. Ans. (b)
3 3
_PL o sxa0tm=FE [Use Sl unit]
3El 3El
O-max — Mymax — PLymax
| |
or Gmafg _ PLYma 8 3Ei _ 3ymng
5x10™m | PL L
3x(0-17)x(2x10"
OF ey =Mx(5x10‘3m)= ) 2( )><(5><10‘3)Pa=37.5 MPa
L 2
GATE-4b.  Ans. 90 ]
2, G
t-‘ : 8m -.J
40 KN 40 KN
wlL? 10x 2?

At2mfromsupport, Bending Moment (M) =R, x 2—7 =40x2— =60kNm

Extreme compression edge is topmost fibre. In the topmost fibre Shear Stressis zero.

My (60x10° Nm)x(0.100m)

Only Bending Stress =—7 =
yBendngStess() = =0 10002007

12

=90x10°Pa =90 MPa

GATE-5. Ans. (c)

There can be two stresses which can act at any point on the beam viz. flexural stress and shear

stress.
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Where all the symbols have their usual meaning.

GATE-6. Ans. (b) ¥ _E_2 oM.

y I
m 2 m[ ¢ ,
2) 6M. 2) 32M 4zJzM 2227M [ zd
O-sq:»]—:a_s’ Ocr = d* = d3: 3 3 'T:a
PPN zd” T a a
12 64
- O-sq < Oir
GATE-7. Ans. (¢)
I 75 mm
m 2 ] A =
50 mm
H fmax
50 mm
j[¢— 100 mm—pj Bending stress distribution

M
=—x
fmax I ymax

~16x10° x12
100 x 150°

From similar traingles, we have
42.67 «x

75 25
= x =14.22 N/ mm?

x 75 =42.67 N/ mm?

. Tensile force = % x25x14.22x50x107° =8.88 =8.9 kN

GATE-8. Ans. (b)

GATE-9. Ans. (a)
GATE-10. Ans. (b)
GATE-11. Ans. (d) Total Stress = Direct stress + Stress due to Moment
=P, My_F FlL-Db)b
A I 4b* 2b’ (b)?
12

GATE-12. Ans. (a)
The section at X — X may be shown as in the figure below:

p I b >

pm———
d
_____ i

€ o =]

The maximum tensile stress at the section X — X is
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P M
G=—+—
A Z
d
P +PX(4JX6_2P+6P_8P
= ==
bx(dj bx[dj bd bd bd
2 4
IES-1 Ans. (b)
IES-1(i). Ans. (d) Bending stress (o) = w y and | both depends on the

Shape of cross —section so 9 depends on the shape of cross —section
Op
IES-2. Ans. (b) Diameter will be double, D = 2d.
A. Maximum BM will be unaffected

4
B. deflection ratio E = 9 = i
El, 4 16

M(d/2 ’
C. Bending stress o= My _ ( n ) or Bending stress ratio = % (gj 1
I zd o, D 8
64

. . Z, Ly, (DY
D. Selection Modulus ratio=—=2%=%-x=1=|—| =8
Z y, | d

IES-3. Ans. (c¢)

IES-4. Ans. (c¢)

IES-4a.Ans. (d)
IES-4b. Ans. (a)
IES-4c.Ans. (¢)

T f4
IES-5. Ans. (¢) If D is diameter of circle and 'a' the side of square section, Z d’=a* ord=,|—a
T

, , rd®* a® -
Z for circular section = =——; and Z for square section =—
32 ar 6
b’ b
2 bl ~ 3 = xb? 3
.. hd 2 b 2 b
IES-6. Ans. (b) Z for rectangular sectionis —, Z, = ——%—=—, ly=F—"=—
6 6 24 6 12
3 3
M=Z,0,=2g5.05, Or—o0,=—20, 0rc,=20,

24 12
IES-6(i). Ans. ()
IES-6(ii) Ans. (a)

M
IES-7. Ans. (¢) Bending stress = ?

3
a
For rectangular beam with sides horizontal and vertical, Z = E

3
. . . ) a
For same section with diagonal horizontal, Z = \/_

.. Ratio of two stresses = \/E
IES-7(i). Ans. (c)
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IES-8. Ans. (d)

We know,azy

In the given question since bending stress and moment both are same for the two bars

Y Y or b/2  d/2 Ol’ﬁ—% i
B I rectangular_ I circular 8b4/12_7[d4/64 b3 _37[ """""

weight of rectangular bar A Lpg
weight of circular bar A, _,..Lr9
2

Ratio of the weights=

Ratio of the weights = T dE 2 AT .

2

20> 8 b 8 (3r
T

Ratio of the weights = 3—31
273

IES-8(i). Ans. (b)

IES-9. Ans. (a)

IES-9a. Ans. (a)

IES-9b. Ans. (d)

IES-10. Ans. (b)

IES-10a. Ans. (a) Designation of I-beam in India.
ISMB: Indian Standard Medium Weight Beam
ISJB: Indian Standard Junior Beams

ISLB: Indian Standard Light Weight Beams

ISWB: Indian Standard Wide Flange Beams.

TES-10b. Ans. (b) Mgy = =

IES-11. Ans. (c) Ais true and R is false.
. P . My  Pky .
IES-11(@). Ans. (b) o, = A (compressive), o, = T o7 (tensile)

X X

IES-12. Ans. (d) Compressive stress at CD = 1.2 N/mm? =E 1+% = @ 1+ E
A b 1600 20

or e _ 0.2. Sostressat AB = —@(1—0.2) =—0.8 N/mm?(com)
20 1600

IES-13. Ans. (b)
IES-14. Ans. (¢)

TES-15. Ans. (¢) A= =x2xDy g 00
2 6 6 18
M M (2h
IAS-1. Ans. (b) o= Ty Ceompresive Mox =~ ~ X (?j at lower end of A.

O tensile, max= % X (gj atupperendof B

o E 0.2 25
IAS-2. Ans. (d) — = R Herey = - =01lmm=0.1x103m,R= > mm = 12.5x 103 m
y
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100 x10°x0.1x10°°

oro 125%107 MPa = 800MPa
DX
T (4 4
—(3"=2
| L al®?)
IAS-3. Ans. (c) Section modulus(z) = — = MTCW = (.3;—67[cm3
y hd
2
3
IAS-4. Ans. (b) z, == 20T _ 4o T
y 0.5
3
and z, _ 1L _1x08 5 7oms 1m
y 0.3 l
2, 072 e
"2 "2 0.6times P 1 m— |
0.6m

IAS-5. Ans. (b)
Ae— 100—ig}
| | 20

4+ C
61
—_— e — — + - —
G
150
109 l
]
—ppok
IAS-6. Ans. (a) Because it will increase area moment of inertia, i.e. strength of the beam.

IAS7. Ans. () N =%L=%2 oro =y, x %L = (110~ 30)x 2 =80 MPa
Iy vy y 30

As top fibre in tension so bottom fibre will be in compression.

1 2 1

IAS-8. ans. (¢)

IAS-9. Ans. (¢) As expansion of copper will be more than steel.

IAS-10. Ans. (a) As direct and bending both the stress is compressive here.
IAS-11. Ans. (b) All stress are compressive, direct stress,

oy :% (compressive), o, = % = Pl_ky (compressive)
Mx  Phx .
and o, = T = T (compressive)
y y
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Previous Conventional Questions with Answers

Conventional Question IES-2008

Question:

Answer:

A Simply supported beam AB of span length 4 m supports a uniformly distributed
load of intensity q = 4 kN/m spread over the entire span and a concentrated load P =
2 kN placed at a distance of 1.5 m from left end A. The beam is constructed of a
rectangular cross-section with width b = 10 cm and depth d = 20 cm. Determine the
maximum tensile and compressive stresses developed in the beam to bending.

X

2KN ?' 4KN/M
YN NN NNVNONNTNN
€&— 1 5—>| .
: y
? <4+ > NA= h=20cm
A R,
X

R,+R;=2+4x4......... 0)
-R, x4 + 2%(4-1.5) + (4x4)x2=0....... (i)
or R,=9.25 kN, R;=18-R,=8.75 kN

fo<x<25m
M, =Rgxx - 4.(%/]-2(x-2.5)

=8.75x - 2x* - 2X + 5=6.75x - 2x* + 5 ..(i)

From (i) & (ii) we find out that bending movment at x = 2.1875 m in(i)
gives maximum bending movement

[Just find C;—M for both the casses]
X

M, =8.25x2.1875—2x1875% = 9.57K7kNm

3 3
Area  movement of Inertia (I) = oh = 0.1x0.2 =6.6667x10°>m*

12 12
Maximum distance from NAisy =10cm =0.1m

3
o —My_(©57x10 )X(s).lyz _14.355MPa
| 6.6667x10 m

Therefore maximum tensile stress in the lowest point in the beam is 14.355 MPa and
maximum compressive stress in the topmost fiber of the beam is -14.355 MPa.

Conventional Question IES-2007

Question:

A simply supported beam made of rolled steel joist (I-section: 450mmx200mm) has a

span of 5 m and it carriers a central concentrated load W. The flanges are

strengthened by two 300mm X 20mm plates, one riveted to each flange over the

entire length of the flanges. The second moment of area of the joist about the

principal bending axis is 35060 cm¢4. Calculate

(i) The greatest central load the beam will carry if the bending stress in the
300mm/20mm plates is not to exceed 125 MPa.
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(ii) The minimum length of the 300 mm plates required to restrict the maximum
bending stress is the flanges of the joist to 125 MPa.

Answer:
Y

i 30cm P

: | Plate -—l i
I ' 2¢cm

_ _Neutral axis

45cm

E

o

uw

=

o

/— ¥-section 1
€

&

<

o

| y Plate ' §
p—-——— 30 cm ———-—l

Moment of Inertia of the total section about X-X

(I) = moment of inertia of I —section + moment of inertia of the plates about X-X axis.

3
30x2 — 101370 cm*

2
= 35060+ 2 45 2]

+30x2x|—+—
[2 2

(i) Greatest central point load(W):
For a simply supported beam a concentrated load at centre.

m=WL_WX5_ 4 o5w
4 4
ol (125%x10°)x(101370x10 °)
_ol_ —=517194Nm
y 0.245

. 1.25W =517194  or W = 413.76 kN

(1) Suppose the cover plates are absent for a distance of x-meters from each support. Then at
these points the bending moment must not exceed moment of resistance of ‘I’ section alone
ie
ol _ (125%10°)x

y

..Bending moment at x metres from each support

(35060 % 10-8)
—178878Nm
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=% x X =178878

41760

or, x X =178878

or x =0.86464m

Hence leaving 0.86464 m from each support, for the
middle 5 - 2x0.86464 = 3.27 m the cover plate should be
provided.

Conventional Question IES-2002

Question: A beam of rectangular cross-section 50 mm wide and 100 mm deep is simply
supported over a span of 1500 mm. It carries a concentrated load of 50 kN, 500 mm
from the left support.

Calculate: (i) The maximum tensile stress in the beam and indicate where it occurs:
(ii) The vertical deflection of the beam at a point 500 mm from the right support.

E for the material of the beam = 2x105 MPa.
Answer: Taking moment about L W

Rk %1500 = 50 x 500 20 kN
or,R; =16.667kN :
or,R, +R, =50 L d P R
~R_=50-16.667=33.333 kN Rl ]
Take a section from right R, —_ 1W h—
x-x at a distance x. L ¥ Ra
Bending moment (M, ) = +R;.X :

|16.667 kNm

I
|
500 —»e— 1000 ——>

Therefore maximum bending moment will occur at 'c' Mmax=16.667X1 KNm

(1) Moment of Inertia of beam cross-section

_bh*  0.050(0.100)’

(1) = m*=4.1667x10"°m*
12 12
Applying bending equation
iy c (16.67><103)><[Ogm]
M_%_% oo, =N = N/m’ =200MPa
1y »p | 4.1667x10

It will occure where M is maximum at point 'C'

(i1) Macaulay's method for determing the deflection
of the beam will be convenient as there is point load.
d’y

X2

M =El

=33.333xX—50% (X —0.5)
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Integrate both side we get
2 2
El %: 33.333><X?—?(x—0.5)2 exdc,
at x=0, y=0 givesc, =0
at x=1.5, y=0 gives
0=5.556x(1.5)’ —8.333x1* ¢, x1.5
or,c, = —6.945

< Ely=5.556x %’ |~8.333(x—0.5)°| - 6.945x1 = ~2.43

B —243
(2x10° x10°)x (4.1667x10 )

or,y m =-2.9167 mm[downward so -ive]

Conventional Question AMIE-1997

Question:

Answer:

If the beam cross-section is rectangular having a width of 75 mm, determine the
required depth such that maximum bending stress induced in the beam does not
exceed 40 MN/m?2

Given: b =75 mm =0-075 m, Oy, =40 MN/m?

Depth of the beam, d: Figure below shows a rectangular section of width b = 0075 m and
depth d metres. The bending is considered to take place about the horizontal neutral axis N.A.
shown in the figure. The maximum bending stress occurs at the outer fibres of the rectangular

section at a distance E above or below the neutral axis. Any fibre at a distance y from N.A. is
. . My
subjected to a bending stress, GZT, where I denotes the second moment of area of the
bd®

rectangular section about the N.A. i.e. E

d
At the outer fibres, y = E , the maximum bending stress there becomes

,!
#
o+

N —} . — L . —— A

o —Mx—(gj— M ()

mX T pd® bd?

12 6
2
or M =O_max'% ————(ii)

For the condition of maximum strength i.e. maximum moment M, the product bd2 must be a

maximum, since O, is constant for a given material. To maximize the quantity bd? we

realise that it must be expressed in terms of one independent variable, say, b, and we may do
this from the right angle triangle relationship.

b2 + o =D?
or d* =D* —-b?
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Multiplying both sides by b, we getbd® =bD? —b®
To maximize bd2 we take the first derivative of expression with respect to b and set it equal to
zero, as follows:

d d
—(bd®) =—(bD? -b*) =D* -3b* =b* +d* —3b* =d* -2b* =0
db db
Solving, we have, depth d/2 b ...(iii)
This is the desired radio in order that the beam will carry a maximum moment M.

It is to be noted that the expression appearing in the denominator of the right side of eqn. (i) i.
2

e. ? is the section modulus (Z) of a rectangular bar. Thus, it follows; the section modulus is

actually the quantity to be maximized for greatest strength of the beam.
Using the relation (i11), we have
d=+2x0075=00106 m

bd?

Now, M=o, XZ= 0, X—

X

Substituting the values, we get
0.075x(0.106)"

6

o M_ 0.005618 _4OMN/ 2
Z (0.075x(0.106)2/6)

Hence, the required depth d = 0106 m = 106 mm

M =40 x

=0.005618 MNm

Conventional Question IES-2009

Q.

Ans.

(i) A cantilever of circular solid cross-section is fixed at one end and carries a

concentrated load P at the free end. The diameter at the free end is 200 mm and
increases uniformly to 400 mm at the fixed end over a length of 2 m. At what distance
from the free end will the bending stresses in the cantilever be maximum? Also
calculate the value of the maximum bending stress if the concentrated load P = 30 kN

[15-Marks]
M

We have 2 = 1 . (1)

y
Taking distance x from the free end we have
M = 30x kN.m = 30x x 10° N.m

y =100 + g (200-100)

=100+ 50x mm
4
and I= ﬂ
64

Let d be the diameter at x from free end.

4
n[zom(‘“’owx}

64
n(200+100x)"

=——— Imimn

64

From equation (1), we have
(e}

(100+50x)x107°
30x x10°

L
64
960x
o=
T

(200+100x)* x10712

(200+100x)° x10'2 ...... (ii)
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_ 960x
- T

(200+100x)~* x10'2

For max o, E =0
dx

- 102 %960
) T

[ x(-3)(100)(200+ 100x) * +1.(200+100x)* | =0
= -300x + 200 + 100x = 0

=
NMN
x |
A Sy —
2000mm
(2m)
Hence maximum bending stress occurs at the midway and from equation (ii), maximum bending
stress
o =290 (1)(200+100) x 1012
T
12
= M =11.32 MPa
T X (300)
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7. Shear Stress in Beam

Theory at a Glance (for IES, GATE, PSU)

1. Shear stress in bending ()
)
Ib
dM
Where, V = Shear force = ——
dx

o
Q = Statical moment = I ydA

)
I = Moment of inertia

b = Width of beam c/s.
2. Statical Moment (Q)

G
Q= j ydA = Shaded Area x distance of the centroid of the shaded area from the neutral axisof the c/s.
Y1

3. Variation of shear stress

Section Diagram Position of T
Tmax
Rectangular . N.A 3V
7 = 2a
d
’ Tmax :1'57mean
. = Tna
Circular N.A
4
Trmax — Ermean
Triangular ' r =15r
iz — from N.A max mean
7L
o FA* Tna = 1.33 Tean
his
|
(a) Beam cross-section (b) Shear stress distribution
Trapezoidal h
— from N.A
6
Section Diagram r

max
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Uni form T In Flange,
I-Section ‘ B \ Ch?
--la I <Tmax)(Tmax)y:ﬁ:_|:h2 h1:|
}f"“eb k ) 8|
o © N_._T_. A — : T
i ;.' (Tmax )y1=% =0
| Flange ’/
— l —— In Web

Vv

(7nac), o = gy POR) 410

(Tmim )YF% = g_:Jt[hZ - hl2:|

4. Variation of shear stress for some more section [Asked in different examinations]

Non uniform I-Section Diagonally placed square section

Web

|
T
! Flange

- _ ection Shear stress distribution
Beam cross-section Shear stress distribution

L-section Hollow circle

7722 |\

T-section Cross

T

5. Rectangular section

e Maximum shear stress for rectangular beam: 7, =

|2

e For this, A is the area of the entire cross section

e Maximum shear occurs at the neutral axis
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e  Shear is zero at the top and bottom of beam

6. Shear stress in beams of thin walled profile section.

e Shear stress at any point in the wall distance "s" from the free edge

y

Shearing occurs here

T:\IL;j.ydA

where V, = Shear force
7 = Thickness of the section
| = Moment of inrertia about NA

e Shear Flow (q)

Yy j'ydA

NA o

q _tt=

e Shear Force (F)

/s \,c\zz\x -

F:I qds

e Shear Centre (e)

Point of application of shear stress resultant
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Shear Stress Variation

GATE-1.

GATE-2.

GATE-3.

GATE-4.

The transverse shear stress acting

in a beam of rectangular cross-

section, subjected to a transverse

shear load, is:

(a) Variable with maximum at the
bottom of the beam

(b) Variable with maximum at the
top of the beam

(¢)  Uniform

(d) Variable with maximum on the
neutral axis

[TES-1995, GATE-2008]
The ratio of average shear stress to the maximum shear stress in a beam with a
square cross-section is: [GATE-1994, 1998]

@ 1 (b) % © g (d) 2

If a beam of rectangular cross-section is subjected to a vertical shear force V, the
shear force carried by the upper one third of the cross-section is [CE: GATE-2006]

(a) zero ®) % © % d) %

I-section of a beam is formed by gluing wooden planks as shown in the figure below.
If this beam transmits a constant vertical shear force of 3000 N, the glue at any of the
four joints will be subjected to a shear force (in kN per meter length) of

A 4 50 om
200 mm
7//////%7/////// 50 mm
le>|e—>]
50 mm 75 mm
200 mm —] [CE: GATE-2006]
(@) 3.0 (b) 4.0 (©) 8.0 ) 10.7

GATE-4(i).A symmetric I-section (with width of each flange = 50 mm, thickness of each flange =

GATE-5.

10 mm, depth of web = 100 mm, and thickness of web = 10 mm) of steel is subjected to
a shear force of 100 kN. Find the magnitude of the shear stress (in N/mm?2) in the web
at its junction with the topflange. [CE: GATE-2013]

The shear stress at the neutral axis in a beam of triangular section with a base of 40
mm and height 20 mm, subjected to a shear force of 3 kN is [CE: GATE-2007]
(o) 3 MPa (b) 6 MPa (c) 10 MPa (d) 20 MPa
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GATE-6. The point within the cross sectional plane of a beam through which the resultant of
the external loading on the beam has to pass through to ensure pure bending without

twisting of the cross-section of the beam is called [CE: GATE-2009]
(@) moment centre (b) centroid
(c) shear centre (d) elastic centre

GATE-7. Consider a simply supported beam of length, 50h, with a rectangular cross-section of
depth, A, and width, 2h. The beam carries a vertical point load, P, at its mid-point.
The ratio of the maximum shear stress to the maximum bending stress in the beam is
(a) 0.02 () 0.10 (c) 0.05 (d) 0.01 [GATE-2014]

Shear Centre

GATE-8. The possible location of shear centre of the channel section, shown below, is

=

Q

P
‘@

[CE: GATE-2014]
(@ P () Q ©R (d) S

Previous 25-Years IES Questions

Shear Stress Variation

IES-1. At a section of a beam, shear force is F with zero BM. The cross-section is square with
side a. Point A lies on neutral axis and point B is mid way between neutral axis and
top edge, i.e. at distance a/4 above the neutral axis. If t A and t B denote shear
stresses at points A and B, then what is the value of t Ao/t B? [TES-2005]
(@0 (b) % (c) 4/3 (d) None of above

IES-2. A wooden beam of rectangular cross-section 10 cm deep by 5 cm wide carries
maximum shear force of 2000 kg. Shear stress at neutral axis of the beam section is:
[TES-1997]
(a) Zero (b) 40 kgf/cm? (c) 60 kgf/cm? (d) 80 kgf/cm?
IES-2a. ¥ The maximum shearing stress induced in the beam section at any layer at any
position along the beam length (shown in the figure) is equal to [IES-2017 Prelims]

ry
2000 kgf
J’ 200 mm
f—— 1m——
¥
e—>]
50 mm
Cross-section of beam
(a) 30 kgflcm?2 (b) 40 kgf/cm?2 (c) 50 kgf/cm?2 (d) 60 kgf/cm?
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IES-3. In case of a beam of circular cross-section subjected to transverse loading, the
maximum shear stress developed in the beam is greater than the average shear stress
by: [TES-2006; 2008]
(a) 50% (b) 33% (c) 25% (d) 10%

IES-3(i). A solid circular cross-section cantilever beam of diameter @100 mm carries a shear

force of 10 kN at the free end .The maximum shear stress is [IES-2015]
(a) 4/3n Pa (b) 3 /4 Pa (¢) 3 /16 Pa (d) 16/3% Pa
IES-4. What is the nature of distribution of shear stress in a rectangular beam?
[TES-1993, 2004; 2008]
(a) Linear (b) Parabolic (c) Hyperbolic (d) Elliptic
IES-5. Which one of the following statements is correct? [IES 2007]

When a rectangular section beam is loaded transversely along the length, shear stress
develops on

(a) Top fibre of rectangular beam (b) Middle fibre of rectangular beam
(c) Bottom fibre of rectangular beam (d) Every horizontal plane
IES-6. A beam having rectangular cross-section is subjected to an external loading. The

average shear stress developed due to the external loading at a particular cross-
section is t,, . What is the maximum shear stress developed at the same cross-section

due to the same loading? [TES-2009, IES-2016]
1 3
(a) Etavg (b) t,, (c) Etavg (d) 2t,,,
IES-7. The transverse shear stress = b ——=i
acting in a beam of rectangular ——
cross-section, subjected to a W
transverse shear load, is: Pt
(a) Variable with maximum at the ;; '
bottom of the beam J,_J
(b) Variable with maximum at the d N A

top of the beam

(¢) Uniform

(d) Variable with maximum on the
neutral axis

[TES-1995, GATE-2008
IES-8. P

A cantilever is loaded by a concentrated load P at the free end as shown. The shear
stress in the element LMNOPQRS is under consideration. Which of the following
figures represents the shear stress directions in the cantilever?

[TES-2002]
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IES-9.

IES-10.

IES-11.

IES-11().

For-2019 (IES, GATE & PSUs)
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@) S R o S R
: ("'_ ]
P ~ : Q l P - : Q l
" ’Q.— - :; """"" N ! ’q.l __________ N
L M L u - M
S R S R
P g
N N
ls M L M
In I-Section of a beam subjected to transverse shear force, the maximum shear stress

[TES- 2008]
(b) At the top edge of the top flange
(d) None of the above

is developed.
(a) At the centre of the web
(c) At the bottom edge of the top flange

The given figure (all Iri - 100 ._1

dimensions are in mm) shows - o

an I-Section of the beam. The P 0

shear stress at point P (very

close to the bottom of the Q

flange) is 12 MPa. The stress at b 40

point Q in the web (very close 20 gﬂl

to the flange) is: N - ! - -

(a) Indeterminable due to

incomplete data

(b) 60MPa

(c) 18 MPa 0

(d) 12MPa X
= 100 -l

[IES-2001]
Assertion (A): In an I-Section beam subjected to concentrated loads, the shearing
force at any section of the beam is resisted mainly by the web portion.
Reason (R): Average value of the shearing stress in the web is equal to the value of
shearing stress in the flange. [TES-1995]

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut Ris false

(d) Aisfalse but R is true

Statement (I): If the bending moment along the length of a beam is constant, then the beam
cross-section will not experience any shear stress. [TES-2012]
Statement (II): The shear force acting on the beam will be zero everywhere along its length.

(a) Both Statements (I) and Statement (II) are individually true and Statement (II) is the
correct explanation of Statement (I)

(b) Both Statement (I) and Statement (II) are individually true but Statement (II) is not the
correct explanation of Statement (I)

(c) Statement (I) is true but Statement (II) is false

(d) Statement (I) is false but Statement (II) is true
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Shear stress distribution for different section

IES-12.

The shear stress distribution over a beam cross-
section is shown in the figure above. The beam is of
(a) Equal flange I-Section

(b) Unequal flange I-Section

(c¢) Circular cross-section

(d) T-section

[TES-2003]
Previous 25-Years IAS Questions
Shear Stress Variation
TAS-1. Consider the following statements: [TAS-2007]
Two beams of identical cross-section but of different materials carry same bending
moment at a particular section, then
1. The maximum bending stress at that section in the two beams will be same.
2. The maximum shearing stress at that section in the two beams will be same.
3. Maximum bending stress at that section will depend upon the elastic modulus of
the beam material.
4. Curvature of the beam having greater value of E will be larger.
Which of the statements given above are correct?
(a) 1 and 2 only (b) 1,3 and 4 (¢)1,2and 3 (d) 2, 3 and 4
IAS-2. In a loaded beam under bending [TAS-2003]

(a) Both the maximum normal and the maximum shear stresses occur at the skin fibres

(b) Both the maximum normal and the maximum shear stresses occur the neutral axis

(¢) The maximum normal stress occurs at the skin fibres while the maximum shear stress
occurs at the neutral axis

(d) The maximum normal stress occurs at the neutral axis while the maximum shear stress
occurs at the skin fibres

Shear stress distribution for different section

IAS-3.

TAS-4.

Select the correct shear stress distribution diagram for a square beam with a

diagonal in a vertical position: [TAS-2002]
(a) | (b}
<} )

et

The distribution of shear stress of a beam is shown in the given figure.The cross-
section of the beam is: [IAS-2000]
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(a) 1

(b) T

©
(d) A

TIAS-5. A channel-section of the beam shown in the given figure carries a uniformly
distributed load. [IAS-2000]

l‘fc MNi'm

w M

WAL
r r

Assertion (A): The line of action of the load passes through the centroid of the cross-
section. The beam twists besides bending.

Reason (R): Twisting occurs since the line of action of the load does not pass through
the web of the beam.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R 1s NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Ais false but R is true
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OBJECTIVE ANSWERS

S K Mondal’s

3
GATE-1.Ans(d) 7, =—7

mean

GATE-2.Ans. (b)

3
Tmax = ETmean

GATE-3. Ans. (b)

21
dF=1txbdy
5o
V x —y‘j
4
=——— 2 xbd
T
Integrating both sides, we get
d
Vb2(d2 j
F=—||=—-»y|d
= 21! PR

6

d

Vb |d ¥y vbld d& Jd&° &

= — —y—— ————— +
21 L4 3 A

Vb d3><28 Vb d° 28 v

= — X—X—=—— X — X —x12=—
21 8 81 2d® 8 81 27
GATE-4. Ans. (b)

Shear flow, g = V—IQ

3 3
1= 20x300° +2><[—150X 20" 1 150 5Ox1252}
12 12
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=3.5x10° mm*
For any of the four joints,
Q =50 x 75 % 125 = 468750 mm®
3000 x 468750
T 35x10°
Note: In the original Question Paper, the figure of the beam was draw as I-section but in
language of the question, it was mentioned as T-section. Therefore, there seems to be an error in
the question.

GATE-4(i).Ans. 70 to 72
GATE-5. Ans. (¢)

=40 N/mm =4.0 kN/m

Shear stress, T=—"

Where

S = Shear force

A = Area above the level where shear stress is desired

y = Distance of CG of area A from neutral axis

I = Moment of Inertia about neutral axis

b = Width of the section at the level where shear stress is desired.

2
i 20 mm
h 4

jé——— 40 mm ————Pj

Width at a distance of % mm from the top = 40 x 40 = @mm

20 3 3
3><103><(1><80><40)><(1X40j
L 2 3 3 3 3
[4020)80
36
3
_3x10"x3200x40x36x3 | im
162 x 3200 x 20°
Alternatively,
128
= — h - 2
q bhg( Y =5)
3 2
:MPOX@_(@) }:mMPa
40 x 20° 3 3

GATE-6. Ans. (c)
GATE-7.Ans. (d)
GATE-S. Ans. ()
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IES ANSWERS

. an{az_yz] 3V
2 4 943"
IES-1. Ans. (¢) 7 = VAY _ i = §13(a2 —4y2) orfa - 23’ _4
Ib a 2a s 3V a) 3
2 xa SV Ha2_gl@
12 2'a’ (4)
. 3 F 3 2000 )
IES-2. Ans. (c) Shear stress at neutral axis = —X— = —X =60kg/cm
2 bd 2 10x5
_ _ l _ 2000 kgf _ 2
IES-2a.  Ans. @ Tmax = 1. 5Tmean = 1.5 X - = 1.5 X ————"— = 30 kgf/cm

IES-3.Ans.(b) In the case of beams with circular cross-section, the ratio of the maximum shear stress to
average shear stress 4:3

IES-3(i). Ans. (d)
IES-4. Ans. (b)

Shear
stress
distribution

V[ h? o e :
T=— (— - y12 indicating a parabolic distribution of shear stress across the cross-section.

Sl 4
IES-5. Ans. (b)

\_‘},H
U L _—h..:r
/-/"'/_H-/-N-_- |
IES-6. Ans. (c)
yt |
(¢
NH{—L — . a

b

Shear stress in a rectangular Shear stress in a circular beam, the
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beam, maximum shear stress,

Shear StiPegs B9 Beam

3F 4F 4
Thax = 5 1 = 1.5 T(average) max =4
4

3
IES-7. Ans (d) 7, = ETmean
IES-8. Ans. (d)
IES-9. Ans. (a)
IES-10. Ans. (b)
IES-11. Ans. (¢)
IES-11(i). Ans. (a)
IES-12. Ans. (b)

My VAy

IAS-1. Ans. (a) Bending stress 0 =

material of beam.

IAS-2. Ans. (¢)

|_ and shear stress (7) =

h2
Z‘Yf

_V
4

IAS-3. Ans. (d)
IAS-4. Ans. (b)

T

|

Shear Stress Distribution

S K Mondal’s

maximum shear stress,

(average)

both of them does not depends on

] indicating a parabolic distribution of shear stress across the cross-section.

IAS-5. Ans. (¢)Twisting occurs since the line of action of the load does not pass through the shear.

Previous Conventional Questions with Answers

Conventional Question IES-2006

Question:

span of 4 m and is simply supported.
If the permissible stresses are 30 N/mm? longitudinally and 3 N/mm? transverse
shear, calculate the maximum load which can be carried by the timber beam.
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Answer:

Shear Stre$zage Be&am

S K Mondal’s

N/A

LT
— |

2Qcm

I 15¢cm I

5 (0.15)x(0.20)°
Moment of inertia (I) = % = % =10"*m*

Distance of neutral axis from the top surface y = ?0 =10cm = 0.1 m

We know that %:E or o = My
I vy I
Where maximum bending moment due to uniformly
ol  wox4®

distributed load in simply supported beam (M) = o "8 ° 2w

Considering longitudinal stress
(2a)) x0.1

10
or, =15 kN/m

30x10° =

Now consideng Shear
ol o4 _
2

Maximum shear force = 2w

2w

) =————— =66.6T®
0.15x0.2

Therefore average shear stress (r
For rectangular cross-section

Maximum shear stress(z = ; LT = gx 66.670 =100 w

max )

Now 3 x10° =100w; o =30 kN/m

So maximum load carring capacity of the beam = 15 kN/m (without fail).
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8. Fixed and Continuous Beam

Theory at a Glance (for IES, GATE, PSU)
What is a beam?

A (usually) horizontal structural member that is subjected to a load that tends to bend it.

Types of Beams

Simply supported beam

Cantilever beam

A0 |

Simply Supported Beams Cantilever Beam
Single Overhang Beam

Continuous Beam

Single Overhang Beam with internal hinge

Double Overhang Beam

| | TN

Fixed Beam Continuous beam

Continuous beams

Beams placed on more than 2 supports are called continuous beams. Continuous beams are used when

the span of the beam is very large, deflection under each rigid support will be equal zero.

Analysis of Continuous Beams
(Using 3-moment equation)

Stability of structure

If the equilibrium and geometry of structure is maintained under the action of forces than the structure

is said to be stable.
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External stability of the structure is provided by the reaction at the supports. Internal stability is

provided by proper design and geometry of the member of the structure.

Statically determinate and indeterminate structures

Beams for which reaction forces and internal forces can be found out from static equilibrium equations

alone are called statically determinate beam.

Example:

R,
> X, =0,>Y,=0and ) M =0 is sufficient to calculate R, & R,

Beams for which reaction forces and internal forces cannot be found out from static equilibrium
equations alone are called statically indeterminate beam. This type of beam requires deformation

equation in addition to static equilibrium equations to solve for unknown forces.

Example:

7

|

]

A B

T—>
10—y
RTIe
g
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Ex:

No. of unknowns = 6

| "

\
,E No. of eq . Condition = 3

End moments Therefore statically indeterminate
Hy /T >\ _H

\i: Ma m,,}/ Degree of indeterminacy =6-3 = 3
=A . No. of unknowns = 3
_j’*_"\\ — l w No. of equilibrium Conditions = 2
T JJA‘H l © | Therefore Statically indeterminate
RA 8 Re

Degree of indeterminacy = 1

Advantages of fixed ends or fixed supports

e Slope at the ends is zero.
e Fixed beams are stiffer, stronger and more stable than SSB.
e In case of fixed beams, fixed end moments will reduce the BM in each section.

e The maximum deflection is reduced.

Bending moment diagram for fixed beam

Example:

fg}‘
\_\.bj;\_

b |

=

b |

-———-—r—---—-
Y
Y
J
J

M M

[P 1 ]

bt
1
1
1

BMD for Continuous beams

BMD for continuous beams can be obtained by superimposing the fixed end moments diagram over the

free bending moment diagram.
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N

T‘ﬁ'_-\\I"'-'_-.\-"'I/-'-_\-\"IJ-’-'_-\-“‘l{"-'--\-\I"'-'_-.\-‘.'IJ’-'__\-\I B

N

FREE B.M.

Three - moment Equation for continuous beams OR

Clapeyron’s Three Moment Equation

M [ feon [ 2o Lo | [ L
\E,1 EI EI, E1

171 171 2

_—6al;,_ 6a,x, _6 5, -9, +8C—83
ElIlLl EZIZLZ Ll LZ

The above equation is called generalized 3-

moments Equation.

Ma, Mg and Mc are support moments E|, E, —
Young’s modulus

of Elasticity of 2 spans.

I, I, — MOTof 2 spans,
aj, a — Areas of free B.M.D.
X, andx, —  Distance of free B.M.D. from the
end supports, or outer supports.
(A and C)
O, Op and O¢ — are sinking or settlements of

support from their initial position.
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years IES Questions

Overhanging Beam

IES-1. An overhanging beam ABC is supported at points A and B, as shown in the above
figure. Find the maximum bending moment and the point where it occurs.
[TES-2009]

(a) 6 kN-m at the right support lz kN 6 ml
(b) 6 kN-m at the left support A o

(¢) 4.5 kN-m at the right support E A B
(d) 4.5kN-mat  the  midpoint t 1m 1m

between the supports
2m 1m

N

IES-2. A beam of length 4 L is simply supported on two supports with equal overhangs of
L on either sides and carries three equal loads, one each at free ends and the third
at the mid-span. Which one of the following diagrams represents correct
distribution of shearing force on the beam? [TES-2004]

(a) e /l_

T L
, (d) "j
I e

IES-3. A horizontal beam carrying {mﬂmmmmmmﬂ
uniformly distributed load is
supported with equal |"-:EI | ’ * b ":T"a'-l

overhangs as shown in the

given figure
The resultant bending moment at the mid-span shall be zero if a/b is: [IES-2001]
(a) 3/4 (b) 2/3 (c) 1/2 (d) 1/3
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Previous 25-Years IAS Questions

Overhanging Beam

IAS-1. T‘_\“} Mﬁjjﬁ P(N)
A 4 DT
— K 1 | X

If the beam shown in the given figure is to have zero bending moment at its
middle point, the overhang x should be: [IAS-2000]

(a) Wl® /4P ) wl® /6P () wl*/8P @ wl?/12P
IAS-2. A beam carrying a uniformly distributed load rests on two supports 'b' apart with

equal overhangs 'a' at each end. The ratio b/a for zero bending moment at mid-
span is: [TAS-1997]

()1 )1 ()3 ) 2
a) — C) —
2 2

IAS-3. A beam carries a uniformly distributed load and is supported with two equal
overhangs as shown in figure 'A'. Which one of the following correctly shows the
bending moment diagram of the beam? [TIAS 1994]

Fig A
AN oA
i) /_\ ) /\
77N 7N
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OBJECTIVE ANSWERS

Yo} l' kM
A ¥

IES-1. Ans. (a)Taking moment about A . .
VB><2=(2><1)+(6><3) ‘Q& ¥ ;
= 2V, =2+18 : 2 HTI“-J-m ' ;
= VB = 10 kN EI :r ,: :.
VA+VB=2+6=8kN : I. ;
V, =8-10=-2kN
.. Maximum Bending Moment = 6 N

kN-m at the right support

IES-2. Ans. (d)

P2

P2

=

They use opposite sign conversions but for correct sign remember S.F & B.M of cantilever is
(-) 1ve.

IES-3. Ans. (c¢)

|

IAS-1. Ans. (¢) R, =R, =P +W?
: N wl | I I ] 2
Bending moment at mid point (M) = ——x—+ R, x——P| x+—- |=0givesx=——
2 4 2 2 8P

TIAS-2. Ans. (d)

(1) By similarity in the B.M diagram a must be b/2
2

(i) By formula M= %{% - az} =0gives a = b/2

IAS-3. Ans. (a)
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Previous Conventional Questions with Answers

Conventional Question IES-2006
Question: What are statically determinate and in determinate beams? Illustrate each case

through examples.
Beams for which reaction forces and internal forces can be found out from static

Answer:
equilibrium equations alone are called statically determinate beam.
Example:
P
N
R.
R.
Y X, =0>"Y,=0and Y M =0 is sufficient
to calculate R, & R,
Beams for which reaction forces and internal forces cannot be found out from static
equilibrium equations alone are called statically indeterminate beam. This type of beam
requires deformation equation in addition to static equilibrium equations to solve for
unknown forces.
Example:
T P
A Re R. Ry
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9.l Torsion

Theory at a Glance (for IES, GATE, PSU)

e In machinery, the general term “shaft” refers to a member, usually of circular cross-
section, which supports gears, sprockets, wheels, rotors, etc., and which is subjected to
torsion and to transverse or axial loads acting singly or in combination.

e An “axle” is a rotating/non-rotating member that supports wheels, pulleys,... and
carries no torque.

e A “spindle” is a short shaft. Terms such as lineshaft, headshaft, stub shaft, transmission

shaft, countershaft, and flexible shaft are names associated with special usage.

Torsion of circular shafts

1. Equation for shafts subjected to torsion "T"

_ 1
)

Torsion Equation

T
Where J = Polar moment of inertia
7 = Shear stress induced due to torsion T.
G = Modulus of rigidity
60 = Angular deflection of shaft
R, L = Shaft radius & length respectively

Assumptions

e The bar is acted upon by a pure torque.

e The section under consideration is remote from the point of application of the load and from
a change in diameter.

e Adjacent cross sections originally plane and parallel remain plane and parallel after
twisting, and any radial line remains straight.

o The material obeys Hooke’s law
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e Cross-sections rotate as if rigid, i.e. every diameter rotates through the same angle

Extzrnal Torque T Diagram 1

2. Polar moment of inertia

As stated above, the polar second moment of area, J is defined as

R
— 3
J = jo 27 r°dr
r4R 2zR* 7z D*
For a solid shaft J= 2xn|—]| = = (6)
4 | 4 32
For a hollow shaft of internal radius r:
J= [2xridr =2 ﬁR—Z(R“—r“)—l(D“—d“ 7
T b T A T2 32 ) @
r d,'
d., 1

Where D is the external and d is the internal diameter.

4
. Solid shaft *J" = 20
32
e Hollow shaft, "J" = =(d,* —d.*)
32
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3. The polar section modulus

Zp=dJ [ c, where c =r =D/2
e For a solid circular cross-section, Z, = D3/ 16

e For a hollow circular cross-section, Zp = (Do* - Dit) / (16Do)

e Then, 7., =T/%Z
e If design shears stress, 7, is known, required polar section modulus can be calculated from:

Zo=TI 1,

Torsional Stiffness

The tensional stiffness k is defined as the torque per radius twist(KT) = g = %
4. Power Transmission (P)
. 27NT
e P (inWatt) =
60
P (in hp) 27NT (1 hp = 75 Kgm/sec)
° in hp = p= gm/sec).
4500

[Where N = rpm; T = Torque in N-m.]
5. Safe diameter of Shaft (d)

e Stiffness consideration

T Go
s
e Shear Stress consideration
T 7
J R

We take higher value of diameter of both cases above for overall safety if other parameters are given.

6. In twisting

) 16T
e Solid shaft, 7., = —=
zd
16Td
o Hollow shaft, 7., = 4—04
ﬂ(do _di )

’TL
e Diameter of a shaft to have a maximum deflection "o " d=4.9 x 2 G_
a

[Where T in N-mm, Lh in mm, G in N/mm?2]

7. Comparison of solid and hollow shaft

e A Hollow shaft will transmit a greater torque than a solid shaft of the same weight & same
material because the average shear stress in the hollow shaft is smaller than the average

shear stress in the solid shaft
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If solid shaft dia=D

. (Tma)hOlloOW shaft 16 5
(7., )s0lid shaft 15 | Hollow shaft, d, =D, d, = >

e Strength comparison (same weight, material, length and 7, )

T, n®+1 Where. n= External diameter of hollow shaft
’ Internal diameter of hollow shaft

Ts : n\/nz -1

e  Weight comparison (same Torque, material, length and 7

Wh (nz _ 1) n23

[ONGC-2005]

max )

_ External diameter of hollow shaft

=-———=— Where, n - [WBPSC-2003]
W, (n“ _ 1) Internal diameter of hollow shaft
e Strain energy comparison (same weight, material, length and 7, )
U, n*+1 1.
U, n®  n?
8. Shaft in series A B .

T
0 =06, +06, ’ D d |(‘.

Torque (T) is same in all section
L e L, ]

Electrical analogy gives torque(T) = Current (I)

9. Shaft in parallel — e 1, ——»
6 =0, and T =T, +T, T]C IF..- ‘
TRy " T T T DR T T,
Electrical analogy gives torque(T) = Current (I) | T T ) -
i I

10. Combined Bending and Torsion

e In most practical transmission situations shafts which carry torque are also subjected to
bending, if only by virtue of the self-weight of the gears they carry. Many other practical
applications occur where bending and torsion arise simultaneously so that this type of
loading represents one of the major sources of complex stress situations.

e In the case of shafts, bending gives rise to tensile stress on one surface and compressive
stress on the opposite surface while torsion gives rise to pure shear throughout the shaft.

e For shafts subjected to the simultaneous application of a bending moment M and torque T
the principal stresses set up in the shaft can be shown to be equal to those produced by an

equivalent bending moment, of a certain value M. acting alone.
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e Figure

T
M
FA
e Maximum direct stress (0, ) & Shear stress ((7,,) in element A
32M P
Oy =—F5+—
d A
16T
T, =—7
Yo nd?
e Principal normal stresses (0, ,) & Maximum shearing stress (7, )
O O ?
Oy =2 - +T§y
2 2
O. O O, ?
1 2 X 2
Toox = =t/ = | +(z,)
RS PN o
e Maximum Principal Stress (0, ) & Maximum shear stress (7, )

o = %[M +\/M2+T2J
T

Toay = 1—63\/M 24T?
zd
e Location of Principal plane (&)
6 = 1tanl(lj
2 M

o Equivalent bending moment (M.) & Equivalent torsion (Te).

v :{M+\/M2+T2}

2

T,=vM 2472
e Important Note

o Uses of the formulas are limited to cases in which both M & T are known. Under any

other condition Mohr’s circle is used.
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Safe diameter of shaft (d) on the basis of an allowable working stress.

. . 32M,
o O, intension,d= 3
7o,

16T,
T,

o 7, inshear,d= 3

11. Shaft subjected to twisting moment only

Normal force (F,) & Tangential for (F,) on inclined plane AB

F, =—7x[BC sin 6 + AC cosd|
F, = 7x[BC cosé - AC sind]

t

e Normal stress (0,,) & Tangential stress (shear stress) (0, ) on inclined plane AB.

o, = —7Sin 260

o, = 7€0S26
e Maximum normal & shear stress on AB
6 (0, Jmax 7 max
0 0 +7
45° -7 0
90 0 -7
135 +7 0

® Important Note
e Principal stresses at a point on the surface of the shaft=+7,-7,0

ie 0., =% 7sin260
e Principal strains
T T
e=—0Q+p); e,=—=0A+u);, =0
1 E( ) 2 E L+ u) 3
e Volumetric strain,

€,=€ +¢,+&=0

e No change in volume for a shaft subjected to pure torque.

Rev.0
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12. Torsional Stresses in Non-Circular Cross-section Members

There are some applications in machinery for non-circular cross-section members and shafts
where a regular polygonal cross-section is useful in transmitting torque to a gear or pulley
that can have an axial change in position. Because no key or keyway is needed, the

possibility of a lost key is avoided.
Saint Venant (1855) showed that 7, in a rectangular bxc section bar occurs in the middle

of the longest side b and is of magnitude formula

T T [ 1.8]
Toax = > =T 3+
abe be b/c

Where b is the longer side and o factor that is function of the ratio b/c.

The angle of twist is given by

oo T
pbc’G

Where [ is a function of the ratio b/c

Shear stress distribution in different cross-section

rmuﬁ T o |.—

;-::, \;:“n'
>
L/ -y

bt

Rectangular c/s Elliptical c/s Triangular c/s

13. Torsion of thin walled tube

For a thin walled tube
T
Shear stress, 7 = ——
2A
7sL

2A.G

[Where S = length of mean centre line, A= Area enclosed by mean centre line]

Angle of twist, ¢ =

Special Cases

o For circular c/s
J=2xr%; A =nr?; S=2zxr
[r = radius of mean Centre line and t = wall thickness]

T Tr T

271 ) 2At
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_TL 7L TL
PTG T AIG 221G
o For square c/s of length of each side ‘b’ and thickness ‘t
A =b?
S =4b

o For elliptical ¢/s ‘a’ and ‘b’ are the half axis lengths.

A, =rab
S wB(mb)—@}

b
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Torsion Equation

GATE-1. A solid circular shaft of 60 mm diameter transmits a torque of 1600 N.m. The
value of maximum shear stress developed is: [GATE-2004]
(a) 37.72 MPa (b) 47.72 MPa (c) 57.72 MPa (d) 67.72 MPa

GATE-2. Maximum shear stress developed on the surface of a solid circular shaft under
pure torsion is 240 MPa. If the shaft diameter is doubled then the maximum
shear stress developed corresponding to the same torque will be: [GATE-2003]
(a) 120 MPa (b) 60 MPa (c) 30 MPa (d) 15 MPa

GATE-2a. A long shaft of diameter d is subjected to twisting moment T at its ends. The
maximum normal stress acting at its cross-section is equal to[CE: GATE-2006]
16T 32T 64T
(a) zero ®) 7 (o) 7 (d) 7
GATE-2b. A solid circular beam with radius of 0.25 m and length of 2 m is subjected to a
twisting moment of 20 kNm about the z-axis at the free end, which is the only
load acting as shown in the figure. The shear stress component txy at point ‘M’
in the cross-section of the beam at a distance of 1 m from the fixed end is

X ,Point M
20 kNm ad

M
®

WA

2m

Cross Section

-
W

(a) 0.0 MPa (b) 0.51 MPa (c) 0.815 MPa (d) 2.0 MPa [CE: GATE-2018]

GATE-2c.A shaft with a circular cross-section is subjected to pure twisting moment. The ratio of
the maximum shear stress to the largest principal stress is
(@ 2.0 (b) 1.0 () 0.5 (d)0 [GATE-2016]

GATE-3. A steel shaft 'A' of diameter 'd' and length '1' is subjected to a torque ‘T’ Another
shaft 'B' made of aluminium of the same diameter 'd' and length 0.5/ is also
subjected to the same torque '"T'. The shear modulus of steel is 2.5 times the
shear modulus of aluminium. The shear stress in the steel shaft is 100 MPa. The
shear stress in the aluminium shaft, in MPa, is: [GATE-2000]
(a) 40 (b) 50 (c) 100 (d) 250

GATE-4. For a circular shaft of diameter d subjected to torque T, the maximum value of

the shear stress is: [GATE-2006]
64T 32T 16T 8T

a) — b) — C) — d —

()nd“ ();zd3 ();zd3 ();rd3
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GATE-4a.

GATE-4b.

GATE-4c.

GATE-4d.

Teageo3R6 S K Mondal’s
Two solid circular shafts of radii R, and R, are subjected to same torque. The

R
maximum shear stressesdeveloped in the two shafts aret, and t,.If R—l =2,then
2

1S cvenennens [GATE-2014]

A torque T is applied
at the free end of a
stepped rod of

circular Cross-
sections as shown in
the figure. The shear

modulus of the
material of the rod is
G. The expression for

d to produce an [GATE-2011]
angular twist € at
the free end is

32TL% 18TLi 16TL% 2TLi
(a)[ 760G j b) ( 760G ] (C)[ 760G j (d)[ ﬂ@Gj

<

A rigid horizontal rod of length 2L is fixed to a circular cylinder of radius R as
shown in the figure.Vertical forces of magnitude P are applied at the two ends
as shown in the figure. The shearmodulus for the cylinder is G and the Young’s
modulus is E.

a\

The vertical deflection at point A is
PL® PL® 2PL® 4PL3
a b c d
( )7zR4G ( );zR“E ()7Z'R4E ( )7Z'R4G

A hollow circular shaft of inner radius 10 mm outer radius 20 mm and length 1
m is to be used as a torsional spring. If the shear modulus of the material of the
shaft is 150 GPa, the torsional stiffness of the shaft (in KN-m/rad)
is (correct to two decimal places). [GATE-2018]
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Power Transmitted by Shaft

GATE-5. A motor driving a solid circular steel shaft transmits 40 KW of power at 500
rpm. If the diameter of the shaft is 40 mm, the maximum shear stress in the
shaft is MPa. [GATE-2017]

GATE-5a. The diameter of shaft A is twice the diameter of shaft B and both are made of
the same material. Assuming both the shafts to rotate at the same speed, the
maximum power transmitted by B is: [IES-2001; GATE-1994]
(a) The same as that of A (b) Half of A (c) 1/8th of A (d) 1/4th of A

GATE-5b. A hollow circular shaft has an outer diameter of 100 mm and a wall thickness
of 25 mm. The allowable shear stress in the shaft is 125 MPa. The maximum
torque the shaft can transmit is [CE: GATE-2009]

(a) 46 kN-m (b) 24.5 kN-m (¢) 23 kN-m (d) 11.5 kN-m

GATE-5c. A hollow shaft of 1 m length is designed to transmit a power of 30 KW at 700
rpm. The maximum permissible angle of twist in the shaft is 1° . The inner
diameter of the shaft is 0.7 times the outer diameter. The modulus of rigidity is
80 GPa. The outside diameter (in mm) of the shaft is [GATE-2015]

GATE-5d. A hollow shaft do = 2di (where do and di are the outer and inner diameters
respectively) needs to transmit 20 KW power at 3000 RPM. If the maximum
permissible shear stress is 30 MPa, do is [GATE-2015]

(a) 11.29 mm (b) 22.58 mm (c) 33.87 mm (d) 45.16 mm

Combined Bending and Torsion

GATE-6. A solid shaft can resist a bending moment of 3.0 kNm and a twisting moment of
4.0 kNm together, then the maximum torque that can be applied is: [GATE-1996]
(a) 7.0 kNm (b) 3.5 kNm (c)4.5 kNm (d) 5.0 kNm

GATE-6i. A machine element XY, fixed at end X, is subjected to an axial load P, transverse load F,
and a twisting moment T at its free end Y. The most critical point from the strength point of
view is [GATE-2016]

F

( P

X Y

LIl
4

(a) a point on the circumference at location Y
(b) a point at the centre at location Y
(c) a point on the circumference at location X
(d) a point at the centre at location X

Comparison of Solid and Hollow Shafts

GATE-7. The outside diameter of a hollow shaft is twice its inside diameter. The ratio of
its torque carrying capacity to that of a solid shaft of the same material and the
same outside diameter is: [GATE-1993; IES-2001]

@ 2 ® > ©= @ =
“ 16 4 “2 16
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GATE-7(@) The maximum and minimum shear stresses in a hollow circular shaft of outer
diameter 20 mm and thickness 2 mm, subjected to a torque of 92.7 N-m will be
(a) 59 MPa and 47.2 MPa (b) 100 MPa and 80 MPa [CE: GATE-2007]
(c) 118 MPa and 160 MPa (d) 200 MPa and 160 Mpa

GATE-7(@Gi)The maximum shear stress in a solid shaft of circular cross-section having
diameter d subjected to a torque T is 1. If the torque is increased by four times
and the diameter of the shaft is increased by two times, the maximum shear
stress in the shaft will be [CE: GATE-2008]

(@) 2t QOF: (c)% ) i

Shafts in Series

GATE-8. A torque of 10 Nm is transmitted through a stepped shaft as shown in figure.
The torsional stiffness of individual sections of lengths MN, NO and OP are 20
Nm/rad, 30 Nm/rad and 60 Nm/rad respectively. The angular deflection between
the ends M and P of the shaft is: [GATE-2004]

o |

N
M T

Tﬁgm O

(a) 0.5 rad (b) 1.0 rad (c) 5.0 rad (d) 10.0 rad

GATE-8(i) Consider a stepped shaft subjected to a twisting moment applied at B as shown
in the figure. Assume shear modulus, G = 77 GPa. The angle of twist at C (in
degrees) is [GATE-2015]

|

;/, 10Nm All dimensions
‘4 ' 4, 11 mm
/R
_._./_E_ﬁﬂ-_ . I % 1 It R
; ¥ B 4 C
1A 500 J 500
Shafts in Parallel
GATE-9. The two shafts AB and BC, of equal coupling 94
length and diameters d and 2d, are d

made of the same material. They are \% y 5 T i .
joined at B through a shaft coupling, % ?.I | . h\

while the ends A and C are built-in L R
(cantilevered). A twisting moment T is e i 4
applied to the coupling. If Ta and Tc A

represent the twisting moments at the

ends A and C, respectively, then [GATE-2005]
(@) Tc=Ta (b) Tc =8 Ta (c) Tc =16 Ta (d) TA=16 Tc

GATE-9a. A bar of circular cross section is clamped at ends P and Q as shown in the
figure. A torsional moment T= 150 Nm is applied at a distance of 100 mm from
end P. The torsional reactions (Tp, Tq) in Nm at the ends P and Q respectively
are [GATE-2018]
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= T Q

) 1A

l«— 100 —»f«—— 200 ———>]
(All dimensions are in mm)

(a) (50, 100) (b) (75, 75) (c) (100, 50) (d) (120, 30)

GATE-10. A circular shaft shown in the figure is subjected to torsion T at two points A
and B. The torsional rigidity of portions CA and BD is GJ, and that of portion

AB is GJ,. The rotations of shaft at points A and B are 0, and 6,. The rotation

0, is [CE: GATE-2005]
C A B D
O 3
|
4 T \b T &
l¢— L—¢— L—>j¢—L—>]
TL TL
e b
@ G a6, ® Gy
TL TL
d ——
© &, @ &5 —ay,

Previous 25-Years IES Questions

Torsion Equation

IES-1. Consider the following statements: [TES-2008]
Maximum shear stress induced in a power transmitting shaft is:
1. Directly proportional to torque being transmitted.
2. Inversely proportional to the cube of its diameter.
3. Directly proportional to its polar moment of inertia.
Which of the statements given above are correct?
(a)1,2and 3 (b) 1 and 3 only (c) 2 and 3 only (d) 1 and 2 only

IES-2. A solid shaft transmits a torque T. The allowable shearing stress is 7. What is
the diameter of the shaft? [TES-2008]

@y OREl CrEt @i

T T

IES-2(i). If a solid circular shaft of steel 2 cm in diameter is subjected to a permissible
shear stress 10 kN/cm2, then the value of the twisting moment (T: ) will be
(a) 10nr kN-cm  (b) 20n kN-cm (c) 15n kN-cm (d) 57 kN-cm[IES-2012]

IES-3. Maximum shear stress developed on the surface of a solid circular shaft under
pure torsion is 240 MPa. If the shaft diameter is doubled, then what is the
maximum shear stress developed corresponding to the same torque? [IES-2009]
(a) 120 MPa (b) 60 MPa (c) 30 MPa (d) 15 MPa

IES-4. The diameter of a shaft is increased from 30 mm to 60 mm, all other conditions

remaining unchanged. How many times is its torque carrying capacity
increased? [TES-1995; 2004]
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(a) 2 times (b) 4 times (c) 8 times (d) 16 times
IES-4(i). Two shafts A and B are of same material and A is twice the diameter of B. The
torque that can be transmitted by A is [TES-2015,2016]
(a) 2 times that of B (b) 8 times that of B
(c) 4 times that of B (d) 6 times that of B
IES-5. A circular shaft subjected to twisting moment results in maximum shear stress
of 60 MPa. Then the maximum compressive stress in the material is: [IES-2003]
(a) 30 MPa (b) 60 MPa (c) 90 MPa (d) 120 MPa

IES-5(). The boring bar of a boring machine is 25 mm in diameter. During operation,
the bar gets twisted though 0.01 radians and is subjected to a shear stress of 42
N/mm?. The length of the bar is (Taking G = 0.84 x 105 N/mm?2) [TES-2012]
(a) 500 mm (b) 250 mm (c) 625 mm (d) 375 mm

IES-5(ii). The magnitude of stress induced in a shaft due to applied torque varies
(a) From maximum at the centre to zero at the circumference
(b) From zero at the centre to maximum at the circumference [TES-2012]
(¢) From maximum at the centre to minimum but not zero at the circumference
(d) From minimum but not zero at the centre, to maximum at the circumference

IES-6. Angle of twist of a shaft of diameter ‘d’ is inversely proportional to [IES-2000]
(@d (b)d? (c)d3 (d)d+

IES-6a A solid steel shaft of diameter d and length [ is subjected to twisting
moment T. Anothershaft B of brass having same diameter d, but length /2 is
also subjected to the samemoment. If shear modulus of steel is two times
that of brass, the ratio of the angular twistof steel to that of brass shaft is:

(a) 1:2 (b) 1:1 (c) 2:1 (d) 4:1 [TES-2011]
IES-7. A solid circular shaft is subjected to pure torsion. The ratio of maximum shear
to maximum normal stress at any point would be: [TES-1999]
(@1:1 (b)1: 2 () 2:1 (d) 2: 3
IES-8. Assertion (A): In a composite shaft having two concentric shafts of different
materials, the torque shared by each shaft is directly proportional to its polar
moment of inertia. [TES-1999]

Reason (R): In a composite shaft having concentric shafts of different
materials, the angle of twist for each shaft depends upon its polar moment of
inertia.

(a) Both A and R areindividually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Ais false but R is true

IES-9. A shaft is subjected to torsion as shown. [TES-2002]

Which of the following figures represents the shear stress on the element
LMNOPQRS?
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' . ib o
o Yot /]h ]‘. """"" N

\
:

. ;
L ' R DA, S N B

L M

length '1' fixed at both ends 'A' and
'B' is subjected to a twisting moment
'"T” at 'C', at a distance of 1/4 from A a E
(see figure). The torsional stresses in 4

the parts AC and CB will be: I-'I J,r‘...l -I

IES-10. A round shaft of diameter 'd' and g
A

L L9
RN
s

(a) Equal

(b) In the ratio 1:3 l‘ 1

(¢) Intheratio 3:1

(d) Indeterminate [TES-1997]

IES-10(i). A power transmission solid shaft of diameter d length [ and rigidity modulus G
is subjected to a pure torque. The maximum allowable shear stress is 7t . The

maximum strain energy/unit volume in the shaft is given by: [TES-2013]
(a) Trznax (b) Trznax (C) 2lenax (d) Trznax
4G 2G 3G 3G

Hollow Circular Shafts

IES-11. One-half length of 50 mm diameter steel rod is solid while the remaining half is
hollow having a bore of 25 mm. The rod is subjected to equal and opposite
torque at its ends. If the maximum shear stress in solid portion is t or, the

maximum shear stress in the hollow portion is: [TES-2003]
()15T (b) ()4T (d) 16T
a) — T c)— —
16 3 15
IES-11a. Two shafts, one solid and the other hollow, made of the same material, will
have the same strength and stiffness, if both are of the same [TES-2017]

(a) length as well as weight

(b) length as well as polar modulus

(c) weight as well as polar modulus

(d) length, weight as well as polar modulus

Power Transmitted by Shaft

IES-12. In power transmission shafts, if the polar moment of inertia of a shaft is
doubled, then what is the torque required to produce the same angle of twist?
[IES-2006]
(a) 1/4 of the original value (b) 1/2 of the original value
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IES-13.

IES-14.

IES-15.

IES-15a.

IES-15b.

IES-15c.

IES-16.

IES-17.

Teagen3B2 S K Mondal’s
(c) Same as the original value (d) Double the original value

While transmitting the same power by a shaft, if its speed is doubled, what
should be its new diameter if the maximum shear stress induced in the shaft

remains same? [TES-2006]
1 1
(a) — of the original diameter (b) —= of the original diameter
2 NA
(¢ \/5 of the original diameter (d) 7 of the original diameter
(2)
For a power transmission shaft transmitting power P at N rpm, its diameter is
proportional to: [TES-2005]

" p o p\V2 o p 2 " p
a)| — — c)| — —

N N N N
A shaft can safely transmit 90 kW while rotating at a given speed. If this shaft
is replaced by a shaft of diameter double of the previous one and rotated at
half the speed of the previous, the power that can be transmitted by the new

shaft is: [TES-2002]
(a) 90 kW (b) 180 kW (c) 360 kW (d) 720 kW

A solid shaft is designed to transmit 100 kW while rotating at N rpm. If the
diameterof the shaft is doubled and is allowed to operate at 2 N rpm, the power
that can betransmitted by the latter shaft is [TES-2016]

(a) 200 kW (b) 400 kW (c) 800 kW (d) 1600 kW

The diameter of a shaft to transmit 25 kW at 1500 rpm, given that the ultimate
strength is 150 MPa and the factor of safety is 3, will nearly be [TES-2016]
(a) 12 mm (b) 16 mm (c) 20 mm (d) 26 mm

A solid shaft is to transmit 20 kW at 200 rpm. The ultimate shear stress for the
shaft material is 360 MPa and the factor of safety is 8. The diameter of the solid
shaft shall be [TES-2017]
(a) 42 mm (b) 45 mm (c) 48 mm (d) 51 mm

The diameter of shaft A is twice the diameter or shaft B and both are made of
the same material. Assuming both the shafts to rotate at the same speed, the
maximum power transmitted by B is: [TES-2001; GATE-1994]
(a) The same as that of A (b) Half of A (c) 1/8th of A (d) 1/4th of A

When a shaft transmits power through gears, the shaft experiences [IES-1997]
(a) Torsional stresses alone

(b) Bending stresses alone

(¢) Constant bending and varying torsional stresses

(d) Varying bending and constant torsional stresses

Combined Bending and Torsion

IES-18.

The equivalent bending moment under combined action of bending moment M
and torque T is: [TES-1996; 2008; IAS-1996]

(2)|M?+T? (b)%[M +\/M2+T2J
(c)%[M +T] (d)%[\/M2+T2}
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IES-19. A solid circular shaft is subjected to a bending moment M and twistingmoment
T. What is the equivalent twisting moment T. which will produce the same
maximum shear stress as the above combination? [TES-1992; 2007]

(a) M2+ T2 (b)yM+T © M+T> dM-T

IES-20. A shaft is subjected to fluctuating loads for which the normal torque (T) and
bending moment (M) are 1000 N-m and 500 N-m respectively. If the combined
shock and fatigue factor for bending is 1.5 and combined shock and fatigue
factor for torsion is 2, then the equivalent twisting moment for the shaft is:

[TES-1994]
(a) 2000N-m (b) 2050N-m (c) 2100N-m (d) 2136 N-m

IES-21. A member is subjected to the combined action of bending moment 400 Nm and
torque 300 Nm. What respectively are the equivalent bending moment and

equivalent torque? [TES-1994; 2004]
(a) 450 Nm and 500 Nm (b) 900 Nm and 350 Nm
(c) 900 Nm and 500 Nm (d) 400 Nm and 500 Nm

IES-21a. A solid shaft is subjected to bending moment of 3.46 kN-m and a
torsional moment of 11.5 kN-m. For this case, the equivalent bending

moment and twisting moment are [TES-2018]
(a) 7.73 kN-m and 12.0 kN-m (b) 14.96 kN-m and 12.0 kN-m
(¢) 7.73 kN-m and 8.04 kN-m (d) 14.96 kN-m and 8.04 kN-m

IES-21(i). A shaft of diameter 8 cm is subjected to bending moment of 3000Nm and
twisting moment of 4000 Nm.The maximum normal stress induced in the shaft

250 500 157.5 315
(@) — (b) — (¢) =—— (d) —=[ES-2014]

IES-22. A shaft was initially subjected to bending moment and then was subjected to
torsion. If the magnitude of bending moment is found to be the same as that of
the torque, then the ratio of maximum bending stress to shear stress would be:

[TES-1993]
(a) 0.25 (b) 0.50 () 2.0 (d) 4.0

IES-23. A shaft is subjected to simultaneous action of a torque T, bending moment M
and an axial thrust F. Which one of the following statements is correct for this
situation? [TES-2004]
(@) One extreme end of the vertical diametral fibre is subjected to maximum

compressive stress only
(b) The opposite extreme end of the vertical diametral fibre is subjected to
tensile/compressive stress only
(¢) Every point on the surface of the shaft is subjected to maximum shear stress only
(d) Axial longitudinal fibre of the shaft is subjected to compressive stress only
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IES-24.

IES-25.

IES-26.

IES-27.

Teageo3B4 S K Mondal’s

For  obtaining  the Wi. of Shaft: W per Unit Length Gear
maximum shear stress /
induced in the shaft [ [ (Torque Acting : T)
shown in the given f L -

A
figure, the torque 7
should be equal to 7 T -re
@T (b)WI+T A \*-...,_

2 Wt. of Gear: W

© _(WI )t (W%ﬂ; ! .

1

I w2’ 2
(d) {WHT} +T?

[TES-1999]

Bending moment M and torque is applied on a solid circular shaft. If the
maximum bending stress equals to maximum shear stress developed, them M is
equal to: [TES-1992]

(@) % (b) T (c) 2T (d) 4T

A circular shaft is subjected to the combined action of bending, twisting and
direct axial loading. The maximum bending stress o, maximum shearing force

30 and a uniform axial stress o(compressive) are produced. The maximum

compressive normal stress produced in the shaft will be: [TES-1998]
()30 b)20 (o (d) Zero

Which one of the following statements is correct? Shafts used in heavy duty
speed reducers are generally subjected to: [TES-2004]
(a) Bending stress only

(b)  Shearing stress only

(¢) Combined bending and shearing stresses

(d) Bending, shearing and axial thrust simultaneously

Comparison of Solid and Hollow Shafts

IES-28.

IES-29.

TES-30.

The ratio of torque carrying capacity of a solid shaft to that of a hollow shaft is
given by: [TES-2008]

(a)(1-K*) (b)(1-K* )’1 (c)K* (d)1/K*

Where K :% ; Di = Inside diameter of hollow shaft and D, = Outside diameter of hollow

o}
shaft. Shaft material is the same.

A hollow shaft of outer dia 40 mm and inner dia of 20 mm is to be replaced by a
solid shaft to transmit the same torque at the same maximum stress. What
should be the diameter of the solid shaft? [TES 2007]
(a) 30 mm (b) 35 mm (c) 10x (60)3 mm (d) 10x(20)V3 mm

The diameter of a solid shaft is D. The inside and outside diameters of a hollow

D 2D
shaft of same material and length are ﬁ and E respectively. What is the

ratio of the weight of the hollow shaft to that of the solid shaft? [IES 2007]
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IES-31.

IES-32.

IES-33.

IES-34.

IES-35.

IES-36.

IES-37.

TES-38.

Pager3ssan S K Mondal’s
(@) 1:1 () 1:4/3 (© 1:2 d) 1:3
What is the maximum torque transmitted by a hollow shaft of external radius R
and internal radius r? [TES-2006]
T (53 .3 T (54 4 T (54 4 7z (R*=r*
—(R*=r") f by —(R"—r")f —(R*=r") f d) — f
@ 6 (R=r)f ® )i Ol ) f, <>32[ - j

( f, = maximum shear stress in the shaft material)

A hollow shaft of the same cross-sectional area and material as that of a solid

shaft transmits: [TES-2005]
(a) Same torque (b) Lesser torque
(c) More torque (d) Cannot be predicted without more data

The outside diameter of a hollow shaft is twice its inside diameter. The ratio of
its torque carrying capacity to that of a solid shaft of the same material and the

same outside diameter is: [GATE-1993; TIES-2001]
(a) L (b) 3 (C)E (d) 1
16 4 2 16

Two hollow shafts of the same material have the same length and outside
diameter. Shaft 1 has internal diameter equal to one-third of the outer
diameter and shaft 2 has internal diameter equal to half of the outer diameter.
If both the shafts are subjected to the same torque, the ratio of their twists

6,1 6, will be equal to: [TES-1998]
(a) 16/81 (b) 8/27 (c) 19/27 (d) 243/256

Maximum shear stress in a solid shaft of diameter D and length L twisted
through an angle 0 is t. A hollow shaft of same material and length having
outside and inside diameters of D and D/2 respectively is also twisted through
the same angle of twist 0. The value of maximum shear stress in the hollow

shaft will be: [TES-1994; 1997]
16 8 4
= b) 2 2 d

(2) 22 (v) 22 (©) 5t (@)

A solid shaft of diameter 'D' carries a twisting moment that develops maximum
shear stress t. If the shaft is replaced by a hollow one of outside diameter 'D’
and inside diameter D/2, then the maximum shear stress will be: [TES-1994]
(a) 1.067 t (b) 1.143 © (c) 1.333 1 d) 2

A solid shaft of diameter 100 mm, length 1000 mm is subjected to a twisting
moment "I The maximum shear stress developed in the shaft is 60 N/mmz2. A
hole of 50 mm diameter is now drilled throughout the length of the shaft. To
develop a maximum shear stress of 60 N/mm? in the hollow shaft, the torque '"T’
must be reduced by: [TES-1998, 2012]
(a) T/4 (b) T/8 (c) T/12 (d)T/16

Assertion (A): A hollow shaft will transmit a greater torque than a solid shaft of
the same weight and same material. [TES-1994]
Reason (R): The average shear stress in the hollow shaft is smaller than the
average shear stress in the solid shaft.

(a) Both A and R areindividually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Aisfalse but R is true
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IES-39. A hollow shaft is subjected to torsion. The shear stress variation in the shaft

along the radius is given by: [TES-1996]
Hollow shaft Farabolic

R
(d)

Shafts in Series

IES-40. What is the total angle of
twist of the stepped
shaft subject to torque T
shown in figure given ‘

above? k\..
16T,
(a)

38T,
b | \k\ .
zGd* ®) zGd* 27 ﬂ r
64T, 66T, T~

zGd* zGd* [TES-2005]

(©

(d)

Shafts in Parallel

IES-41. For the two shafts connected in parallel, find which statement is true?
(a) Torque in each shaft is the same [TES-1992, 2011]
(b)  Shear stress in each shaft is the same
(¢) Angle of twist of each shaft is the same

(d) Torsional stiffness of each shaft is the same

IES-42. A circular section rod ABC is fixed at ends A and C. It is subjected to torque T
at B.AB = BC =L and the polar moment of inertia of portions AB and BC are 2 J
and J respectively. If G is the modulus of rigidity, what is the angle of twist at

point B? [IES-2005]
TL TL TL 2TL

(a) (b) —— ©— (d) —
3GJ 2GJ GJ GJ

IES-43. A solid circular rod AB of diameter D and length L is fixed at both ends. A
torque T is applied at a section X such that AX = /4 and BX = 3L/4. What is the

maximum shear stress developed in the rod? [TES-2004]
@ 16T ) 12T © 8T @ a7
a c

zD? zD? zD? zD?
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IES-44.
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Two shafts are shown in fr o -] o
the above figure. These
two shafts will be
torsionally equivalent to
each other if their —F
(a) Polar moment of inertias ~ = $d- f”' - 33' B S St - ----
are the same ! '
(b) Total angle of twists are o Ly e lyspe— 1, —
the same
(¢) Lengths are the same & J)
(d) Strain energies are the © °
same [TES-1998]

Previous 25-Years IAS Questions

Torsion Equation

TAS-1.

TAS-2.

IAS-3.

Assertion (A): In theory of torsion, shearing strains increase radically away
from the longitudinal axis of the bar. [TAS-2001]
Reason (R): Plane transverse sections before loading remain plane after the
torque is applied.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut Ris false

(d) Aisfalse but R is true

The shear stress at a point in a shaft subjected to a torque is: [TAS-1995]

(a) Directly proportional to the polar moment of inertia and to the distance of the point
form the axis

(b) Directly proportional to the applied torque and inversely proportional to the polar
moment of inertia.

(c) Directly proportional to the applied torque and polar moment of inertia

(d) inversely proportional to the applied torque and the polar moment of inertia

If two shafts of the same length, one of which is hollow, transmit equal torque

and have equal maximum stress, then they should have equal. [TAS-1994]
(a) Polar moment of inertia (b) Polar modulus of section
(¢) Polar moment of inertia (d) Angle of twist

Hollow Circular Shafts

TAS-4.

Torsio
TAS-5.

A hollow circular shaft having outside diameter 'D' and inside diameter ’d’
subjected to a constant twisting moment 'T' along its length. If the maximum

shear stress produced in the shaft is S, then the twisting moment '"T" is given
by: [IAS-1999]
D*-d* 0’ o D*—d* 0o D*—d* @%s D*-d*

D 16 ° 64 ° D

T
(a) > O ST
8 D 32 D

nal Rigidity

Match List-I with List-II and select the correct answer using the codes given

below the lists: [TAS-1996]

List-I (Mechanical Properties) List-II ( Characteristics)

A. Torsional rigidity 1. Product of young's modulus and
secondmoment of area about the plane
of bending

For-2019 (IES, GATE & PSUs) Page 337 of 480 Rev.0



Chapter-9 Teagen3B8 S K Mondal’s

B. Modulus of resilience 2. Strain energy per unit volume
C. Bauschinger effect 3. Torque unit angle of twist
D. Flexural rigidity 4. Loss of mechanical energy due to local
yielding
Codes: A B C D A B C D
(@ 1 3 4 2 ® 3 2 4 1
() 2 4 1 3 (d) 3 1 4 2

TAS-6. Assertion (A):Angle of twist per unit length of a uniform diameter shaft
depends upon its torsional rigidity. [IAS-2004]
Reason (R):The shafts are subjected to torque only.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut R is false
(d) Aisfalse but R is true

Combined Bending and Torsion

TAS-7. A shaft is subjected to a bending moment M = 400 N.m alld torque T = 300 N.m
The equivalent bending moment is: [TAS-2002]
(a) 900 N.m (b) 700 N.m (c) 500 N.m (d) 450 N.m

Comparison of Solid and Hollow Shafts
TAS-8. A hollow shaft of length L is fixed at its both ends. It is subjected to torque T at

L
a distance of E from one end. What is the reaction torque at the other end of
the shaft? [TAS-2007]
(a) dl (b)T ()T (d)T
a) — — c)— —
3 2 3 4

IAS-9. A solid shaft of diameter d is replaced by a hollow shaft of the same material

2d
and length. The outside diameter of hollow shaft ﬁ while the inside diameter

d
is ﬁ . What is the ratio of the torsional stiffness of the hollow shaft to that of

the solid shaft? [IAS-2007]
(a) 2 (b) 3 ( )5 (d)2
a) — — c)—
3 5 3
IAS-10. Two steel shafts, one solid of diameter D and the other hollow of outside

diameter D and inside diameter D/2, are twisted to the same angle of twist per
unit length. The ratio of maximum shear stress in solid shaft to that in the

hollow shaft is: [TAS-1998]
()4T (b)ST ()16T dz
a) — - c)—

9 7 15

Shafts in Series

IAS-11. Two shafts having the same length and material are joined in series. If the
ratio of the diameter of the first shaft to that of the second shaft is 2, then the
ratio of the angle of twist of the first shaft to that of the second shaft is:

[TAS-1995; 2003]
(a) 16 (b) 8 (c) 4 (d) 2
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A circular shaft fixed at A has diameter D for half of its length and diameter
D/2 over the other half. What is the rotation of C relative of B if the rotation of
B relative to A is 0.1 radian? [IAS-1994]
(2)0.4 radian (b) 0.8 radian (c) 1.6 radian (d) 3.2 radian

A B

T
’ D D2 ('

L2 —sle—— 12—

(T, L and C remaining same in both cases)

Shafts in Parallel

TAS-13.

TAS-14.

IAS-15.

TAS-16.

A stepped solid circular shaft shown in the given figure is built-in at its ends
and is subjected to a torque T, at the shoulder section. The ratio of reactive
torque T: and T: at the ends is (J1 and J2 are polar moments of inertia):

(a)JZXIZ (b) JZXIl — —l— la —
\]1><|1 Jlxl2 . . .
© 2l @ b C __Ti ________ F ) s
JZXIl JZXIZ Ji ’ }:
[IAS-2001]

Steel shaft and brass shaft of same length and diameter are connected by a
flange coupling. The assembly is rigidity held at its ends and is twisted by a
torque through the coupling. Modulus of rigidity of steel is twice that of brass.
If torque of the steel shaft is 500 Nm, then the value of the torque in brass shaft
will be: [IAS-2001]
(a) 250 Nm (b) 354 Nm (c) 500 Nm (d) 708 Nm

A steel shaft with bult-in ends is subjected to the action of a torque Mt applied
at an intermediate cross-section 'mn’' as shown in the given figure. [TAS-1997]

Mt C/S 'mn’

Assertion (A): The magnitude of the twisting moment to which the portion BC

M,a

a+b
Reason(R): For geometric compatibility, angle of twist at 'mn' is the same for
the portions AB and BC.
(a) Both A and R are individually true and R is the correct explanation of A
(b) Both A and R are individually true but R is NOTthe correct explanation of A
(¢) Aistruebut R is false
(d) Ais false but R is true

is subjected is

A steel shaft of outside diameter 100 mm is solid over one half of its length and
hollow over the other half. Inside diameter of hollow portion is 50 mm. The
shaft if held rigidly at two ends and a pulley is mounted at its midsection i.e., at
the junction of solid and hollow portions. The shaft is twisted by applying

For-2019 (IES, GATE & PSUs) Page 339 of 480 Rev.0



Teageodn0 S K Mondal’s
torque on the pulley. If the torque carried by the solid portion of the shaft is
16000kg-m, then the torque carried by the hollow portion of the shaft will be:

[IAS-1997]

(c) 14000 kg-m (d) 12000 kg-m

Chapter-9

(a) 16000 kg-m (b) 15000 kg-m

Rev.0
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OBJECTIVE ANSWERS

GATE-1. Ans. (a)r = 16;1—
zd
GATE-2. Ans. (¢)r = g 240 = g if diameterdoubled d' =2d, then 7' = 167 5= 240 =30MPa
zd zd 7[(2d)
GATE-2a. Ans. (a)
Maximum shear stress = %
Normal stress =0
GATE-2b. Ans. (a)
16T
Don’t get confused with F .
Vi

See below given diagram properly. Ty = Obutr, =7

Shear stress varies linearly along
each radial line of the cross section.
(a) (b)
GATE-2c. Ans. (b) It is a case of pure shear maximum normal stress and maximum shear stress are

same.

GATE-3. Ans. ()7 = 107

e as T & d both are same t is same

GATE-4. Ans. (c)

16T
GATE-4a.Ans. 7.9 to 8.1 Using FE it is 8.0
T
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GATE-4b. Ans.(b)Angular twist at the L L/2

free end < * 'I

0=0,+0,

L
TxL Txs

GxZ 2d)* GxZ (d)*
><32( ) ng()

AAANANNNNNNNNNY

N
a

gss

o

<>

o
j——

_ 2TL . 16TL 18TL
Grd* Grd' Gnd*

1
- d:(@j‘*
790G

GATE-4c. Ans. (d)
Torque(T) =P.2L

_TL (P2L)xL 4Pl
Gl R*/| 7GR’
(3><(7Z A)
Vertical upward displacement due to rotation of circular cylinder

3
=0OxL= 4GPII; 7 [Asrod is rigid nobending, no deflection due to bending]
T

%

GATE-4d. Ans. (35.343)

; 150x10° xi[o.o4“ ~0.02" ]
Tortional Stiffness = R = 32 1 =35343Nm/rad =35.343kNm/ rad
GATE-5. Ans. range(60 to 61) Power = Tw =T X % =40x10% =T x ? =T =763.94 Nm

16T

T=W=60.79MPa

27N 16T d®
and r=——orT=
60 zd 16

GATE-5a. Ans. (c) Power, P=Tx

3
szd « 27N orP o &
16 60

GATE-5b. Ans. (c¢)

—125x "~ % (100" - 50*) x —— x 10° = 23.00 kN —m
32 100

GATE-5c. Answer: 44.52

P=Tw or 30x1000=Tx2Z*790 _ 1 _ 409.256 Nm
T_Go
J L
409.256  80x10° 7
32

D =0.04452m = 44.52 mm
GATE-5d. Answer: (b)
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P=Tw or 20x10° =T x 2%X3000 1 _ 63 662Nm
¢ T _ 63662 _30x10°
roJ T, 4 gan  d 12

L dt - d 0
32( 0 )

d; =11.295 mm or d, =2d; =22.59mm
GATE-6. Ans. (d) Equivalent torque (T,)=vM? + T2 =32 + 42 = 5kNm

GATE-6i. Ans. (c)
T

GATE-T7. Ans. (a) 7=

% r orT=T—Jifrisconst.TaJ
L R R

205

T
32
GATE-7(@) Ans. (b)
= T
R J
Here, J="(20" ~16*)mm?*;
32
R, = 20 10 mm;
2
T =92.7 N-m;
R, = 16 =8 mm
2
T 3
T = ?1 o 92.7x10°x10 _ g9 96 MPa ~100 MPa
(“) x (20* —16%)
32
3
and Ty = T?Z _ 9270 X8 79.96 MPa ~ 80 MPa
(“j x (20* —16%)
32
GATE-7(ii)Ans. (¢)
We know that
T
R J
L a R T
TZ RZ 2 1
4
= Tl Rl 1 2R1
7, 2R, 4T R,
= L_2 X l x16
T, 4
Y
= T, 2
= T, ==
2
TL

GATE-8. Ans. (b) We know that 9 = X or T =k.0 [let k = tortional stiffness]

S0=Gut+ O tOp =+

GATE-8(i) Ans. 0.236

_TMN TN_O+&:E+E+E:1.OI'8C1
kop 20 30 60

ke Kk

NO

Angle of twist at (c) = Angle of twist at (B)
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9_11_ 10x0.5%x 32
GJ 77x10° x 7x0.02*

=0.004134rad = 0.236rad

T.L T.L T T, T,
GATE-9.Ans.(¢)9,. =6 or ATA __CC o A _ c orT. =-C
A8 ~ YBC Gy, Godo Ldzx 72'(2d)4 A~ 16
32 32
GATE-9a. Ans. (c)
‘T
SRR JNT
4
p L R 2L
To+Ty =T and O =0
T.L TQ2L
—_— = r T,=(T-T,)x2
S p=(T-Tp)

2T

Tp=—=100Nm and TQ:I:SONm
3 3

GATE-10. Ans. (b)

The symmetry of the shaft shows that there is no torsion on section AB.

TL
GJ,

Rotation, 6, =

IES-10(i). Ans. (a)

IES

Txr 16T

IES-1. Ans. (d) 7 =
ns. (d)z ] por

IES-2. Ans. (a)
IES-2(i). Ans. (d)

T=240MPa=r

IES-3. Ans. (c)Maximum shear stress = F

T
Maximum shear stress developed when diameter is doubled

_ 167 - 1(16Tj T 240 _ 30MPa
n(Zd) 8

nd® 8 8

16T rd®

IES-4. Ans. (¢)r=— or T= for same material r = const.
zd 16

3
“Tad or2_|% :[@3:8
T |d, 30

IES-4(i).Ans. (b) 7 = 1

IES-5. Ans. (b)
IES-5(i). Ans. (b)
IES-5(ii). Ans. (b)
IES-6. Ans. (d)
IES-6a Ans. (b)
IES-7. Ans. (a)
IES-8. Ans. (c)
IES-9. Ans. (d)

IES-10. Ans. (c¢)
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IES-11. Ans. (d)% o=
r

I, r 2
T ~4
s ﬁ D 1 1 16
Orfh:TX—_TX =7TX 2 =7TX Z =7 —
h 4 (D*-d*) . (d 25 15
32 D (50
IES-11a. Ans. (b)
IES-12. Ans. (d)
I = % =L or Q= E if Oisconst. T o J if Jis doubled then T is also doubled.
J L R G.J
IES-13. Ans. (d) Power (P) = torque(T)xangular speed(o)

itPisconstTa+ it~ =21 or T'=(T/2)
o T o 2

_16T _16(T/2) (d'j_ 1

P a(ay a) %

3

IES-14. Ans. (a) Power, P=Tx 27N and 7 = g orT= ord

60 zd 16

3 1/3
or P:md ><27rN or d3:4éz0 P or da P
16 60 7°J N
IES-15. Ans. (¢)
16T

IES-15a. Ans. (d)7 = 5 or T=7rzd*/16
JT

_22NT _ 27N zzd’
60 60 16

IES-15b.Ans. (d) 7 = 1671-3 or T=7xd*/16
V4

Power (P)=T.@

_2zNT _ 27N trd®
60 60 16
27x1500 (150/3)x10° x d®
60 16
3 25x10° x60x16 z£m3 _ 16
27 x1500x50  10° 10°
ord =20x3/2 answer is more than 20 mm. only option is 26 mm
IES-15¢c. Ans. ()

Power (P)=T.®

25x10° =

[7° =10]

x10° mm?® =16000 mm?

3
IES-16. Ans. (c)Power, P=Tx22N  and ¢ :@ or T =
60 zd 16
3
or Pzﬂx@ orP o &
16~ 60

IES-17. Ans. (d)
IES-18.Ans.(b)

IES-19. Ans. (¢)Te= \M?* + T?

IES-20. Ans. (d)T,, = \/(1.5>< 500)° +(2x1000)" = 2136 Nm
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_M+MP T2 400+ /400 + 3007
- . -

IES-21. Ans. (a) Equivalent Bending Moment(M, ) > = 450Nm
Equivalent torque (T, ) = VIM? + T2 = /400 +300? = 500Nm
IES-21a. Ans. (a)
Equivalent Bending Moment
M+VM2+T2| 3.46 + v3.46% + 11.52
Me = [ > = [ > ] = 7.7346 kNm

Equivalent Torque
Te = /M? + T2 =+/3.46% + 11.52 = 12.009 kNm

IES-21(i) Ans. (a)
M =3000Nm; T =4000Nm

_ 16 > > 16 > -1 250
0 =75 M+JMZ+T7 | = 2] 3000+ /30007 + 40007 | ===
IES-22. Ans. (¢)Use equivalent bending moment formula,

1st case: Equivalent bending moment (Me) = M

. . 0+4/0*+T? T
2nd case: Equivalent bending moment (Me) = # = E
IES-23. Ans. (d)
. wL?
IES-24. Ans. (d) Bending Moment, M = WI + T
IES-25. Ans. (a) o = °2 M ang =187
7d 7d

IES-26. Ans. (a)Maximum normal stress = bending stress ¢ + axial stress (0) = 2 0
We have to take maximum bending stress ¢ is (compressive)

2
. . Oy Oy 2
The maximum compressive normal stress = —=—, | —= | +7,,

2
2
—20 —20 2
=" \/(Tj +(\/§0') =-30
IES-27. Ans. (¢)
IES-28. Ans. (b) t should be same for both hollow and solid shaft

!
Ts _ T :>Lz 4Dg4 :>L=1—&
T p? L(D“—D-“) T, Dj -D; Ty D,
32 °° 32V °
Ts 4\
T (1-*)
IES-29. Ans. (c)Section modules will be same
T
— (40* -20°
G b, a2 ) ox
R, R, 40 32 %

2
or,d3 = (10)3x60 or d=103/60 mm

z(4D* D?
IRETEY e

=1

TES-30.Ans. (@) " =
W %DZ xLxpxg

For-2019 (IES, GATE & PSUs) Page 346 of 480 Rev.0



Chapter-9 Palger34a@n S K Mondal’s
T (o4 4
—(R* —r
IES-31. Ans. (b))~ = = or T=2xf - 2( )xfs = (R -r*) £,
J R R R 2R
IES-32. Ans. (c) Tu _ n+1 Where n=—-1
. . s nvn?-1 , H
IES-33.Ans.(a)I = Go =L orT= o if zisconst T o J
J R R
4
7Dt _(Dj
T_h ~ J_h ~ 32 2 ~ E
32
1 d ‘(O% )4 243
IES-34. Ans. (d)Qoo— .- & = 7=
J Q, g d, 256
1\ /3
IES-35. Ans. (d)} = % =% = ? if @isconst. 7 a R and outer diameter is same in both
the cases.
Note: Required torque will be different.
IES-36. Ans. (a)I = Go -L orr= TR if Tisconst.7 1
J L R J J
4
Hhod_ D104 06666
© 4 L. (D j 15
2
Tr 16T T'32(d/2 T" 15
IES-37. Ans. ()7, =—=—== ( )4 —_—=—
J xd d4—(d/2) T 16
. 1
.. Reduction=—
16
IES-38. Ans. (a)
IES-39. Ans. (¢)
IES-40. Ans. (d)0=0,+0, =2, T _ T rgq, 57 96T
ﬂ G><£><(2d)4 Gd Gd
32 32
IES-41. Ans. (¢)
IES-42. Ans. (a) Org = s
A T Tl Tool
: /B P ey o e
I Te+Tee=T or T,.=T/3
T L TL
or Q=Qp=——=—
5" 3'GJ 3GJ
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IES-43. Ans. (b) HAX = QXB &TA +TB =T
A, B T x%
a L/4 374 |/ or T,L/4 _ B™ 4
- GJ GJ
1 X I 3T

or T,=3T, or T, :T’

3
16T, 1077 qo1

‘[max = = =
7D3 7D} D3

IES-44. Ans. (b)

IAS

IAS-1. Ans. (b)
T
IAS-2. Ans. (b) — = —
J R
T J . . .
IAS-3.Ans.(b)j = E Here T & 7 are same, so E should be same i.e.polar modulus of section will be

same.

IAS-4. Ans. (b)I =—~=—givesT=—-= ~ o,
J R R 16 D

GO & - GSX%(D4—d4) . (D4—d4)
C b
2

IAS-5.Ans. (b)
IAS-6. Ans. (c¢)

IAS-7. Ans. (d) Me = =450Nm

M ++M2+T2  400++/400% +3007
2

2
IAS-8. Ans. (¢)

%j 2L/ ,

L
i K
T
a8 (&)

o TV 63 K, 32[\\38) {8)] 5

IAS-9. Ans. (c¢)Torsional stiffness =| — |=— OF — = ==

o0 L KS K2 d4 3

32
IAS-10. Ans. (d)% = % = % or r= GER as outside diameter of both the shaft is D so ris

same for both the cases.

IAS-11. Ans. (a) Angle of twist is proportional to 300i

d4
4
IAS-12. Ans. (c)I = Go or 6’00l or &D% oJ = ﬂ‘;
J L J d 32
4
Here i = d sor 0=106radian.
01 (d/2)
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I T, I
IAS-13.Ans. (¢) 6, =6, or Lll = L or L= i><—2
GJ, GJ, T, (3,71
IAS-14. Ans. (a)
-
6,=6,0r LE orde-l ol G 1 T, =—==250Nm
GJ, GJ, . G, T, G, 2 2

IAS-15. Ans. (a)

1 4 4

—(100" - 50
IAS-16. Ans.(b)0, =, or = = 185 or T, =T, x 24 — 16000 32( =15000kgm

GJS GJH s £(1004)
32
T T Tz
, A Se"
ff” S
4 (TIPS,
¥
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Previous Conventional Questions with Answers

Conventional Question IES 2010

Q. A hollow steel rod 200 mm long is to be used as torsional spring. The ratio of
inside to outside diameter is 1 : 2. The required stiffness of this spring is 100
N.m /degree.
Determine the outside diameter of the rod.
Value of G is 8x10* N/mm?. [10 Marks]
Ans. Length of a hollow steel rod = 200mm

Ratio of inside to outside diameter =1 : 2
Stiffness of torsional spring = 100 Nm /degree. = 5729.578 N m/rad
Rigidity of modulus (G) = 8 x10* N/ mm?
Find outside diameter of rod : -
We know that
T_G6 Where T = Torque
L

= Stiffness ( N _(11\/[]

ra

SIERY

J = polar moment

Stiffness = T_ GJ 0 = twist angle in rad
0
L = length of rod.
d, =2d,
_ T 4 34
J= 5x(ol2 - dy)
=2 x(16a! - a) SR
32 d, 2

J = lxdfx15
32

8x10*x10°N/m? =

5729.578 Nm/rad = xﬁxdf x15

0.2
5729.578x.2x32 _ 4
8x10" xtx15 !
d, =9.93x10 " m.
d; =9.93mm.
d, =2x9.93 =19.86 mm Ans.

Conventional Question GATE - 1998

Question: A component used in the Mars pathfinder can be idealized as a circular bar
clamped at its ends. The bar should withstand a torque of 1000 Nm. The
component is assembled on earth when the temperature is 30°C. Temperature
on Mars at the site of landing is -70°C. The material of the bar has an
allowable shear stress of 300 MPa and its young's modulus is 200 GPa. Design
the diameter of the bar taking a factor of safety of 1.5 and assuming a

coefficient of thermal expansion for the material of the bar as 12 x 10-¢/°C.
Answer: Given:
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T .. =1000Nm; t.=30°C; t, =-70°C; 7 0umme
E=200GPa; FOS.=15 «a=12x10°/°C
Diameter of the bar,D:

Change in length,sL =L o At,where L = original length,m.

Change in lengthat Mars =L x12x10°° x[ 30— (~70) | =12x10™*L meters

= 300MPa

Change inlength  12x107*L

— = =12x10"
original length L

Linear strain =

o, = axial stress = E xlinear strain = 200 x10° x12x10* = 2.4x10°N/m’
From maximum shear stress equation,we have

]

(%]

where, 7, = Tatowanie _ 300 _ 200MPa
FOS 15

Substituting the values, we get

2
4x10% = (M] +(L2x 108)2

zD?

16 x1000
or————

3

=1.6x108
7D

16 x1000
orD=| ————
7x1.6x10

Conventional Question IES-2009

U3
j =0.03169 m=31.69 mm

Q. In a torsion test, the specimen is a hollow shaft with 50 mm external and 30 mm
internal diameter. An applied torque of 1.6 kN-m is found to produce an
angular twist of 0.4° measured on a length of 0.2 m of the shaft. The Young’s
modulus of elasticity obtained from a tensile test has been found to be 200 GPa.

Find the values of

(i) Modulus of rigidity.

(ii) Poisson’s ratio.

Ans. We have
T GO .
3 = ; = T ......... (l)

Where J = polar moment of inertia

J= %(D“ -d*)

= %(504 - 304) x10712

=5.338x1077

T=1.6 kN-m=1.6x10> N-m

9= 0.4°
1=0.2m
E =200 x 10° N/m?
T GH

From equation (i) —=—
rom equ 1n(1)J L

T
Gx|0.4x T~
1.6x10° x[ 180

}

5.338x107"7 0.2

1.6x0.2x10% x 180

= G=

0.4xmx5.338x107"

=85.92 GPa

For-2019 (IES, GATE & PSUs)

Page 351 of 480

[10-Marks]

Rev.0



Chapter-9 TPagen3b2 S K Mondal’s
We also have
E=2G@1+v)
. 200 =2 x 85.92 (1+v)
= 1+v=1.164
= v=0.164

Conventional Question IAS - 1996

Question: A solid circular uniformly tapered shaft of length I, with a small angle
oftaper is subjected to a torque T. The diameter at the two ends of the shaft
are D and 1.2 D. Determine the error introduced of its angular twist for a
given length is determined on the uniform mean diameter of the shaft.

Answer: For shaft of tapering's section, we have
p_ 2TL[RI+RR, +R} | _32TL[D}+D,D,+D;
3Gr ROR? 3Gr DD}
1.2 +1.2x1+(1)°
_32mL | (12) 121+ (1) [+D,=D and D, =1.2D]
3GzD (1.2)" x(1)
32Tk 21065
3GxD
Now, D, ,=+2*D_4p
2
1.1D)?
g 32TL 3( Z _32TL 34 _ 32TL4 2,049
3Gz (1.1D) 3Gr (1_2) D* 3GzD

6-6' 2.1065-2.049
2.1065

Error= =0.0273 or 2.73%

Conventional Question ESE-2008

Question: A hollow shaft and a solid shaft construction of the same material have the
same length and the same outside radius. The inside radius of the hollow
shaft is 0.6 times of the outside radius. Both the shafts are subjected to the
same torque.
(i) What is the ratio of maximum shear stress in the hollow shaft to that of

solid shaft?

(ii) What is the ratio of angle of twist in the hollow shaft to that of solid shaft?

Solution: Using I=l=@
J R L
Given, Inside r.adlus (r) _ 06andT, =T, =T
Out side (R)
@) T:E gives ; For hollow shaft () = TR
J E(RA' . I’4)
2
and for solid shaft (7= —
™ R*
5
4
Therefore —- = 4R = 1 - = 1 -=1.15
Ts R™—r 1 [ r ] 1-0.6
R
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(11) 9=Egives 0, zLand 6, = L
e G.D(R*~r*) G.[”.R“]
2
4
Thereforee—h: 4R - = 1 = 1 -=1.15
6, R'-—r ] [r] 1-0.6
R

Conventional Question ESE-2006:

Question: Two hollow shafts of same diameter are used to transmit same power. One
shaft is rotating at 1000 rpm while the other at 1200 rpm. What will be the
nature and magnitude of the stress on the surfaces of these shafts? Will it be
the same in two cases of different? Justify your answer.

Answer: We know power transmitted (P) = Torque (T) Xrotation speed (w)
p.D
And shear stress (7) = B = E = A
60 )32

1
Therefore 7 a« — as P, D and d are constant.

So the shaft rotating at 1000 rpm will experience greater stress then 1200 rpm shaft.

Conventional Question ESE-2002
Question: A 5 cm diameter solid shaft is welded to a flat plate by 1 cm filled weld. What
will be the maximum torque that the welded joint can sustain if the
permissible shear stress in the weld material is not to exceed 8 kN/cm2?
Deduce the expression for the shear stress at the throat from the basic
theory.
Answer: Consider a circular shaft connected to a
plate by means of a fillet joint as shown in
figure. If the shaft is subjected to a torque, e
shear stress develops in the weld. =98 = _ -
Assuming that the weld thickness is very R
small compared to the diameter of the
shaft, the maximum shear stress occurs in
the throat area. Thus, for a given torque
the maximum shear stress in the weld is

d
o T [2 + t]
max J
Where T = Torque applied.
d = outer diameter of the shaft
t = throat thickness
J =polar moment of area of the throat

section
T 4 T
=—|(d +2t) —d*|==d®xt
32[( +2) 40 "
Tg 2T
[As t <<d] then T, , = =—
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Given
d=5cm=0.05m & t=1cm=0.1m
= 8kN /em? = 500N govpa— 807 105N /m?
(10 *)m
2 ’ 2 ’ ’ 6
o t2tmax _ ' 0.05 0.201 807 10° o o

Conventional Question ESE-2000
Question: The ratio of inside to outside diameter of a hollow shaft is 0.6. If there is a
solid shaft with same torsional strength, what is the ratio of the outside

diameter of hollow shaft to the diameter of the equivalent solid shaft.
Answer: Let D = external diameter of hollow shaft

So d = 0.6D internal diameter of hollow shaft
And Ds=diameter of solid shaft
From torsion equation

r_t
J R
7T
t3 .. 35iD*- (0.6D)"}
or, T = —= 1t for hollow shaft
R (D /2)
T D2
_tJ . 32 °° ;
and T—E= J ) for solid shaft
5
D3 D3
t 1- (0.6)*}y=t s
16 { ( Y 16

or

D - 3;4= 1.072
D, 1- (0.6)

Conventional Question ESE-2001

Question: A cantilever tube of length 120 mm is subjected to an axial tension P = 9.0 kN,
A torsional moment T = 72.0 Nm and a pending Load F = 1.75 kN at the free
end. The material is aluminum alloy with an yield strength 276 MPa. Find the

thickness of the tube limiting the outside diameter to 50 mm so as to ensure a
factor of safety of 4.

3
Answer: Polar moment of inertia (J) =2aR% = na t
Tt ( TR_TD__TO _ 21 272 _1833%
J R 3 2 o D% aD* =’ (0.050)%" t t

P _ 9000 _ 9000 _ 57296
A~ mdt  n(0.050%  t

Direct stress (c,) =

md
Maximum bending stress (c,) = My _ —Az Md [J= 2]

| | J
_ 1750° 0.120” 0.050" 4 _ 106952
n’ (0.050)°t t
\ Total longitudinal stress (¢,)= o, + o, = 164t248
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Maximum principal stress

(0) =% + i2+72 _ 164248 (164248 2+ 18335)"  (276x10°
Vo2 2 2 2t t ) | 4

or,t =2.4x10"°m=2.4mm

Conventional Question ESE-2000 & ESE 2001

Question: A hollow shaft of diameter ratio 3/8 required to transmit 600kW at 110 rpm,
the maximum torque being 20% greater than the mean. The shear stress is
not to exceed 63 MPa and the twist in a length of 3 m not to exceed 1.4
degrees. Determine the diameter of the shaft. Assume modulus of rigidity for
the shaft material as 84 GN/mz2.

Answer: Let d = internal diameter of the hollow shaft
And D = external diameter of the hollow shaft
(given) d = 3/8 D = 0.375D
Power (P)= 600 kW, speed (N) =110 rpm, Shear stress(7 )= 63 MPa. Angle of twist (0
)=1.4° Length (£) =3m , modulus of rigidity (G) = 84GPa

2nN .
We know that, (P)=T. w=T. E [T is average torque]

po 60%P _ 60x(600x10°)
27N 2xmx110
ST =12xT =1.2x52087 =62504 Nm

First we consider that shear stress is not to exceed 63 MPa

T 7

From torsion equation — = —

R

=52087Nm

or

62504 x D
2% (63x10°)
orD=0.1727m =172.7mm ————(i)

T
or3—2[D“ —(0.375D)*|=

17x1.4

Second we consider angle of twist is not exceed 1.4° = radian

. . T G6
From torsion equation =7

14
T G6

or —=—
J l

or Z[D* - (0375D)*| = — 22203
32

(84><1o9)[“><1'5

180
or D=0.1755m =175.5mm — — — —(ii)
So both the condition will satisfy if greater of the two value is adopted
so D=175.5 mm

Conventional Question ESE-1997

Question: Determine the torsional stiffness of a hollow shaft of length L. and having
outside diameter equal to 1.5 times inside diameter d. The shear modulus of
the material is G.

Answer: Outside diameter (D) =1.5d

Polar modulus of the shaft (J) = L(D4 — d4) = 1d4(1.54 —1)
32 32
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We know that Tr_r_Go
J R L

G.H " d* 1.5 —1)
_ 32

G6J ~ 0.4G6d*

L L

orT =

Conventional Question AMIE-1996

Question: The maximum normal stress and the maximum shear stress analysed for a
shaft of 150 mm diameter under combined bending and torsion, were found
to be 120 MN/m2 and 80 MN/m?2 respectively. Find the bending moment and
torque to which the shaft is subjected.

If the maximum shear stress be limited to 100 MN/m2, find by how much the
torque can beincreased if the bending moment is kept constant.

Answer: Given: o, =120MN/m2;z'max =80MN/m?d=150mm=0.15m
Part—1: M T

We know that for combined bending and torsion, we have the following expressions:

Oy = 16 [M+\/W} ———(i)

max 7Zd3
and 7, = O[T —
max 7Z'd3

Substituting the given values in the above equations, we have

120:L[M+\/m} ______ G

7% (0.15)’
80 =#§15)3[m ] ————————— (iv)
N v 80><7r>1<6(0.15)3 0.053 v)
Substituting this values in equation (iii), we get
120 = ﬁiws)[l\ﬂ +0.053]

M=0.0265MNm

Substituting for M in equation(v),we have

(0.0265)° +T? =0.053
or T =0.0459MNm

Part Il: [ 7, = L00MN / m?]
Increase in torque:
Bending moment(M)to be kept constant = 0.0265MNm

100x 7 x(0.15)’
16

2
or (0.0265) + T2 { } =0.004391

. T=0.0607 MNm
-.The increased torque =0.0607 —0.0459 =0.0148 MNm
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Conventional Question ESE-1996

Question: A solid shaft is to transmit 300 kW at 120 rpm. If the shear stress is not to
exceed 100 MPa, Find the diameter of the shaft, What percent saving in
weight would be obtained if this shaft were replaced by a hollow one whose
internal diameter equals 0.6 of the external diameter, the length, material
and maximum allowable shear stress being the same?

Answer: Given P= 300 kW, N = 120 rpm, 7=100 MPa, d,, =0.6D,,
Diameter of solid shaft, Ds:

We know that P=—2N (1 3002 20X 120XT - 1 53673 Nm

60x1000 601000

We know that I = T
J R

100x10° x—= D?
7.J 32
or, T=—— or, 23873 =
R b,
2

or, Ds=0.1067 m =106.7mm

Percentage saving in weight:

T, =T,
[TXJ} _[TXJ]
R J, R |,
or,{D:_d:}:Dj or,D:_(O'GDH)AZD:
DH DH
or,D, = D, = 106.7 =111.8mm
Ja-o06*) 1-0.64
Again W, _ Aulipn9 _ Ay

W, AL .p.0 A

S

n 2 2

A, z(DH - dH>: DZ(1-0.6%) _ [111.8

A, T D? 106.7
4 s

2
] (1-0.6) =0.702

.. Percentage savings in weight ={1- VV\\//”]X 100

S

= (1-0.702)x100 = 29.8%
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10.| Thin Cylinder

Theory at a Glance (for IES, GATE, PSU)
1. Thin Rings

Uniformly distributed loading (radial) may be due to
either
e Internal pressure or external pressure

e Centrifugal force as in the case of a rotating ring

Case-I: Internal pressure or external pressure
e Ss=qr Where q = Intensity of loading in kg/cm?

r = Mean centreline of radius

s = circumferential tension or hoop’s
tension

(Radial loading ducted outward)

e  Unit stress, 0 =

s qr
A A

o r
e Circumferential strain, €,= — = ar

E AE

e Diametral strain, (€, ) = Circumferential strain, (&)

Case-II: Centrifugal force

2.2
Wao'r
e Hoop's Tension, S= Where w = wt. per unit length of circumferential element
g
@ = Angular velocity
2
. . S Wao'r
e Radial loading, q =— =
r g
e Hoop's stress, 0 =—=——0"r
A Ag

2. Thin Walled Pressure Vessels

For thin cylinders whose thickness may be considered small compared to their diameter.

Inner dia of the cylinder (d,)
wall thickness (t)

>150r 20

3. General Formula

(o2 O.
R

oLt
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Where o, =Meridional stress at A
0, =Circumferential / Hoop's stress

P = Intensity of internal gas pressure/ fluid pressure

t = Thickness of pressure vessel.

4. Some cases:

e Cylindrical vessel
_pr_pD _pr_pD ~
GTNTH %Taa (6 > =]
o,—-o, pr pD .
r =—1t—2=""="—(inplane
e 2 4t 8t (in plane)

pr

P o
P = 9170 _t _pr_pb (outof plane)
2 2 2t 4t
e Spherical vessel
r D
O'lzazz%:i—t [r1:r2:r]
;=3 ;O-Z =0 (in plane)
P o
P = i N B ) (outof plane)
2 2 4t 8t
e Conical vessel
n n
1 :_pyta a[l’l —>©] and o, =—pyta @
2tcosa tcosa
Notes:
e Volume 'V' of the spherical shell, =% Di3
3
=D, = (ﬂj
T

e Design of thin cylindrical shells is based on hoop's stress

5. Volumetric Strain (Dilation)

AV
e Rectangular block, — =€, + €, + €,
0

e Cylindrical pressure vessel

% _ ﬁ_ﬂ[l_zﬂ]

€ 1=Longitudinal strain =—

E “E " 2E

O. O, r
€, =Circumferential strain =—% — y/— = o [1-2u]

E “E " 2E
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Volumetric Strain, ?/—V =g, +2¢€,= 2p—Ert[5 -4l = f—;[S —4u]

0o

i.e.Volumetric strain, (<, ) = longitudinal strain(e, )+ 2 x circumferential strain (<, )
® Spherical vessels

r
€=€,=€,= p_[l_ﬂ]

2Et
AV 3pr
2Y _3e=2F
v e g A

6. Thin cylindrical shell with hemispherical end

Condition for no distortion at the junction of cylindrical and hemispherical portion
1—p

t
t—z = > . Where, t1= wall thickness of cylindrical portion
1 —H

t2 = wall thickness of hemispherical portion

7. Alternative method

Consider the equilibrium of forces in the z-direction acting on the part
cylinder shown in figure.

Force due to internal pressure p acting on area 7 D2/4 =p. 7 D2/4

Force due to longitudinal stress acting on area 7 Dt = o, 7 Dt

Equating: p. 7 D¥4= o, 7 Dt

d r
or 0'1 = p_ = p_
44 2t
Now consider the equilibrium of forces in the x-direction acting on the z“\

sectioned cylinder shown in figure. It is assumed that the
circumferential stress o, is constant through the thickness of the
cylinder.

Force due to internal pressure p acting on area Dz = pDz

Force due to circumferential stress o, acting on area 2tz = o, 2tz

Equating: pDz =0, 2tz

.
2t t

oro, =
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Stresses

GATE-1. A thin cylinder of inner radius 500 mm and thickness 10 mm is subjected to an
internal pressure of 5 MPa. The average circumferential (hoop) stress in MPa is
[GATE-2011]

(a) 100 (b) 250 (c) 500 (d) 1000

GATE-2. The maximum principal strain in a thin cylindrical tank, having a radius of 25
cm and wall thickness of 5 mm when subjected to an internal pressure of 1MPa,
is (taking Young's modulus as 200 GPa and Poisson's ratio as 0.2) [GATE-1998]
(a) 2.25 x 104 (b) 2.25 (c) 2.25 x 10-6 (d) 22.5

GATE-3.A thin walled spherical shell is subjected to an internal pressure. If the radius of
the shell isincreased by 1% and the thickness is reduced by 1%, with the internal
pressure remaining the same,the percentage change in the circumferential (hoop)
stress is [GATE-2012]
(@0 (b) 1 (c) 1.08 (d) 2.02

GATE-3a.A long thin walled cylindrical shell, closed at both the ends, is subjected to an
internal pressure. The ratio of the hoop stress (circumferential stress) to
longitudinal stress developed in the shell is [GATE-2013, 2016]

(a) 0.5 (b) 1.0 () 2.0 (d) 4.0

GATE-3b.A thin gas cylinder with an internal radius of 100 mm is subject to an internal
pressure of 10 MPa. The maximum permissible working stress is restricted to 100

MPa. The minimum cylinder wall thickness (in mm) for safe design must be ..........
[GATE-2014]

GATE-3c. A thin-walled cylindrical pressure vessel of internal diameter 2 m is designed to
withstand an internal pressure of 500 kPa (gauge). If the allowable normal stress
at any point within the cylindrical portion of the vessel is 100 MPa, the minimum
thickness of the plate of the vessel (in mm) is . [PI:GATE-2016]

GATE-3d. A thin-walled cylindrical can with rigid end caps has a mean radius R =100 mm
and a wall thickness of t =5 mm. The can is pressurized and an additional tensile
stress of 50 MPa is imposed along the axial direction as shown in the figure.
Assume that the state of stress in the wall is uniform along its length. If the
magnitudes of axial and circumferential components of stress in the can are equal,
the pressure (in MPa) inside the can is (correct to two decimal places).

[GATE-2018]

end cap end cap
/I T T R Y |
ressurized can
50 MPa ____97 ______________ 50 MPa

| 0 2 21 2 I I |

For-2019 (IES, GATE & PSUs) Page 361 of 480 Rev.0



Chapter-10 Thage_38hder S K Mondal’s

GATE-3e. A spherical pressure vessel (made of mild steel) of internal diameter 500
mm and thickness 10 mm is subjected to an internal gauge pressure of 4000
kPa. If the yield stress of mild steel is 200 MPa, the factor of safety (up to
one decimal place) is [GATE(PI)-2018]

Maximum shear stress

GATE-4. A thin walled cylindrical vessel of wall thickness, t and diameter d is fitted
with gas to a gauge pressure of p. The maximum shear stress on the vessel wall
will then be: [GATE-1999]

pd pd pd pd
@ (b) 5= © (@) 5

GATE-4(i) A cylindrical tank with closed ends is filled with compressed air at a pressure
of 500 kPa. The inner radius of the tank is 2m, and it has wall thickness of 10
mm. The magnitude of maximum in-plane shear stress (in MPa) is _[GATE-2015]

GATE-4ii A gas is stored in a cylindrical tank of inner radius 7 m and wall thickness 50
mm. The gage pressure of the gas is 2 MPa. The maximum shear stress (in MPa)
in the wall is [GATE-2015]
(a) 35 (b) 70 (c) 140 (d) 280

Statement for Linked Answers and Questions 5 and 6
A cylindrical container of radius R = 1 m, wall y v . o
thickness 1 mm is filled with water up to a depth —T— <1 mm

of 2 m and suspended along its upper rim. The
density of water is 1000 kg/m3 and acceleration
due to gravity is 10 m/s2. The self-weight of the
cylinder is negligible. The formula for hoop

stress in a thin-walled cylinder can be used at all

points along the height of the cylindrical
container.

2m

[GATE-2008]
GATE-5. The axial and circumferential stress (0,,0,.) experienced by the cylinder wall

at mid-depth (1 m as shown) are
(a) (10,10) MPa (b) (5,10) MPa (c) (10,5) MPa (d) (5,5)MPa

GATE-6. If the Young's modulus and Poisson's ratio of the container material are 100
GPa and 0.3, respectively, the axial strain in the cylinder wall at mid-depth is:
(a) 2 X 10-5 (b) 6 x 10-5 (c) 7x 105 (d) 1.2 x 10-

GATE-7. A thin walled cylindrical pressure vessel having a radius of 0.5 m and wall
thickness of 25 mm is subjected to an internal pressure of 700 kPa. The hoop
stress developed is [CE: GATE-2009]

(a) 14 MPa (b) 1.4 MPa (¢) 0.14 MPa (d) 0.014 MPa

GATE-8.A thin plate of uniform thickness is subject to pressure as shown in the figure
below

— &
Q

=
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Under the assumption of plane stress, which one of the following is correct?
(a) Normal stress is zero in the z-direction [GATE-2014]
(b) Normal stress is tensile in the z-direction
(¢) Normal stress is compressive in the z-direction
(d) Normal stress varies in the z-direction

GATE-9.

A thin-walled long cylindrical tank of inside radius r is subjected
simultaneously to internal gas pressure p and axial compressive force F at its
ends. In order to produce ‘pure shear’ state of stress in the wall of the cylinder,
F should be equal to

(@) pnr? (b) 2pnr? [CE: GATE-2006]
(c) 3pmr® (d) 4pnr’

Previous 25-Years IES Questions

Circumferential or hoop stress

IES-1. Match List-I with List-II and select the correct answer: [TES-2002]
List-I List-II
(2-D Stress system loading) (Ratio of principal stresses)
A. Thin cylinder under internal pressure 1. 3.0
B. Thin sphere under internal pressure 2. 1.0
C. Shaft subjected to torsion 3. -1.0
4. 2.0
Codes: A B C A B C
(a) 4 2 3 (b) 1 3 2
() 4 3 2 (d) 1 2 3

IES-2.

IES-3.

IES-4.

IES-5.

A thin cylinder of radius r and thickness t when subjected to an internal
hydrostatic pressure P causes a radial displacement u, then the tangential

strain caused is: [TES-2002]
du 1 du u 2u

(@ — b)) —— (©— (d) —
dr r dr r r

A thin cylindrical shell is subjected to internal pressure p. The Poisson's ratio
of the material of the shell is 0.3. Due to internal pressure, the shell is subjected
to circumferential strain and axial strain. The ratio of circumferential strain to
axial strain is: [TES-2001]
(a) 0.425 (b) 2.25 (c) 0.225 (d) 4.25

A thin cylindrical shell of diameter d, length ‘I’ and thickness t is subjected to
an internal pressure p. What is the ratio of longitudinal strain to hoop strain in

terms of Poisson's ratio (1/m)? [TES-2004, ISRO-2015]
@ m-2 ) m-2 ()2m—1 @ 2m+2
a c

2m+1 2m-1 m-2 m-1

When a thin cylinder of diameter 'd' and thickness 't' is pressurized with an
internal pressure of 'p', (1/m = / is the Poisson's ratio and E is the modulus of

elasticity), then [TES-1998]
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IES-6.

IES-7.

IES-8.

IES-8(i).

IES-9.

IES-10.

IES-11.

d(1 1
(a) The circumferential strain will be equal to Parz_=
2tE\2 m

1
(b) The longitudinal strain will be equal to p—d 1-—
2tE 2m

(¢) The longitudinal stress will be equal tog—t

(d) The ratio of the longitudinal strain to circumferential strain will be equal to
m-—2
2m-1
A thin cylinder contains fluid at a pressure of 500 N/m2, the internal diameter
of the shell is 0.6 m and the tensile stress in the material is to be limited to 9000
N/m2, The shell must have a minimum wall thickness of nearly [TES-2000]
(a) 9 mm (b) 11 mm (¢c) 17 mm (d) 21 mm

A thin cylinder with closed
lids is subjected to internal
pressure and supported at
the ends as shown in figure.
The state of stress at point

. . e X
X is as represented in

[IES-1999]
f

(@ I (b) T ©) | (d) b

T A AL

| | - T
Y
A thin cylinder with both ends closed is subjected to internal pressure p. The

longitudinal stress at the surface has been calculated as oo, Maximum shear
stress at the surface will be equal to: [TES-1999]

(a)2o, (b) 150, (c) o, (d) 0.50,

(o]

If a thin walled cylinder with closed hemispherical ends with thickness 12mm
and inside diameter 1250mm is to withstand a pressure of 1.5MPa, then
maximum shear stress induced is [2014]
(a) 19.5MPa (b) 39.056MPa (c) 78.12MPa (d) 90.5MPa

A metal pipe of Im diameter contains a fluid having a pressure of 10 kgf/cm?2. 1f
the permissible tensile stress in the metal is 200 kgf/cm?2, then the thickness of
the metal required for making the pipe would be: [TES-1993]
(a) 5Bmm (b) 10 mm (c) 20 mm (d) 25 mm
Circumferential stress in a cylindrical steel boiler shell under internal
pressure is 80 MPa. Young's modulus of elasticity and Poisson's ratio are
respectively 2 x 105 MPa and 0.28. The magnitude of circumferential strain in
the boiler shell will be: [TES-1999]
(a) 3.44 x 10+ (b) 3.84 x 10~ (c) 4 x 10+ (d) 4.56 x10
A penstock pipe of 10m diameter carries water under a pressure head of 100 m.
If the wall thickness is 9 mm, what is the tensile stress in the pipe wall in MPa?
[IES-2009]
(a) 2725 (b) 5450 (c) 2725 (d) 1090
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IES-12. A water main of 1 m diameter contains water at a pressure head of 100 metres.
The permissible tensile stress in the material of the water main is 25 MPa.

What is the minimum thickness of the water main? (Take g = 10 m/S?).
[TES-2009]
(a2) 10 mm (b)20mm (c) 50 mm (d) 60 mm

IES-12(i). A seamless pipe of diameter d m is to carry fluid under a pressure of p kN/cmz2.
The necessary thickness t of metal in cm, if the maximum stress is not to
exceed o kN/cmz, is [TES-2012]

100pd d 100pd
p cm ot< p—cm t< P
20 20 2

d
(@) t= Z—acm b)t= cm

Longitudinal stress

IES-13. Hoop stress and longitudinal stress in a boiler shell under internal pressure
are 100 MN/m2 and 50 MN/m? respectively. Young's modulus of elasticity and
Poisson's ratio of the shell material are 200 GN/m2? and 0.3 respectively. The
hoop strain in boiler shell is: [TES-1995]

(a) 0.425x107° () 0.5 x107° (c) 0.585 x107° () 0.75 x10°*

Volumetric strain

IES-15. Circumferential and longitudinal strains in a cylindrical boiler under internal
steam pressure are & and &, respectively. Change in volume of the boiler
cylinder per unit volume will be: [TES-1993; IAS 2003]
(@) e, +2¢, (b) e,6; (©)2¢ +¢, (d)el’e,

IES-15a. In case of a thin cylindrical shell, subjected to an internal fluid pressure, the
volumetricstrain is equal to [TES-2018]

(a) circumferential strain plus longitudinal strain

(b) circumferential strain plus twice the longitudinal strain

(c) twice the circumferential strain plus longitudinal strain

(d) twice the circumferential strain plus twice the longitudinal strain

IES-16. The volumetric strain in case of a thin cylindrical shell of diameter d, thickness

t, subjected to internal pressure p is: [TES-2003; IAS 1997]
pd pd pd pd
—.(3-2 b) —.(4-3 —.(5-4 d) —.(4-5

@ e (3-2u) o 2E (4-34)  © IE (5-4u) @ 4= (4-5u)

(Where E = Modulus of elasticity, p = Poisson's ratio for the shell material)

Spherical Vessel

IES-17. For the same internal diameter, wall thickness, material and internal pressure,
the ratio of maximum stress, induced in a thin cylindrical and in a thin
spherical pressure vessel will be: [TES-2001]
(a) 2 (b) 1/2 (c) 4 (d) %

IES-17a. What is the safe working pressure for a spherical pressure vessel 1.5 m internal
diameter and 1.5 cm wall thickness, if the maximum allowable tensile stress is
45 MPa?
(a) 0.9 MPa () 3.6 MPa  (c) 2.7 MPa (d) 1.8 MPa [TES-2013]

IES-17b. A thin cylindrical pressure vessel and a thinspherical pressure vessel have the
same meanradius, same wall thickness and are subjectedto same internal
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IES-18.

pressure. The hoop stressesset up in these vessels cylinder in relation tosphere
will be in the ratio [IES-2017 Prelims]
(a)1:2 (b) 1:1 ©2:1 d4:1

From design point of view, spherical pressure vessels are preferred over
cylindrical pressure vessels because they [TES-1997]
(a)  Are cost effective in fabrication

(b) Have uniform higher circumferential stress

(¢)  Uniform lower circumferential stress

(d) Have a larger volume for the same quantity of material used

Previous 25-Years IAS Questions

Circumferential or hoop stress

TAS-1.

TAS-2.

TAS-3.

IAS-4.

IAS-5.

The ratio of circumferential stress to longitudinal stress in a thin cylinder
subjected to internal hydrostatic pressure is: [TAS 1994]
(a) 1/2 (b) 1 (c)2 d) 4

A thin walled water pipe carries water under a pressure of 2 N/mm?2 and
discharges water into a tank. Diameter of the pipe is 25 mm and thickness is
2:5 mm. What is the longitudinal stress induced in the pipe? [TAS-2007]
(@0 (b) 2 N/mm?2 (c) 5 N/mm? (d) 10 N/mm?

A thin cylindrical shell of mean diameter 750 mm and wall thickness 10 mm has
its ends rigidly closed by flat steel plates. The shell is subjected to internal
fluid pressure of 10 N/mm2 and an axial external pressure Pi. If the
longitudinal stress in the shell is to be zero, what should be the approximate
value of P1? [TAS-2007]
(a) 8 N/mm? (b) 9 N/mm? (c) 10 N/mm? (d) 12 N/mm?2

Assertion (A): A thin cylindrical shell is subjected to internal fluid pressure
that induces a 2-D stress state in the material along the longitudinal and
circumferential directions. [IAS-2000]
Reason(R): The circumferential stress in the thin cylindrical shell is two times
the magnitude of longitudinal stress.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Ais false but R is true

Match List-I (Terms used in thin cylinder stress analysis) with List-II
(Mathematical expressions) and select the correct answer using the codes

given below the lists: [TAS-1998]
List-I List-11
A. Hoop stress 1. pd/4t
B. Maximum shear stress 2. pd/2t
C. Longitudinal stress 3. pd/20
D. Cylinder thickness 4. pd/8t
Codes: A B C D A B C
(a) 2 3 1 4 (b) 2 3 4 1
(0 2 4 3 1 (d) 2 4 1 3
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Longitudinal stress

TAS-6.

Assertion (A): For a thin cylinder under internal pressure, At least three strain
gauges is needed to know the stress state completely at any point on the shell.
Reason (R): If the principal stresses directions are not know, the minimum
number of strain gauges needed is three in a biaxial field. [TAS-2001]

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Ais false but R is true

Maximum shear stress

TIAS-7.

The maximum shear stress is induced in a thin-walled cylindrical shell having
an internal diameter 'D' and thickness’t’ when subject to an internal pressure
'p' is equal to: [IAS-1996]
(a) pD/t (b) pD/2t (c) pD/4t (d) pD/8t

Volumetric strain

TAS-8.

IAS-9.

IAS-10.

TAS-11.

TAS-12.

TAS-13.

Circumferential and longitudinal strains in a cylindrical boiler under internal
steam pressure are & and &, respectively. Change in volume of the boiler
cylinder per unit volume will be: [TES-1993; IAS 2003]
(@) &, + 25, (b) e, (€) 26 +¢, () ele,

The volumetric strain in case of a thin cylindrical shell of diameter d, thickness

t, subjected to internal pressure p is: [TES-2003; IAS 1997]
pd pd pd pd
—.(3-2 b) —.(4-3 —.(5-4 d) —.(4-5

@ e (3-2u) o 2E (4-34)  © IE (5-4u) @ 4= (4-5u)

(Where E = Modulus of elasticity, p = Poisson's ratio for the shell material)
A thin cylinder of diameter ‘d’ and thickness 't' is subjected to an internal

pressure 'p' the change in diameter is (where E is the modulus of elasticity and

p is the Poisson's ratio) [TAS-1998]
pd’ pd’ pd’ pd’
2— b 1 2 d 2
(a) 4tE( 1) <>2tE(+ﬂ) Cher= (2+ 1) () 4tE( + 1)

The percentage change in volume of a thin cylinder under internal pressure

having hoop stress = 200 MPa, E = 200 GPa and Poisson's ratio = 0-25 is:
[IAS-2002]

(a) 0.40 (b) 0-30 (c) 025 (d) 020

A round bar of length [, elastic modulus E and Poisson's ratio p is subjected to

an axial pull 'P'. What would be the change in volume of the bar? [TAS-2007]

Pl Pl(1-2u) Plu
@ ———F—~c b) —— () — d —
(1-2u)E E E UE
If a block of material of length 25 cm. breadth 10 cm and height 5 cm undergoes
a volumetric strain of 1/5000, then change in volume will be: [IAS-2000]

(a) 0.50 cm3 (b) 0.25 cm3 (c) 0.20 cm3 (d) 0.75 cm3

For-2019 (IES, GATE & PSUs) Page 367 of 480 Rev.0



Chapter-10 Thage_38der

OBJECTIVE ANSWERS

GATE-1. Ans.(b)Inner radius (r) = 500 mm
Thickness (t) = 10 mm
Internal pressure (p) =5 MPa

_pr_5x 10° x 500
10

GATE-2.Ans. (a)Circumferential or Hoop stress (o, ) = % =

Hoop stress, o, = Pa =250 Mpa

1x 250 _ 50MPa

Longitudinal stress (o;) = % =25MPa

6 6
e, =2 - ﬂ_50><—109_0.2><25><—109:2.25x104
E E 200x10 200x10

GATE-3.Ans. (d)
GATE-3a.Ans. (¢)
GATE-3b. Ans. 9.8 to 10.6

pr_10x100 _, o

Maximum principalstress(o; ) =

ort=10mm

GATE-3c. Ans. 5 mm (Range given 4.5 to 5.5 )
ProortoPro 0.5MPax1000mm

o= =5mm
o 100 MPa
GATE-3d. Ans. 5
- . r
Circumferential stress,o, = pT

Axial Stress, o, :g—:+50 MPa

Now, o, =g,
Pr_Pr 50 MPa
t 2t

or p=5MPa

For correct calculation inner radius will be used.
GATE-3e. Ans. 4

For mild steel (ductile material) best theory of failure Von-Mises theory

2
o r
o} +o.-0,0, =(f—y} as o, =0, :%
0S

2
o
orc’+o?-o0 :(—y]

fos
ora:i or p =4000kPa =4 MPa, r:Q:@m
fos 2 2
2t
or fOS:O-yX 200><2><10 _4
pr 4x 250
GATE-4. Ans. (¢)o, = pd o = E Maximum shear stress = ¢ = pd
2t’ 4t 2 4t
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GATE-4(). Ans. 25

Maximum in plane shear stress 7,,,, = pr_500x2 _ 25MPa
4  4x10
GATE-4(ii) Ans. (c)
o1 =pr/t =(2x 7)/0.05 =280 MPa
o2 = pr/2t = (2 x 7)/(2 x 0.05) = 140 MPa
03=0
Maximum shear stress(z,, )= s~ Oin 28070 _ 140MPa

2 2
GATE-5. Ans. (a)Pressure (P) =h p g =1x1000x 10 = 10 kPa

Axial Stress (0,)= 0, x27Rt = pg x 7R?L
_ pgRL 1000x10x1x1

oro, =10MPa
t 1x107?
Circumferential Stress(o, )=E = LX; =10MPa
t 1x10™
o 10 10

C

GATE-6. Ans. () &, = -2 —pu ¢ =—— —03x————=7x10"°
E " E 100x10 100x10
GATE-7. Ans. (a)

Hoop stress = p_d
2

_’700><103><2><0.5
2x25x107°

=14x10° =14 MPa

GATE-8.Ans. (a)
GATE-9.Ans.(c)

IES

IES-1. Ans. (a)
IES-2. Ans. (¢)

IES-3. Ans. (d)Circumferential strain, € = 3 ,uﬂ = ﬂ(2 — y)

E "E 2Ft
o . of O, pr
Longitudinal strain, € = — — y—2=—(1-2
& SEHE w2
IES-4. Ans. (b)longitudinal stress (o;) = %
hoop stress (o, ) = ?
o_ 1o, 1_1
.S _E mE _2 m_m-2
S &_iﬁ 1_i 2m-1
E mE 2m

IES-5. Ans. (d) Ratio of longitudinal strain to circumferential strain

B
_O_C_(;]o-l = {2@}-(#})@ "~ 2m-1

. . . O, O, pr
Circumferential strain, €, = —% — y— = — (2 —
1rcumierential strain c E M E 2Et( ﬂ)
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o _ &:ﬂ(l_ 2.1)

Longitudinal strain, € =—

E “E " 2Et
IES-6. Ans. (c)

IES-7.Ans.(a) Point 'X' is subjected to circumferential and longitudinal stress, i.e. tension on all
faces, but there is no shear stress because vessel is supported freely outside.
IES-8. Ans. (d)

I 20, —
Longitudinal stress = o, and hoop stress =20, Max. shear stress :%:%

IES-8(i). Ans. (b)

IES-9. Ans. (d) Hoop stress = 2—? or 200 = 10100 ort= @ =2.5cm

2xt 400

1
IES-10. Ans. (a)Circumferential strain = E(O‘1 - ,uO'Z)

Since circumferential stress o, = 80 MPa and longitudinal stress o, = 40 MPa
-.Circumferential strain = ;106[80—0.28><4O]><106 = 344 x10™*

2x10° x

IES-11. Ans. (b) Tensile stress in the pipe wall= Circumferential stress in pipe wall= Z_t

Where, P = pgH = 980000N / m?
.. Tensile stress = % = 544.44 x10°N/ m” = 544.44MN | m* = 544.44MPa
x 9 x
IES-12. Ans. (b)Pressure in the main= pgh = 1000x10x1000 = 10° N/ mm? = 1000 KPa
Pd

Hoop stress = 6, = —
2t
10°%)(1
Pd: ( )()Gzimzzomm
20 2x25x%x10 50

c

t:

IES-12@i). Ans. (b)
1

IES-13. Ans. (a) Hoopstrain = l(ah — U0, )=
E 200x1000

[100-0.3x50]=0.425x10"°

IES-14. Ans. (a)

IES-15. Ans. (c) Volumetric stream = 2 X circumferential strain + longitudinal strain
(Where E = Modulus of elasticity, pn = Poisson's ratio for the shell material)

IES-15a. Ans. (c¢)

2
V:”D x L

logV = Iog(%]+ log D +log L

av ab dL
gv [ 2 _— + ——
4 D L
&= 2€Circumferential + ngngitudina/

IES-16. Ans. (¢) Remember it.
IES-17. Ans. (a)
IES-17a.Ans. (d)
IES-17b.Ans. (c¢)

IES-18. Ans. (¢)
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1AS

IAS-1. Ans. (¢)
IAS-2. Ans. (a)

4
7 x750x10

tensile. Compressive longitudinal stress due to external pressure pi1 ( 0 D=

2
Plx(mdso j
4

7 x 75010

10{7”7502]

IAS-3. Ans. (c)Tensile longitudinal stress due to internal fluid pressure (J 1) ¢ =

compressive. For zero longitudinal stress (J1) t= (O 1)e.

) Pr Pr

IAS-4. Ans. (b)For thin cell o, = T o= Z_I

IAS-5. Ans. (d)

IAS-6. Ans.(d)For thin cylinder, variation of radial strain is zero. So only circumferential and
longitudinal strain has to measurer so only two strain gauges are needed.

PD ) _0,—0

IAS-7. Ans. (d)Hoop stress(o, ) = ? and Longitudinalstress(o,) = Ty PD

‘Tmax 2 - 8t
IAS-8. Ans. (c) Volumetric stream = 2 x circumferential strain + longitudinal strain.
IAS-9. Ans. (c)Remember it.

IAS-10. Ans. (a)

IAS-11. Ans. (d) Hoop stress(o, ) = ? =200x10°P,

} ] Pr o
Volumetric strain (e,) =——(5-4u)=—(5-4
(e,) 2Et( m| 2E( )
6
:Llog@_m@_%)zi
2x200x10 1000
IAS-12. Ans. (b) .
P Pe—ri) E —P
o,=—, o,=0 and o,=0 [ N
A |"' ]. -"l
o, =2, 5 =%
R TTHE

o
and ¢, =—u—=
2 ,UE

or &, =5, +2, + &, = Z(1-241) :%(1_2;1)

N =¢g,xV =g, Al :PEI(l— 241)

Volumechange (V)
Initial volume (V)

IAS-13. Ans. (b) Volumetricstrain(e,) =

or (oV)=¢,xV = L x 25x10x5 = 0.25cm®
5000
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Previous Conventional Questions with Answers

Conventional Question GATE-1996

Question: A thin cylinder of 100 mm internal diameter and 5 mm thickness is subjected
to an internal pressure of 10 MPa and a torque of 2000 Nm. Calculate the
magnitudes of the principal stresses.

Answer: Given: d =100 mm=0.1m; t=5mm =0.0056 m; D=d+ 2t =0.1 + 2 x 0.005 =
0.11 m p =10 MPa, 10 x 106N/m2; T= 2000 Nm.

6
Longitudinal stress, 0, =0, = pd = 10-10"x0.1
4t 4x0.005

pd _ 10x10° x 0.1

=50x10°N/m? =50MPa

Circumferential stress, o, =0, =— = =100MPa
i § 2x0.005

To find the shear stress, using Torsional equation,

T =

—=—,we have

J R
2000 x(0.05+0.005

_, TR__TxR _2000x(005+0005) ,, 1, \pq

Xy J T T
E(D“ —d4) 5(0.114 —0.14)

Principal stresses are:

2
o, +0, o, —0, 2
o= P [ T | ()

2
:50+2100i\/(50—2100) (24147

=75+34.75=109.75 and 40.25MPa
o, (Major principal stress)=109.75MPa;

o, (minor principal stress) = 40.25MPa;

Conventional Question IES-2008

Question: A thin cylindrical pressure vessel of inside radius ‘r’ and thickness of metal ‘t’
is subject to an internal fluid pressure p. What are the values of
(i) Maximum normal stress?
(ii) Maximum shear stress?

e
Answer: Circumferential (Hoop) stress (S c )= pT (S max)

o p.r
Longitudinal stress (S )= or
. : S.- S, _ pr .
Therefore (11) Maximum shear stress, (t max) = 5 = 4_t (|n Plane)
. S. p.r
and Maximum shear stress, (t max) =? = _2t (Out of Plane)

Conventional Question IES-1996
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Question: A thin cylindrical vessel of internal diameter d and thickness t is closed at

both ends is subjected to an internal pressure P. How much would be the
hoop and longitudinal stress in the material?

Answer: For thin cylinder we know that
. . Pd
Hoop or circumferential stress (GC): ot
Pd
And longitudinal stress (G | )= s
Therefore 6, = 20,
Conventional Question IES-2009
Q. A cylindrical shell has the following dimensions:

Length=3m

Inside diameter =1 m

Thickness of metal = 10 mm

Internal pressure = 1.5 MPa

Calculate the change in dimensions of the shell and the maximum intensity of
shear stress induced. Take E = 200 GPa and Poisson’s ratio v=0.3 [15-Marks]

Ans. We can consider this as a thin cylinder.
1.5x10°x1
2x10x1073
pd  1.5x10°x1
4t 4x10x107°

=0.75x10% =75 MPa

Hoop stresses, 6, =

=37.5x10% =387.5 MPa

Longitudinal stresses, 69 =

Hoop strain(,) = %(0'1 —VvG,) = i—%@ -v)
1.5x10°% x1

= = 5(2-0.3)=0.31875x107°
4x10x107° x200x10

Change in diameter, Ad =g, xd =1 % 0.31875 x 10~ m = 0.31875 mm

6
Logitudinal strain, g, = pd (1-2v)= m
4tE 200x 10

Changeinlength,Al =7.5x107° x3=2.25x10" m = 0.225mm

6
Maximumshear stress,z,, = pd _ M
8 8x10x10

. _pd_15x10°x1
"4t 4x10x107°

(1-2x0.3)=7.5x107"

=18.75 MPa (in— Plane)
=37.5 MPa (Out of Plane)

Conventional Question IES-1998
Question: A thin cylinder with closed ends has an internal diameter of 50 mm and a
wall thickness of 2.5 mm. It is subjected to an axial pull of 10 kN and a torque
of 500 Nm while under an internal pressure of 6 MN/m2
(i) Determine the principal stresses in the tube and the maximum shear
stress.
(ii) Represent the stress configuration on a square element taken in the load
direction with direction and magnitude indicated; (schematic).
Answer: Given: d=50mm=0.05mD=d+2t=50+2x 2.5=55 mm = 0.055 m;
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Axial pull, P =10 kN; T= 500 Nm; p = 6MPa

(1) Principal stresses (0,,,) in the tube and the maximum shear stress (t
o pd P _6><'|06><O.05+ 10x10°

4t 7rdt 4x25x10°  7x0.05x2.5x107°

pd 6x10°x0.05

o =——=——

Y2t 2x25x10°°

Principal stresses are

o, +to o, -0,
51’22( 2 yJi\/( 2 y)"'ffy ___(1)

UseTorsional equation,

max )

=55.5MPa

=60MPa

Polarmomentof Inertia(J) = = (D* ~d*) = %[(0.055)“ ~(0.05)" |~2.848x107m*

Substituting the values in(i), we get
500 T

2.848x107 (0.055/2)

500x(0.055/2
or r= X( —~ )=48.28MPa
2.848x10

Now, substituting the various values in eqn. (i), we have

o - (55.5; 60} B \/(55.52— 60) + (48.28)

=106.08MPa, 9.42MPa
Principal stresses are : o, =106.08MPa; o, =9.42MPa

Maximum shear stress,r,, % = 1062'08 =53.04 MPa (Outof Plane)

(i) Stress configuration on a square element

(5 +=a) ‘

Pd
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11.|| Thick Cylinder

Theory at a Glance (for IES, GATE, PSU)
1. Thick cylinder

Inner dia of the cylinder (d,)
wall thickness (t)

<150r 20

2. General Expression

Illlr 'féx E -f:-}\l )5" F Py
g{i\\%’/ 0, j? A B

(a) (b)

3. Difference between the analysis of stresses in thin & thick cylinders

e In thin cylinders, it is assumed that the tangential stress o, is uniformly distributed over
the cylinder wall thickness.
In thick cylinder, the tangential stress o, has the highest magnitude at the inner surface of
the cylinder & gradually decreases towards the outer surface.

e Theradial stress 0, is neglected in thin cylinders while it is of significant magnitude in case

of thick cylinders.
4. Strain
. . du
e Radial strain, €,=—.
dr

u
e Circumferential /Tangential strain €,=—
r

O o, O©,
e Axial strain, €,= EZ - y(Er + Et]
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5. Stress

2

: _ b5

e Axial stress, O, ==
ry—r

B

e Radial stress, o, = A——2
r

o Circumferential /Tangential stress, o, = A+—
r

[Note: Radial stress always compressive so its magnitude always —ive. But in some books they

assume that compressive radial stress is positive and they use, o, = — = Al
r

6. Boundary Conditions

AtT=r, o =-p

At r=r, o, =—p,
2 2,2
7.A=w andB=(p;, = P,) -5

()

8. Cylinders with internal pressure (pi)) i.e. p,=0

2
Pl

2
. BT
z T2 2
h —F
p_r_z 'rz
e o, - %—1 [ -ive means compressive stress]
L= |r
2 [ ,2
- I
e o, =+ zp" - 5 +1
A _r

(a) At the inner surface of the cylinder

(i) r=r

(ii) o, =-p,
p.(12+12)
(|||) (o :+W
. r’

(IV) z-max = r2 ir_z 'pi

0] ]
(b) At the outer surface of the cylinder
@)r=r,
(i), =0
2p,r?
i) o, =—-=
( ) t rZ r2

s} i
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(c)

Radial and circumferential stress distribution within the cylinder wall when only
internalpressure acts.

2 2
° poro 1—-
o, = 2 2 2
P r )
2 [ 27
r

° t T fooz 1+|_2
[ L r ]

(a) At the inner surface of the cylinder

(0 r=r
(i) o, =0

2
(iif) o, =—2Ple_

t 2 2
I f

(b) At the outer surface of the cylinder

1) r=To

(i1) o, =—p,

0 I’02-’_ri2
(111) o, =— pl’(2 2 )

(c) Distribution of radial and circumferential stresses within the cylinder wall when
only external pressure acts

10. Lame's Equation(for Brittle Material, open or closed end]

There is a no of equations for the design of thick cylinders. The choice of equation depends upon two
parameters.

For-2019 (IES, GATE & PSUs) Page 377 of 480 Rev.0



Chapter-11 TiRage@yBnder S K Mondal’s
o Cylinder Material (Whether brittle or ductile)

e Condition of Cylinder ends (open or closed)

When the material of the cylinder is brittle, such as cast iron or cast steel, Lame's Equation is used to

determine the wall thickness. Condition of cylinder ends may open or closed.
It is based on maximum principal stress theory of failure.

There principal stresses at the inner surface of the cylinder are as follows: (1) (1) & (iii)

(i) oo =—p,

. Py +1°)
(“) O, :+W
pr’
(i) o, :+r2—r.2

(0] I

* o, >0,>0,

. . . . + P.
e o, isthe criterion of design == % * P
i o — b

e Forr,=r +t

e t=rx u—1 (Lame's Equation)
o — b
. _ Sun
‘' fos

11. Clavarino's Equation[for cylinders with closed end & made of ductile material]

When the material of a cylinder is ductile, such as mild steel or alloy steel, maximum strain theory

of failure is used (St. Venant's theory) is used.

Three principal stresses at the inner surface of the cylinder are as follows (i) (ii) & (iii)

(i) o, =—p
. p.(r; +1?)
i, =+4xo0 " i/
( )Gt (rog_riz)
piri2
iii)o, =+—"1——
(iii)o, -1
1
. Et:E|:O't —(O'r +0, ):|
. . _g_ay,d/fos
==
E E
e Oro=o0, —u(o, +o,). Where —— )
fos

e O is the criterion of design
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I o+(1-2u)p,
ri_ o—[1+u)p,

o Forro=ritt
t=r ,M —1| (Clavarion's Equation)
o—QL+)p

12. Birne's Equation [for cylinders with open end & made of ductile material]
When the material of a cylinder is ductile, such as mild steel or alloy steel, maximum strain theory

of failure is used (St. Venant's theory) is used.

Three principal stresses at the inner surface of the cylinder are as follows (i) (i1) & (iii)

(i) o, =-p,
- P + 1)
(")G’( :+W
(iii)o, =0
e O =0, —UOC, where o= 24
fos

e o is the criterion of design
L_ |ot@-mp
fi o—(1+u)p
t=rx /M —1 | (Birnie's Equation)
o—1+1)p

13. Barlow’s equation: [for high pressure gas pipe brittle or ductile material]

e Forro=ri+t

t=r i} [GAIL exam 2004]
O-t

(o]

O, . .
Where o, = f—y for ductile material
0s

= fa—“” for brittle material

14. Compound Cylinder(A cylinder & A Jacket)

e  When two cylindrical parts are assembled by shrinking or press-fitting, a contact pressure is
created between the two parts. If the radii of the inner cylinder are a and ¢ and that of the
outer cylinder are (c- d) and b, dbeing the radial interference the contact pressure is given

by:
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b>—c*)(c* —a’
b E8|(b"—¢)@ —a)
c| 2c°(b*—a’)

Where E is the Young's modulus of the material

e The inner diameter of the jacket is slightly smaller than the outer diameter of cylinder

e  When the jacket is heated, it expands sufficiently to move over the cylinder

e As the jacket cools, it tends to contract onto the inner cylinder, which induces residual
compressive stress.

e There is a shrinkage pressure 'P' between the cylinder and the jacket.

e The pressure 'P' tends to contract the cylinder and expand the jacket

e The shrinkage pressure 'P' can be evaluated from the above equation for a given amount of
interference O

e The resultant stresses in a compound cylinder are found by supervision losing the 2- stresses

»  stresses due to shrink fit

= stresses due to internal pressure

Derivation:

CYLINDER JACKET P
a
. CYLINDER JACKET
b ——

Due to interference let us assume 8j =increase in inner diameter
of jacket and &, = decrease in outer diameter of cylinder.

50 5=[,| +[3,| i.e. without sign.

Now 8, =€, ¢ €,= tangential strain
_ 1
—E[Gt —uo, ]C
o,=circumferential stress
cP|b? +c? : b?+c?
==z TH () +%
E |b°—c (b -c )
o, =-p(radialstress)
1 __p(c®+a?)
And in similarway 5, =€, ¢ =E[cst —uo,Jc t (c* —a?)
o, =—p
2 2
=-% Cz * a2 -u{———{(ii) Here -ive signrepresents contraction
c°—a
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Adding (i) & (ii)

Pc§¢ 2c?(b?- a?) U Ed b?- c?)(c?- a?)V
\5=|5]-|+|86|:—‘3 2_ ~2y\(n2_ 23 or P:_g 2(h2 _ 52 g
E gb”- c“)(c”- a’)H c§ 2c°(b*-a%) H

15. Autofrettage

Autofrettage is a process of pre-stressing the cylinder before using it in operation.

We know that when the cylinder is subjected to internal pressure, the circumferential stress at the

inner surface limits the pressure carrying capacity of the cylinder.

In autofrettage pre-stressing develops a residual compressive stresses at the inner surface. When
the cylinder is actually loaded in operation, the residual compressive stresses at the inner surface
begin to decrease, become zero and finally become tensile as the pressure is gradually increased.

Thus autofrettage increases the pressure carrying capacity of the cylinder.

16. Rotating Disc

The radial & circumferential (tangential) stresses in a rotating disc of uniform thickness are given

by

2

2p2
o, :’Og) (3+y)(R§+Rf—@—rZJ
r

2 2p2
o, :ﬂ(3+y)(R§ +R? +@—1+3’u.r2J
8 r 3+u

Where Ri = Internal radius
Ro= External radius

p = Density of the disc material

@ = Angular speed

M = Poisson's ratio.

Or, Hoop’s stress, G, = [3%4“},0602{&? + (‘]?;_—“] Ri2:|
TH

Radial stress, o, = (?H_T'u P’ [Rg - Rf]
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Lame's theory

GATE-1.

A thick cylinder is subjected to an internal pressure of 60 MPa. If the hoop
stress on the outer surface is 150 MPa, then the hoop stress on the internal
surface is: [GATE-1996; IES-2001]
(a) 105 MPa (b) 180 MPa (c) 210 MPa (d) 135 MPa

Previous 25-Years IES Questions

Thick cylinder

IES-1.

IES-2.

IES-3.

IES-3a.

IES-4.

If a thick cylindrical shell is subjected to internal pressure, then hoop stress,
radial stress and longitudinal stress at a point in the thickness will be:

(@) Tensile, compressive and compressive respectively [TES-1999]
(b)  All compressive

(¢) All tensile

(d) Tensile, compressive and tensile respectively

Where does the maximum hoop stress in a thick cylinder under external

pressure occur? [TES-2008]
(a) At the outer surface (b) At the inner surface

(c) At the mid-thickness (d) At the 2/3d outer radius

In a thick cylinder pressurized from inside, the hoop stress is maximum at

(a) The centre of the wall thickness (b) The outer radius [TES-1998]
(c) The inner radius (d) Both the inner and the outer radii

Consider the following statements for a thick-walled cylinder, subjected to an
internal pressure: [TES-2016]

1. Hoop stress is maximum at the inside radius.

2. Hoop stress is zero at the outside radius.

3. Shear stress is maximum at the inside radius.

4. Radial stress is uniform throughout the thickness of the wall.

Which of the above statements are correct?

(a) 1 and 4 (b) 1 and 3 (c) 2and 3 (d) 2 and 4

Consider the following statements:
1. In case of a thin spherical shell of diameter d and thickness t, subjected to internal

o
pressure p, the principal stresses at any point equal Z—t. [IES-2018]

2. In case of thin cylinders, the hoop stress is determined assuming it to be uniform
across the thickness of the cylinder.

3. In thick cylinders, the hoop stress is not uniform across the thickness but it varies from
a maximum value at the inner circumference to a minimum value at the outer
circumference.

Which of the above statements are correct?
(a) 1 and 2 only (b) 1 and 3 only
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IES-5.

IES-6.

(c) 2 and 3 only (d)1,2and 3

A thick-walled hollow cylinder having outside and inside radii of 90 mm and 40
mm respectively is subjected to an external pressure of 800 MN/m2. The
maximum circumferential stress in the cylinder will occur at a radius of

[TES-1998]
(a) 40 mm (b) 60 mm (c) 65 mm (d) 90 mm

In a thick cylinder, subjected to internal and external pressures, let r1 and r2 be
the internal and external radii respectively. Let u be the radial displacement of

a material element at radius r, I, 2 > I,. Identifying the cylinder axis as z axis,

the radial strain component &, is: [TES-1996]
(a) u/r dyul/o (c) du/dr (d) du/d6

Lame's theory

IES-7.

IES-8.

IES-9.

A thick cylinder is subjected to an internal pressure of 60 MPa. If the hoop
stress on the outer surface is 150 MPa, then the hoop stress on the internal
surface is: [GATE-1996; IES-2001]
(a) 105 MPa (b) 180 MPa (c) 210 MPa (d) 135 MPa

A hollow pressure vessel is subject to internal pressure. [TES-2005]
Consider the following statements:

1. Radial stress at inner radius is always zero.

2. Radial stress at outer radius is always zero.

3. The tangential stress is always higher than other stresses.

4. The tangential stress is always lower than other stresses.

Which of the statements given above are correct?

(a) 1and 3 (b) 1 and 4 (c)2and 3 (d) 2 and 4

A thick open ended cylinder as shown in the
figure is made of a material with permissible
normal and shear stresses 200 MPa and 100 MPa
respectively. The ratio of permissible pressure
based on the normal and shear stress is:

[di =10 cm; do = 20 cm]
(a) 9/5 (b) 8/5
(c) 7/5 (d) 4/5

[TES-2002]

Longitudinal and shear stress

IES-10.

IES-11.

A thick cylinder of internal radius and external radius a and b is subjected to
internal pressure p as well as external pressure p. Which one of the following

statements is correct? [TES-2004]
The magnitude of circumferential stress developed is:

(a) Maximum at radiusr = a (b) Maximum at radiusr =b

(c) Maximum at radius r = /ab (d) Constant

Consider the following statements: [TES-2007]

In a thick walled cylindrical pressure vessel subjected to internal pressure,
theTangential and radial stresses are:

1. Minimum at outer side

2. Minimum at inner side

3. Maximum at inner side andboth reduce to zero at outer wall

4. Maximum at inner wall but the radial stress reduces to zero at outer wall
Which of the statements given above is/are correct?

(a) 1 and 2 (b) 1 and 3 (c) 1and 4 (d) 4 only
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IES-12.

IES-13.

Consider the following statements at given point in the case of thick cylinder

subjected to fluid pressure: [TES-2006]
1. Radial stress is compressive

2. Hoop stress is tensile

3. Hoop stress is compressive

4. Longitudinal stress is tensile and it varies along the length

5. Longitudinal stress is tensile and remains constant along the length of the

cylinder
Which of the statements given above are correct?
(a) Only 1, 2 and 4 (b) Only 3and 4 (c¢) Only 1,2 and 5 (d) Only 1,3 and 5

A thick cylinder with internal diameter d and outside diameter 2d is subjected
to internal pressure p. Then the maximum hoop stress developed in the
cylinder is: [TES-2003]

(a) (b)2p ()Sp (d) 2
a - C) —
p 3 3 P

Compound or shrunk cylinder

IES-14.

IES-15.

IES-16.

IES-17.

IES-17a.

Autofrettage is a method of: [TES-1996; 2005; 2006]
(a) Joining thick cylinders (b) Relieving stresses from thick cylinders
(c) Pre-stressing thick cylinders (d) Increasing the life of thick cylinders
Match List-I with List-II and select the correct answer using the codes given
below the Lists: [TES-2004]
List-I List-IT
A. Wire winding 1. Hydrostatic stress
B. Lame's theory 2. Strengthening of thin cylindrical shell
C. Solid sphere subjected to uniform 3. Strengthening of thick cylindrical shell
pressure on the surface

D. Autofrettage 4. Thick cylinders
Coeds: A B C D A B C D

(a) 4 2 1 3 (b) 4 2 3 1

() 2 4 3 1 (d) 2 4 1 3

If the total radial interference between two cylinders forming a compound
cylinder is 6 and Young's modulus of the materials of the cylinders is E, then
the interface pressure developed at the interface between two cylinders of the

same material and same length is: [TES-2005]
(a) Directly proportional of E x 6 (b) Inversely proportional of E/ &
(c) Directly proportional of E/ 6 (d) Inversely proportional of E /&

A compound cylinder with inner radius 5 cm and outer radius 7 cm is made by
shrinking one cylinder on to the other cylinder. The junction radius is 6 cm
and the junction pressure is 11 kgf/cm2. The maximum hoop stress developed in

the inner cylinder is: [TES-1994]
(a) 36 kgf/lcm? compression (b) 36 kgf/cm? tension
(c) 72 kgflem? compression (d) 72 kgf/em? tension.

A steel hub of 100 mm internal diameter and uniform thickness of 10 mm was
heated to a temperature of 300°C to shrink fit it on a shaft. On cooling, a crack
developed parallel to the direction of the length of the hub. The cause of the

failure is attributable to [TES-2016]
(a) tensile hoop stress (b) tensile radial stress
(c) compressive hoop stress (d) compressive radial stress
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Thick Spherical Shell

IES-18. The hemispherical end of a pressure vessel is fastened to the cylindrical
portion of the pressure vessel with the help of gasket, bolts and lock nuts. The
bolts are subjected to: [TES-2003]
(a) Tensile stress (b) Compressive stress (c) Shear stress (d) Bearing stress

Previous 25-Years IAS Questions

Longitudinal and shear stress
IAS-1. A solid thick cylinder is subjected to an external hydrostatic pressure p. The

state of stress in the material of the cylinder is represented as: [IAS-1995]
{a) () TP
P—> «—P
P—™ +—P
s
{c} lP () S
P P
P_... .'_:P
P———

!

OBJECTIVE ANSWERS

GATE-1. Ans. (c) If internal pressure = pi; External pressure = zero

2 2
. . I r
Circumferential or hoop stress (oc) = %{% + 1}
rr

o~

At p, =60MPa, o, =150MPa and r =r,

2 2 2
sl=120t o108 R )Y
re—r, rr—r° 120 4 5

(o]

2
o, =60 | 41 :60><§><(g+1j:210MPa
r 4 \5

IES-1. Ans. (d)Hoop stress — tensile, radial stress — compressive and longitudinal stress — tensile.
i Po

Radial and ci.rcumferential stress Distribution of radial and circumferential
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distribution within the cylinder wall stresses within the cylinder wall when only
when only internal pressure acts. external pressure acts.
IES-2. Ans. (b)

Circumferential or hoop stress= o,

IES-3. Ans. (¢)
IES-3a.Ans. (b)

IES-4.Ans. (d)

IES-5. Ans. (a)
IES-6. Ans. (c) The strains er and gemay be given by

£, =86u’ =%[o-r—v0'9] since o, =0
r
r+u, )A0-rA0 u 1
oy 0 e L]
u, + =X 5

u, cr

A A B B

Representation of radial and
circumferential strain.
IES-7. Ans. (c)If internal pressure = pi; External pressure = zero

2 2

. . I I
Circumferential or hoop stress (oc) = 2p, — {12 + 1}

r r

o i

At p, =60MPa, o, =150MPa and r =r,

IES-8. Ans. (c)
IES-9. Ans. (b)
IES-10. Ans. (d)
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Pr’-Pr’> Pa’-Pb?
GC:A+r—2 A= e e R =P
(Pl _Po)rozriz
O'C = —P B = > > =0
o —F

IES-11. Ans. (¢)

IES-12.Ans.(c)3.For internal fluid pressure Hoop or circumferential stress is tensile.
4. Longitudinal stress is tensile and remains constant along the length of the cylinder.
IES-13. Ans. (c¢) In thick cylinder, maximum hoop stress

O-hoop = pX

IES-14. Ans. (c¢)
IES-15. Ans. (d)
IES-16. Ans. (a)

IES-17. Ans.(c)
IES-17a.Ans. (a)

IES-18. Ans. (a)
IAS-1. Ans. (c)
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|

Po

Distribution of radial and circumferential stresses within the cylinder wall when only
external pressure acts.

Previous Conventional Questions with Answers

Conventional Question IES-1997

Question:

Answer:

The pressure within the cylinder of a hydraulic press is 9 MPa. The inside
diameter of the cylinder is 25 mm. Determine the thickness of the cylinder
wall, if the permissible tensile stress is 18 N/mm?2
Given: P = 9 MPa = 9 N/mm?2, Inside radius, r1 = 12.5 mm;
o, = 18 N/mm?
Thickness of the cylinder:
: o rZ+r?
Using the equation;o, =p| 5—
2 1
2 2
r, +12.5
18=9 55—
r, —12.5

or r, =21.65mm
.. Thickness of the cylinder =r, —r, =21.65-12.5=9.15mm

},we have

Conventional Question IES-2010

Q.

Ans.

A spherical shell of 150 mm internal diameter has to withstand an internal
pressure of 30 MN/m2. Calculate the thickness of the shell if the allowable
stress is 80 MN/m?2.

Assume the stress distribution in the shell to follow the law

2b b
o, :a—F and o, :a+r—3 [10 Marks]

A spherical shell of 150 mm internal diameter internal pressure = 30 MPa.
Allowable stress = 80 MN/m?2

2b
Assume radial stress = 0, =a — —
r
) b
Circumference stress = 0y =a + -5

At internal diameter (r)
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o, = —30N / mm?
oo = S8ON / mm?
B0=a-—22 .. @)
(75)
80=a+—— e, 1
75y (11)
Soluing eq" (1) & (i1)
110x75° 130
b= a=
3 3
At outer Radius (R) radial stress should be zero
3 2b
o=a-— ?
3
e = 20 _ 2X110X757 _ 19940 3077
a 130
Ix—_——
R =89.376mm

There fore thickness of cylinder = (R —r)
=89.376-75=14.376 mm

Conventional Question IES-1993

Question: A thick spherical vessel of inner 'radius 150 mm is subjected to an internal
pressure of 80 MPa. Calculate its wall thickness based upon the
(i) Maximum principal stress theory, and
(ii) Total strain energy theory.

Poisson's ratio = 0.30, yield strength = 300 MPa
Answer: Given:

r, =150mm; p(o, ) =80MPa =80 x10°N/ m?; ,u=%=0.30;
o =300MPa =300 x10°N/ m?

Wall thickness t:
(i)Maximum principal stress theory :

2
We know that, o, g <o Where K = 2
K -1 r,
2
or 80x106(K2+1JS300x106
K -1
or K>1.314
or K=1.314
i.e. B _13140r r,=r,x1.314=150x1.314 =197.1mm

I
.. Metal thickness, t=r, —r, =197.1-150 =47.1 mm
(i1) Total strain energy theory:

2 2 2
Use o} + 0, — no,0, <o,
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025 207 [K‘* (1+ ) + (1 —,u)}
> (K2 _1)2
(300x10°) > 2x(80x10°) [K*(1+03) +(1-0.3)]
(<)

or  300°(K2 —1)2 = 2x80%(1.3K* +0.7)
gives K=1.86 or 0.59

It is clear thatK > 1
. K=1.364

or 2-1.364o0r r,=150x1.364 =204.6 mm
r1

t=r,—r,=204.6 -150 =54.6 mm

Conventional Question ESE-2002

Question:

Answer:

What is the difference in the analysis of think tubes compared to that for thin
tubes? State the basic equations describing stress distribution in a thick
tube.

The difference in the analysis of stresses in thin and thick cylinder:

(1) In thin cylinder, it is assumed that the tangential stress is uniformly distributed
over the cylinder wall thickness. In thick cylinder, the tangential stress has highest
magnitude at the inner surface of the cylinder and gradually decreases towards the
outer surface.

(11) The radial stress is neglected in thin cylinders, while it is of significant magnitude
in case of thick cylinders.

Basic equation for describing stress distribution in thick tube is Lame's equation.

o :%—A and o, :%JrA

r

Conventional Question ESE-2006

Question:

Answer:

What is autofrettage?

How does it help in increasing the pressure carrying capacity of a thick
cylinder?

Autofrettage is a process of pre-stressing the cylinder before using it in operation.

We know that when the cylinder is subjected to internal pressure, the circumferential
stress at the inner surface limits the pressure carrying capacity of the cylinder.

In autofrettage pre-stressing develops a residual compressive stresses at the inner
surface. When the cylinder is actually loaded in operation, the residual compressive
stresses at the inner surface begin to decrease, become zero and finally become tensile
as the pressure is gradually increased. Thus autofrettage increases the pressure
carrying capacity of the cylinder.

Conventional Question ESE-2001

Question:

When two cylindrical parts are assembled by shrinking or press-fitting, a
contact pressure is created between the two parts. If the radii of the inner
cylinder are a and c and that of the outer cylinder are (c- 0) and b, 6 being
the radial interference the contact pressure is given by:

b*> —c*)(c* —a’
P:E6< )( )
c| 2c*(b*—a?)
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Where E is the Young's modulus of the material, Can you outline the steps
involved in developing this important design equation?

Answer:
CYLINDER JACKET P
B
28
YLINDER T
e ¢ CYLI | JACKET
- 7h ]

Jacket

Cylinder

Due to interference let us assume 8; =increase in inner diameter
of jacket and &, = decrease in outer diameter of cylinder.
o) 8=‘8j‘ +[3,| i.e. without sign.

Now 3, =€, ¢ €,= tangential strain
1
=E[Gt —HGr]C

o,=circumferential stress
2 2
, P(b?+¢?)
(0*<%)

0,=-p(radialstress)

b? +¢c?

_cP
- b? —c?

+
E |

———()

And in similarway 6, =€; C

1 _ p(c+a°)
=E[ct —uo, |c t (c? —a?)
c, =—p
2 2
=_% C2 T a2 - 4 ———(ii) Here -ivesignrepresentscontraction
c°—a
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Adding (i) & (ii)
Pc| 2c?(b®>—a?)
S0=(0:|+ 0. |=—
‘ J‘+| C| E (b2_c2)(c2_a2)

(b2 _ C2 )(C2 _ a2)
2c?(b* —a?)

Es
C

or P= Proved.

Conventional Question ESE-2003

S K Mondal’s

Question: A steel rod of diameter 50 mm is forced into a bronze casing of outside
diameter 90 mm, producing a tensile hoop stress of 30 MPa at the outside

diameter of the casing.
Find (i) The radial pressure between the rod and the casing
(ii) The shrinkage allowance and

(iii) The rise in temperature which would just eliminate the force fit.

Assume the following material properties:

Es=2x105 MPa, ps =025 ,a, =1.2x107°/°C
En=1x105MPa,p, =0.3, o, =1.9x107°/°C

Answer:
P
// :
i Brénze casin
Steel rod Bronze casing g

Steel Rod

There is a shrinkage pressure P between the steel rod and the bronze casing. The

pressure P tends to contract the steel rod and expand the bronze casing.

(i) Consider Bronze casing, According to Lames theory

2 p,2
Gt:%+A Where A = B —Pofo

2 _r?
o 2 A2
and B = —(PirzFi)irzo i
0 i
P=P, P,=0and
Pr? Prir? 2Pr?
A=r2—r2 B rzo—r2 T r?
0 i 0 i 0 i
Pr? Pr? 2Pr?
V=F+A=—"5 +—5—5 =
r02 r02 — riz r02 _ riz r02 — riz
2 .2 2 2
or, p=2%0 1) _45|% 4 _15 [@] _ 1|MPa=33.6MPa
2r r, 50

Therefore the radial pressure between the rod and the casing is P= 33.6 MPa.

(ii) The shrinkage allowance:
Let 0;j=increase in inert diameter of bronze casing
0 c= decrease in outer diameter of steel rod
1st consider bronze casing:
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Tangential stress at the inner surface(s,), = Ez +A
r

90\
Pr2 Pr2 P(rZ+r?) 50 1
= o PPl A0 536409 |- 63.6MPa
h =L T =T (ro_ri) 90 _1
50

and radial stress(c, ), = —P = —33.6MPa

longitudial stress(s,), =0

Therefore tangential strain (¢, ), = é[(ct)j — (o, )j]

1
1x10°
.8, =(g), xd, =7.368x 10 * x 0.050 = 0.03684 mm

J

[63.6 +0.3x33.6] =7.368x10™

2nd Consider steel rod:
Circumferential stress (c,), = —P

and radial stress (s, ), = —P

28, = (&) xd, :Ei[(ct)s — (o, )S]Xdi

S

33.6x0.050
2x10°

Total shrinkage =\6j \+|6C|=o.o4 mml[it is diametral] = 0.02mm [radial]

_ —PE—dim ) =— [1-0.25] = —0.0063mm [reduction]

(iii) Let us temperature rise is (At)

As oy > o, due to same temperature rise steel not will expand less than bronze
casing. When their difference of expansion will be equal to the shrinkage then
force fit will eliminate.

d, xa, x At —d, x o, x At =0.04272

or at 004272 0.04272 _qomoc
di[a, —a,] 50x[1.9x10° —1.2x10°°

Conventional Question AMIE-1998
Question: A thick walled closed-end cylinder is made of an Al-alloy (E = 72 GPa,
1

—=0.33), has inside diameter of 200 mm and outside diameter of 800 mm.
m

The cylinder is subjected to internal fluid pressure of 150 MPa. Determine the
principal stresses and maximum shear stress at a point on the inside surface
of the cylinder. Also determine the increase in inside diameter due to fluid
pressure.

Answer: Given: I, = 2;20 =100mm=0.1m;r, = 8¥;O =400mm = 0.4;p = 150MPa = 150MN / m?;

E = 72GPa=T72x10°N/m% —=0.33 =4
m

Principal stress and maximum shear stress:
Using the condition in Lame’s equation:

For-2019 (IES, GATE & PSUs) Page 393 of 480 Rev.0



Chapter-11

TirageGpdnder

Atr=0.1m, o, =+p=150MN/m?
r=0.4m, o0,=0
Substituting the values in the above equation we have

b

150=(0.1)2—a ————(i)
b .
" (04 U

From(i)and(ii), we get
a=10 and b=1.6

1.6

(o,),,-atr(=r)=0.1m :WHO =170MN/m?(tensile), and

(0),atr(=r,)=04m= % +10 = 20MN/m? (tensile).

-.Principal stresses are 170 MN/m? and 20MN/m?
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12.|| Spring

Theory at a Glance (for IES, GATE, PSU)

1. A spring is a mechanical device which is used for the efficient storage

and release of energy.

2. Helical spring — stress equation

Let us a close-coiled helical spring has coil diameter D, wire diameter d and number of turn n. The
. . . . D o - .
spring material has a shearing modulus G. The spring index,C = E . If a force ‘P’ is exerted in both

ends as shown.

The work done by the axial

force 'P' is converted into

strain energy and stored in
the spring.
U=(average torque)

x(angular displacement)
=Ixe
2
TL

From the figure we get, 6 =—
GJ

Torque (T)=?

length of wire (L)=1rDn

: md*
Polar moment of Inertia(J)= 32
2R3
Therefore U=w
Gd

According to Castigliano's theorem, the displacement corresponding to force P is obtained by

partially differentiating strain energy with respect to that force.

U _ 9 [4p2D3n _ 8PD°n

Therefore § =——— = — —|= 7
oP 0P| Gd Gd

Axial deflection
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8PD"n
d = p
Gd

Spring stiffness or spring constant

P Gd*
ky=—=
() d 8D°n

Compliance

The inverse of the spring constant K is called the compliance, C = 1/K

Stress in Spring

16T 16(PD/2) 8PD
7d? 7d? 7d?
P 4P _SPD[o.sdj
xd?) #d*> zd®{ D
4

The torsional shear stress in the bar, 7, =

The direct shear stress in the bar, 7, = [

8PD [1+ 0.5d j _K, 8PD

Therefore the total shear stress, r=17,+7, = — 3
T D zd

SPD

> 7d?

1s correction factor for direct shear stress.

=K

0.5d

Where K, =1+

3. Wahl!’s stress correction factor

K 8P5)
d
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(4C-1 0615

Where - 4C . 4 + C 1s known as Wahl’s stress correction factor

Here K = K:K; Where K_is correction factor for direct shear stress and K. is correction
factor for stress concentration due to curvature.

Note: When the spring is subjected to a static force, the effect of stress concentration is neglected

due to localized yielding. So we will use, 7 =K, 82?
Tt
4. Equivalent stiffness (Keq)
Spring in series (5, =6, +9,) Spring in Parallel (5, =6,=9,)
K,
VWA
i:i+i or Keqzﬂ Keq:Kl+K2
Ko Ko K, K, +K,
Shaft in series (6 =6, +6,) Shaft in Parallel (6,, =6, =06, )
A B C 1 L — 1. —»
[k = b
Ty |
L ——e— L, — K, K,
N S P K =Kok
Koy K K, K, +K,

5. Important note
e If a spring is cut into ‘n’ equal lengths then spring constant of each new spring = nk
e When a closed coiled spring is subjected to an axial couple M then the rotation,

4o 64MDn,
Ed*

6. Laminated Leaf or Carriage Springs

. 3pL®
o Central deflection, § = ———
8Enbt
. . 3PL
¢ Maximum bending stress, 6, = rbtz

Where P =load on spring
b = width of each plate
n =no of plates
L= total length between 2 points
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t =thickness of one plate.

7. Belleville Springs
Load,P=— =0 | —a)(h —§jt We
-p")k; Dy 2 :
Where, E = Modulus of elasticity | '
0= Linear deflection \\_/ /
p =Poisson’s Ratio :

k¢ =factor for Belleville spring

h =Deflection required to flatten Belleville spring
t= thickness
Note:
o Total stiffness of the springs kro: =stiffness per spring X No of springs
o In a leaf spring ratio of stress between full length and graduated leaves = 1.5
o Conical spring- For application requiring variable stiffness

D, = outside diamerer ! j
h,

¢ Belleville Springs -For application requiring high capacity springs into small space
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Helical spring

GATE-1. If the wire diameter of a closed coil helical spring subjected to compressive
load is increased from 1 cm to 2 cm, other parameters remaining same, then
deflection will decrease by a factor of: [GATE-2002]
(a) 16 (b) 8 (c) 4 (d) 2

GATE-2. A compression spring is made of music wire of 2 mm diameter having a shear
strength and shear modulus of 800 MPa and 80 GPa respectively. The mean coil
diameter is 20 mm, free length is 40 mm and the number of active coils is 10. If
the mean coil diameter is reduced to 10 mm, the stiffness of the spring is

approximately [GATE-2008]
(a) Decreased by 8 times (b) Decreased by 2 times
(c) Increased by 2 times (d) Increased by 8 times

GATE-2a. If the wire diameter of a compressive helical spring is increased by 2%, the
change in spring stiffness (in %) is (correct to two decimal places.) [GATE-2018]

GATE-2(i).The spring constant of a helical compression spring DOES NOT depends on
(a) Coil diameter (b) Material strength [GATE-2016]
(¢) Number of active turns (d) Wire diameter

GATE-3. Two helical tensile springs of the same material and also having identical mean
coil diameter and weight, have wire diameters d and d/2. The ratio of their

stiffness is: [GATE-2001]

(@1 (b) 4 (c) 64 (d) 128
GATE-4. A uniform stiff rod of length 300 mm . \/\/\ﬁ\/\/\ﬁ§

and having a weight of 300 N is

pivoted at one end and connected to {55
a spring at the other end. For
keeping the rod vertical in a stable

position the minimum value of J w
spring constant K needed is: e
(2) 300 N/m (b) 400N/m o
(c) 500N/m (d) 1000 N/m
AN

[GATE-2004]

GATE-5. A weighing machine consists of a 2 kg pan resting on spring. In this condition,
with the pan resting on the spring, the length of the spring is 200 mm. When a
mass of 20 kg is placed on the pan, the length of the spring becomes 100 mm.
For the spring, the un-deformed length 1, and the spring constant k (stiffness)

are: [GATE-2005]
(a) 1o = 220 mm, k = 1862 N/m (b) 1o =210 mm, k = 1960 N/m
(c) 1, =200 mm, k = 1960 N/m (d) 1o = 200 mm, k = 2156 N/m
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Springs in Series

GATE-6.

GATE-17.

The deflection of a spring with 20 active turns under a load of 1000 N is 10 mm.
The spring is made into two pieces each of 10 active coils and placed in parallel
under the same load. The deflection of this system is: [GATE-1995]
(a2) 20 mm (b) 10 mm (c) 5 mm (d) 2.5 mm

A helical compression spring made of a wire of circular cross-section is
subjected to a compressive load. The maximum shear stress induced in the
cross-section of the wire is 24 MPa. For the same compressive load, if both the
wire diameter and the mean coil diameter are doubled, the maximum shear
stress (in MPa) induced in the cross-section of the wire is .
[GATE-2017]

Previous 25-Years IES Questions

Helical spring

IES-1.

TES-1(i).

IES-2.

IES-3.

IES-4.

IES-4(3i).

A helical coil spring with wire diameter ’d’ and coil diameter 'D' is subjected to
external load. A constant ratio of d and D has to be maintained, such that the
extension of spring is independent of d and D. What is this ratio? [TES-2008]

3 " 3 . D4/3 d4/3
(a)D* /d (b)d® /D ©) @) 5

If both the mean coil diameter and wire diameter of a helical compression or
tension spring be doubled, then the deflection of the spring close coiled under

same applied load will [TES-2012]
(a) be doubled (b) be halved
(c) increase four times (d) get reduced to one — fourth

Assertion (A): Concentric cylindrical helical springs are used to have greater
spring force in a limited space. [TES-2006]
Reason (R): Concentric helical springs are wound in opposite directions to
prevent locking of coils under heavy dynamic loading.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Aisfalse but R is true

Assertion (A): Two concentric helical springs used to provide greater spring
force are wound in opposite directions. [TES-1995; IAS-2004]
Reason (R): The winding in opposite directions in the case of helical springs
prevents buckling.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Ais false but R is true

Which one of the following statements is correct? [TES-1996; 2007; IAS-1997]
If a helical spring is halved in length, its spring stiffness
(a) Remains same (b) Halves (c) Doubles (d) Triples

A helical compression spring of stiffness k is cut into two pieces, each having
equal number of turns and kept side by side under compression. The
equivalent spring stiffness of this new arrangement is equal to [IES-2015, 2016]
(a) 4k (b) 2k ©k (d) 0.5k
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IES-4(ii). A closely coiled spring of 20 cm mean diameter is having 25 coils of 2 cm

IES-5.

TES-5(i).

IES-6.

IES-6a.

IES-7.

IES-8.

IES-9.

IES-10.

IES-11.

diameter. Modulus of rigidity of the material is 10’ N/ cm?. Stiffness of spring is:
(a) 50 N/em (b) 250 N/em (¢) 100 N/em  (d) 500 N/ecm [IES-2013]

A body having weight of 1000 N is dropped from a height of 10 cm over a close-
coiled helical spring of stiffness 200 N/cm. The resulting deflection of spring is
nearly [TES-2001]
(a) 5cm (b) 16 cm (c) 35 cm (d) 100 cm

A closed coil helical spring having 10 active turns is made of 8 mm diameter
steel wire. The mean coil diameter is 10 cm. If G = 80 GPa for the material of
the spring, the extension of the spring under the tensile load of 200 N will be

(a) 40 mm (b) 45 mm (c) 49 mm (d) 53 mm [IES-2014]

A close-coiled helical spring is made of 5 mm diameter wire coiled to 50 mm
mean diameter. Maximum shear stress in the spring under the action of an
axial force is 20 N/mm?2. The maximum shear stress in a spring made of 3 mm
diameter wire coiled to 30 mm mean diameter, under the action of the same
force will be nearly [TES-2001]
(a) 20 N/mm? (b) 33.3 N/mm2 (c) 55.6 N/mm? (d) 92.6 N/mm?

A closely-coiled helical spring is made of 10 mm diameter steel wire, with the
coil consisting of 10 turns with a mean diameter 120 mm. The spring carries an
axial pull of 200 N. What is the value of shear stress induced in the spring
neglecting the effect of stress concentration and of deflection in the spring,

when the modulus of rigidity is 80 kN/mm?2? [TES-2016]
(a) 63.5 N/mm2 and 34.6 mm (b) 54.2 N/mm2 and 34.6 mm
(c) 63.5 N/mm2 and 42.6 mm (d) 54.2 N/mm2 and 42.6 mm

A closely-coiled helical spring is acted upon by an axial force. The maximum
shear stress developed in the spring is t . Half of the length of the spring is cut
off and the remaining spring is acted upon by the same axial force. The
maximum shear stress in the spring the new condition will be: [TES-1995]
(a) % t (b) t (2t (d)4t

The maximum shear stress occurs on the outermost fibers of a circular shaft
under torsion. In a close coiled helical spring, the maximum shear stress
occurs on the [TES-1999]
(a) Outermost fibres  (b) Fibres at mean diameter (c¢) Innermost fibres (d) End coils

A helical spring has N turns of coil of diameter D, and a second spring, made of
same wire diameter and of same material, has N/2 turns of coil of diameter 2D.
If the stiffness of the first spring is k, then the stiffness of the second spring
will be: [TES-1999]
(a) k/4 (b) k/2 (c) 2k (d) 4k

A closed-coil helical spring is subjected to a torque about its axis. The spring
wire would experience a [TES-1996; 1998]
(a) Bending stress

(b) Direct tensile stress of uniform intensity at its cross-section

(¢)  Direct shear stress

(d) Torsional shearing stress

Given that: [TES-1996]
d = diameter of spring, R = mean radius of coils,n = number of coils and G
=modulus of rigidity, the stiffness of the close-coiled helical spring subject to
an axial load W is equal to
® Gd* ) Gd® © Gd* @ Gd*
a ¢

64R’n 64R’n 32R°n 64Rn
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IES-12.

IES-13.

IES-14.

IES-15.

IES-16.

IES-17.

IES-18.

IES-18a.

IES-19.

TES-20.

A closely coiled helical spring of 20 cm mean diameter is having 25 coils of 2 cm
diameter rod. The modulus of rigidity of the material if 107 N/em2. What is the

stiffness for the spring in N/ecm? [TES-2004]
(a) 50 (b) 100 (c) 250 (d) 500
Which one of the following expresses the stress factor K used for design of
closed coiled helical spring? [TES-2008]
4C-4 4C-1 0.615 4C-4 0.615 4C -1
@-——~—— b)——+—— ) —F+—~— (d)——
4C -1 4C-4 C 4C -1 C 4C -4

Where C = spring index

In the calculation of induced shear stress in helical springs, the Wahl's
correction factor is used to take care of [TES-1995; 1997]
(a) Combined effect of transverse shear stress and bending stresses in the wire.

(b) Combined effect of bending stress and curvature of the wire.

(¢) Combined effect of transverse shear stress and curvature of the wire.

(d) Combined effect of torsional shear stress and transverse shear stress in the wire.

While calculating the stress induced in a closed coil helical spring, Wahl's

factor must be considered to account for [TES-2002]
(a) The curvature and stress concentration effect (b) Shock loading
(c) Poor service conditions (d) Fatigue loading

Cracks in helical springs used in Railway carriages usually start on the inner
side of the coil because of the fact that [TES-1994]
(a) It is subjected to the higher stress than the outer side.

(b) It is subjected to a higher cyclic loading than the outer side.

(¢) It is more stretched than the outer side during the manufacturing process.

(d) It has a lower curvature than the outer side.

Two helical springs of the same material and of equal circular cross-section
and length and number of turns, but having radii 20 mm and 40 mm, kept
concentrically (smaller radius spring within the larger radius spring), are
compressed between two parallel planes with a load P. The inner spring will
carry a load equal to [TES-1994]
(a) P/2 (b) 2P/3 (c) P/9 (d) 8P/9

A length of 10 mm diameter steel wire is coiled to a close coiled helical spring
having 8 coils of 75 mm mean diameter, and the spring has a stiffness K. If the
same length of wire is coiled to 10 coils of 60 mm mean diameter, then the
spring stiffness will be: [IES-1993]
(a) K (b) 1.25 K (c) 1.56 K (d) 1.95K

Two equal lengths of steel wires of the same diameter are made into two
springs S1 andS2 of mean diameters 75 mm and 60 mm respectively. The
stiffness ratio of S1 to S2 is [TES-2011]

60\’ 60 75\’ 75\’
a)| — b)| — c)| — d)| —
B B B S
A spring with 25 active coils cannot be accommodated within a given space.
Hence 5 coils of the spring are cut. What is the stiffness of the new spring?

(a) Same as the original spring(b) 1.25 times the original spring [TES-2004, 2012]
(c) 0.8 times the original spring(d) 0.5 times the original spring

Wire diameter, mean coil diameter and number of turns of a closely-coiled steel
spring are d, D and N respectively and stiffness of the spring is K. A second
spring is made of same steel but with wire diameter, mean coil diameter and
number of turns 2d, 2D and 2N respectively. The stiffness of the new spring is:

[IES-1998; 2001]
(a K (b) 2K (c) 4K (d) 8K
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IES-21. When two springs of equal lengths are arranged to form cluster springs which
of the following statements are the: [TES-1992]
1. Angle of twist in both the springs will be equal
2. Deflection of both the springs will be equal
3. Load taken by each spring will be half the total load
4. Shear stress in each spring will be equal
(@) 1and 2 only  (b) 2 and 3 only (c) 3 and 4 only (d) 1, 2 and 4 only

IES-22. Consider the following statements: [TES-2009]
When two springs of equal lengths are arranged to form a cluster spring
1. Angle of twist in both the springs will be equal
2. Deflection of both the springs will be equal
3. Load taken by each spring will be half the total load
4. Shear stress in each spring will be equal
Which of the above statements is/are correct?
(@) 1and 2 (b) 3 and 4 ()2 only (d) 4 only

IES-22(i). The compliance of the spring is the: [TES-2013]
(a) Reciprocal of the spring constant
(b) Deflection of the spring under compressive load
(¢) Force required to produce a unit elongation of the spring
(d) Square of the stiffness of the spring

IES-22(ii). A bumper consisting of two helical springs of circular section brings to rest a
railway wagon of mass 1500 kg and moving at 1 m/s. While doing so, the springs
are compressed by 150 mm. Then, the maximum force on each spring (assuming
gradually increasing load) is: [TES-2013]

(a) 2500 N (b) 5000 N (c) 7500 N (d) 3000 N

Close-coiled helical spring with axial load

IES-23. Under axial load, each section of a close-coiled helical spring is subjected to
(a) Tensile stress and shear stress due to load [TES-2003]
(b) Compressive stress and shear stress due to torque
(¢) Tensile stress and shear stress due to torque
(d) Torsional and direct shear stresses

IES-24. When a weight of 100 N falls on a spring of stiffness 1 kN/m from a height of 2

m, the deflection caused in the first fall is: [TES-2000]
(a) Equal to 0.1 m (b) Between 0.1 and 0.2 m
(c) Equal to 0.2 m (d) More than 0.2 m

Subjected to 'Axial twist'

IES-25. A closed coil helical spring of mean coil diameter 'D' and made from a wire of
diameter 'd' is subjected to a torque 'T' about the axis of the spring. What is the

maximum stress developed in the spring wire? [TES-2008]
8T 16T 32T 64T
a b c d
()7Z'd3 ()7Z'd3 ()ndf" ()nd3

Springs in Series

IES-26. When a helical compression spring is cut into two equal halves, the stiffness of
each of the result in springs will be: [TIES-2002; IAS-2002]
(a) Unaltered (b) Double (c) One-half (d) One-fourth
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IES-27.

If a compression coil spring is cut into two equal parts and the parts are then
used in parallel, the ratio of the spring rate to its initial value will be: [IES-1999]
(a1 (b) 2 (c) 4 (d) Indeterminable for want of sufficient data

Springs in Parallel

IES-28.

IES-29.

IES-30.

IES-31.

IES-32.

The equivalent spring stiffness for the
system shown in the given figure (S is
the spring stiffness of each of the three
springs) is:

(a) S/2 (b) S/3

(c) 25/3 @S

Rigid bar

[IES-1997; IAS-2001]

Two coiled springs, each having stiffness K, are placed in parallel. The stiffness
of the combination will be: [TES-2000]

(a) 4K (b)2K (€)% (d)

A mass is suspended at the bottom of two springs in series having stiffness 10

N/mm and 5 N/mm. The equivalent spring stiffness of the two springs is nearly
[IES-2000]

(a) 0.3 N/mm (b) 3.3 N/mm (c) 5 N/mm (d) 15 N/mm

Figure given above shows a spring-

mass system where the mass m is

fixed in between two springs of

stiffness S1 and Si2. What is the S
equivalent spring stiffness?

(a) S1- Se (b) Si+ S

(c) (S1+ S2)/ S1 S2 (d) (Si- S2)/
S1 S

[TES-2005]
Two identical springs
labelled as 1 and 2 are @ @
arranged in series and
subjected to force F as
shown in the given
figure.
Assume that each spring constant is K. The strain energy stored in spring 1 is:
[TES-2001]

Ll

)

(a) F ~ ()F2 (d) -
a) — C)—
2K 4K 8K 16K
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IES-33.

IES-33a.

5"

What is the equivalent stiffness (i.e. spring
constant) of the system shown in the given

figure? 10 Coils
(a) 24 N/mm (b) 16 N/mm K;=8N/mm
(c) 4 N/mm (d) 5.3 N/mm
Kj 5 Coils
[TES-1997]

A helical spring of 10 N/mm rating is mounted on top of another helical spring
of 8 N/mm rating. The force required for a total combined deflection of 45 mm
through the two springs is [TES-2016]

(a) 100 N (b) 150 N (c) 200 N (d) 250 N

IES-34.Two concentric springs, having same number of turns and free axial length, are
made of same material. One spring has a mean coil diameter of 12 cm and its wire
diameter is of 1.0 cm. the other one has a mean coil diameter of 8 cm and its wire
diameter is of 0.6 cm. If the set of spring is compressed by a load of 2000 N, the

loads shared by the springs will be, [TES-2014]
(a) 1245.5 N and 754.5 N (b) 1391.4 N and 608.6 N
(c) 1100 N and 900 N (d) 1472.8 N and 527.2 N

Previous 25-Years IAS Questions

Helical spring

IAS-1.

TIAS-2.

IAS-3.

TAS-4.

Assertion (A): Concentric cylindrical helical springs which are used to have
greater spring force in a limited space is wound in opposite directions.

Reason (R): Winding in opposite directions prevents locking of the two coils in
case of misalignment or buckling. [IAS-1996]
(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut Ris false

(d) Aisfalse but R is true

An open-coiled helical spring of mean diameter D, number of coils N and wire
diameter d is subjected to an axial force' P. The wire of the spring is subject to:

[IAS-1995]
(a) direct shear only (b) combined shear and bending only
(c) combined shear, bending and twisting (d) combined shear and twisting only

Assertion (A): Two concentric helical springs used to provide greater spring
force are wound in opposite directions. [TES-1995; IAS-2004]
Reason (R): The winding in opposite directions in the case of helical springs
prevents buckling.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A

(¢) Aistruebut R is false

(d) Ais false but R is true

Which one of the following statements is correct? [TES-1996; 2007; IAS-1997]
If a helical spring is halved in length, its spring stiffness
(a) Remains same (b) Halves (c) Doubles (d) Triples
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TIAS-5.

TAS-6.

TAS-7.

IAS-8.

TAS-9.

TAS-10.

TAS-11.

TIAS-12.

A closed coil helical spring has 15 coils. If five coils of this spring are removed

by cutting, the stiffness of the modified spring will: [TAS-2004]
(a) Increase to 2.5 times (b) Increase to 1.5 times
(c) Reduce to 0.66 times (d) Remain unaffected

A close-coiled helical spring has wire diameter 10 mm and spring index 5. If the
spring contains 10 turns, then the length of the spring wire would be: [IAS-2000]

(a) 100 mm (b) 157 mm (c) 500 mm (d) 1570 mm
Consider the following types of stresses: [IAS-1996]
1. torsional shear 2. Transverse direct shear 3. Bending stress

The stresses, that are produced in the wire of a close-coiled helical spring
subjected to an axial load, would include
(a) 1and 3 (b) 1 and 2 (¢c) 2and 3 (d)1,2and 3

Two close-coiled springs are subjected to the same axial force. If the second
spring has four times the coil diameter, double the wire diameter and double
the number of coils of the first spring, then the ratio of deflection of the second
spring to that of the first will be: [TAS-1998]

(@) 8 () 2 (c)% ) 1/16

A block of weight 2 N falls from a height of 1Im on the top of a spring- If the
spring gets compressed by 0.1 m to bring the weight momentarily to rest, then
the spring constant would be: [TAS-2000]
(a) 50 N/m (b) 100 N/m (c) 200N/m (d) 400N/m

The springs of a chest expander are 60 cm long when unstretched. Their
stiffness is 10 N/mm. The work done in stretching them to 100 cm is: [IAS-1996]

(a) 600 Nm (b) 800 Nm (c) 1000 Nm (d) 1600 Nm
A spring of stiffness 'k' is extended from a displacement x; to a displacement x»
the work done by the spring is: [TAS-1999]
2
1, 1 ., 1 2 1 2 X + X,
(@ —kx —=kx5; (b) =k(x,—x ©)=k(x +x d k| ——=
K =2k0¢ () Sk (=) k(4 +%,) .

A spring of stiffness 1000 N/m is stretched initially by 10 em from the
undeformed position. The work required to stretch it by another 10 cm is:

[IAS-1995]
(a) 5 Nm (b) 7 Nm (¢c) 10 Nm (d) 15 Nm.

Springs in Series

TAS-13.

TAS-14.

When a helical compression spring is cut into two equal halves, the stiffness of
each of the result in springs will be: [TIES-2002; IAS-2002]
(a) Unaltered (b) Double (c) One-half (d) One-fourth

The length of the chest-expander spring when it is un-stretched, is 0.6 m and its
stiffness is 10 N/mm. The work done in stretching it to 1m will be: [IAS-2001]
(a) 800 J (b) 1600 J (c) 3200 J (d) 6400 J
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Springs in Parallel

IAS-15. The equivalent spring stiffness for the
system shown in the given figure (S is
the spring stiffness of each of the three
springs) is:

(a) S/2 (b) S/3
(c) 25/3 (VIS

Rigid bar

[IES-1997; IAS-2001]

IAS-16. Two identical springs, each of stiffness K, are 14%444
assembled as shown in the given figure. The [
combined stiffness of the assembly is:

(a) K2 (b) 2K
© K (d) (1/2)K
|
i

[TIAS-1998]

Flat spiral Spring

IAS-17. Mach List-I (Type of spring) with List-II (Application) and select the correct

answer: [TAS-2000]
List-I List-11
A. Leaf/Helical springs 1. Automobiles/Railways coachers
B. Spiral springs 2. Shearing machines
C. Belleville springs 3. Watches
Codes: A B C A B C
(a 1 2 3 (b) 1 3 2
() 3 1 2 (d) 2 3 1

Semi-elliptical spring

IAS-18. The ends of the leaves of a semi-elliptical leaf spring are made triangular in
plain in order to: [TAS 1994]
(@) Obtain variable I in each leaf
(b) Permit each leaf to act as a overhanging beam
(¢) Have variable bending moment in each leaf
(d) Make Mil constant throughout the length of the leaf.
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OBJECTIVE ANSWERS

3
GATE-1. Ans. (a)0 = w
Gd
GATE-2. Ans. (d)Spri tant (K) P_ Gd" Koc
-2. Ans. pring constan =—= or —
5 8D°N ’

3 3
K, (D) _(20) _g
K, D, 10
GATE-2a. Ans. (8.243) Stiffness of helical spring

_ Gd*
8D°n

K _(d,) ke _(102d,Y
kl dl kl dl

% increasein stiffness = kzk_ ky x100% = 8.243%
1

Gd*
GATE-2(i). Ans. (b) Spring Constant (k) = T
n
G is modulus of Rigidity. It is not strength of material. It is elastic constant.
P Gd* N
GATE-3. Ans. (c) Spring constant (K) =g = 3DN Therefore kood—

GATE-4. Ans. (c)Inclined it to a very low angle, d§
For equilibrium taking moment about ‘hinge’

W x ldé? —k(ld@)xl =0 ork :ﬂ:ﬂ:SOON/m
2 2l 2x0.3
GATE-5. Ans. (b) Initial length =1, m and stiffness = k N/m

2xg=k(l, ~0.2)
2xg+20xg=k(l,-0.1)

Just solve the above equations.

GATE-6. Ans. (d) When a spring is cut into two, no. of coils gets halved.
.. Stiffness of each half gets doubled.
When these are connected in parallel, stiffness = 2k + 2k = 4k
Therefore deflection will be % times. = 2.5 mm

GATE-7. Ans. 6
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3
IES-1. Ans. (a) 0 = 8PD4N
Gd
T=Fx 9; u="To
2 2
T= @, 0= l
2 GJ
L=nrDN
U- 1(@}2 (Lj _4FDN
2l 2 ) (ay Gd*
_8U _ 8FD°N
oF Gd*
IES-1(1). Ans. (b)
_ 8PD3N
T Gat

IES-2. Ans. (b)
IES-3. Ans. (c) It is for preventing locking not for buckling.

4

IES-4. Ans. (c) Stiffness of sprin(k) = E?D_C‘i o) koo% andnwiil be half
n

IES-4(i). Ans. (a)

IES-4(ii). Ans. (c)

IES-5. Ans. (b)mg(h + x) = %kxz

IES-5(i) Ans. (c) D=10cm,d=8mm,n=10
8PD3n 8x200x10%x10°x10
0= Gd" = BOxI0P <@ x10E Y082~ 49mm
8PD

72_3

IES-6. Ans. (c)User =K,
IES-6a. Ans. (a)
IES-7. Ans. (b) User =k, 8PD

d3

it is independent of number of turn

IES-8. Ans. (c¢)
4 4
IES-9. Ans. (a) Stiffness (k) = Gd3 ; Second spring, stiffness (k) :L = K
64R°N s N 4
64(2R) XE

IES-10. Ans. (a)
IES-11. Ans. (a)

4 10" (N/cm?)x2*(cm*
IES-12. Ans. (b) Stiffness of sprin(k) = S ( )X ( )

= = =100N/cm
8D°n 8x20° (cm3 ) x 25

IES-13. Ans. (b)
IES-14. Ans. (c)
IES-15. Ans. (a)
IES-16. Ans. (a)

3 3
IES-17.Ans.(d)%:&g= 20 =1; WO:Vi SoV\/i+M=PorWi:§P
W, RS 40 8 8 8 9
4

ARn Where G and d issame

IES-18. Ans. (c) Stiffnessof spring (k) =
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Therefore L = L = 1 1

“ ()] () ™

S K Mondal’s

IES-18a. Ans. (a) But most of the students think answer will be (b). If your calculated answer is
also (b) then read the question again and see “Two equal lengths of steel wires” is

written that means number of turns are different. And L=7zDn =zD,n, ..—%#=—=

4

Stiffness of spring (S) = %

= Where G and d issame
n

3 3 3
Therefore i = & L. & Ny :(@j (Ej =
S, \R)n D )n 75) \ 60
IES-19. Ans. (b) Stiffness of spring (k) = Gd* koz1 or K _
8D°n n K,
) . Gd*
IES-20. Ans. (a) Stiffness of spring (k) = e
n

IES-21. Ans. (a)
IES-22. Ans. (a) Same as [IES-1992]

IES-22(i). Ans. (a)
IES-22(ii). Ans. (b)
IES-23. Ans. (d)

IES-24. Ans. (d) use mg(h+x)= %ka

IES-25. Ans. (c)
IES-26. Ans. (b)

IES-27. Ans. (c) When a spring is cut into two, no. of coils gets halved.

.. Stiffness of each half gets doubled.

When these are connected in parallel, stiffness = 2k + 2k = 4k
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IES-28. Ans. (c) Si = i—lr i ors, = %S

e

25

TIES-29. Ans. (b) W =kJ =k,5 +k,5

IES-30. Ans. (b)i = i + 1 ors, = E
S, 10 5 3

e

IES-31. Ans. (b)

2
1 1 F
IES-32. Ans. (c)The strain energy stored per spring =§ kx?/2= > X keq X (—j / 2 and here total
eq
force ‘F’ is supported by both the spring 1 and 2 therefore keq = k + k =2k
IES-33. Ans. (a) Stiffness K1 of 10 coils spring = 8 N/'mm
. Stiffness Ke of 5 coils spring = 16 N/mm
Though it looks like in series but they are in parallel combination. They are not subjected

to same force. Equivalent stiffness (k) = ki + ke = 24 N/mm
IES-33a. Ans. (¢)

K; =10 N/m
=3 Keq
K, =8 Nim
F
—=—4= or keq=w =4.94N/mm Nowdé= — orF=200N
keq ki1 ky 10+8 keq
IES-34. Ans. (b)

IAS-1. Ans. (a)
IAS-2. Ans. (d)

IAS-3. Ans. (c) It is for preventing locking not for buckling.
4

IAS-4. Ans. (c) Stiffness of sprin(k) = % o) koo1 andnwiil be half
n

°n
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4
68 kol orKe M35
8D°N N K, N, 10
IAS-6. Ans. (d) | =7Dn=7(cd)n=7x(5x10)x10=1570mm
IAS-7. Ans. (b)

IAS-5. Ans. (b)K= 15

[DQJLNZJ
s D. J\N 3
IAS-8. Ans. (a) 5 = PN o % DA\ )47 x2 g

4 4 4
Gd S, d, 2
d’l

IAS-9. Ans. (d) Kinetic energy of block = potential energy of spring

1 2Wh 2x2x1

orW xh =2k or k=220 = £X2X2N /m = 400N /m
2 X 0.1
1 1 10N

TAS-10. Ans. (b) E =k« = x x{1-0.6}"m? = 800Nm

LI
(1000)
IAS-11. Ans. (a) Work done by the spring is = %kx12 —%kxg

TAS-12. Ans.(d)E = %k(xg -x})= %x1000x{0.202 ~0.10?} =15Nm

IAS-13. Ans. (b)
IAS-14. Ans. (a)
10N

Imm

110—'\'xo.42m2 =800J
— M
(1000]

Work donezlk.x2 :lx ><(1—O.6)2 mzzlx
2 2 2

IAS-15. Ans. (c)i = i—lr i ors, = gS
S, 2S5 S 3

e

IAS-16. Ans. (b) Effective stiffness = 2K. Due to applied force one spring will be under tension and
another one under compression so total resistance force will double.

IAS-17. Ans. (b)

IAS-18. Ans. (d)The ends of the leaves of a semi-elliptical leaf spring are made rectangular in plan
in order to make M/I constant throughout the length of the leaf.

Previous Conventional Questions with Answers

Conventional Question ESE-2008

Question: A close-coiled helical spring has coil diameter D, wire diameter d and number
of turn n. The spring material has a shearing modulus G. Derive an
expression for the stiffness k of the spring.
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Answer: The work done by the
axial force 'P' 1is
converted into strain
energy and stored in
the spring.

U=(average torque)

x(angular displacement)

S K Mondal’s

From the figure we get, 6 =—

Torque (T)=?

=Ix9
2

TL

GJ
PD

P .
D —-—l
length of wire (L)=1Dn

4

Polar moment of Inertia(J)= 1;(;

4P?D°n

Gd*
According to Castigliano's theorem, the displacement corresponding to force P is
obtained by partially differentiating strain energy with respect to that force.

Therefore U=

213 3
Therefore 6 Za—U:i 4p [Z ni_ 8PD4n
oP 0P| Gd Gd
P Gd*
So Spring stiftness, (k)=—=
prine (k) 5 8D’n

Conventional Question ESE-2010

Q.

Ans.

For-2019 (IES, GATE & PSUs)

A stiff bar of negligible weight transfers a load P to a combination of three
helical springs arranged in parallel as shown in the above figure. The springs
are made up of the same material and out of rods of equal diameters. They are
of same free length before loading. The number of coils in those three springs
are 10, 12 and 15 respectively, while the mean coil diameters are in ratio of 1 :
1.2 : 1.4 respectively. Find the distance ‘x’ as shown in figure, such that the stiff
bar remains horizontal after the application of load P. [10 Marks]

ﬁP

4 1—Pie—]

Same free length of spring before loading

The number of coils in the spring 1,2 and 3 is 10, 12 and 15 mean diameter of spring 1,2
and 3 in the ratio of 1: 1.2 : 1.4 Find out distance x so that rod remains horizontal
after loading.

Since the rod is rigid and remains horizontal after the load p is applied therefore the
deflection of each spring will be same

3 =08,=0;=90 (say)

Spring are made of same material and out of the rods of equal diameter
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G, =G,=G;=G and d, =d, =d; =d
Load in spring 1
_ Gd's  Gd's  Gd's
 64R’n;, 64R}x10 640R’
Load in spring 2
. Gd% Gd*s _ Ga% @
C64xR3n, 64x(1.2°x12R?  1327.10R}
Load in spring 3
P, Gd's _ Gd*s _ Gd' 3
° 64R3n, 64x(1.4)°x15R’ 2634.2R°>
From eqn (1) & (2)
640
> 13271

P, =0.482P,
from eq" (1) & (3)
640

2634.2
Taking moment about the line of action P,

P,xL+P;x2L=Px
0.4823 PL+0.2430 P, x2L=Px.

(0.4823+0.486) P, L
X =

1

2

P, =

P, =0.2430P,

P (4)
total load in the rod is
P=P,+P,+P,
P =P +.4823P, +0.2430P,
P=1725P ... (5)
Equation (4) & (5)
0.9683L  0.9683L _0.5613L

X = =
1.725 P /P,  1.725
x =0.5613 L

Conventional Question ESE-2008

Question: A close-coiled helical spring has coil diameter to wire diameter ratio of 6. The
spring deflects 3 cm under an axial load of 500N and the maximum shear
stress is not to exceed 300 MPa. Find the diameter and the length of the
spring wire required. Shearing modulus of wire material = 80 GPa.

4
Answer: Stiffness,K = E = %
o 8D°n

500 (80x10°)xd _ D
or, = 3 [given c=— =6]
0.03 8x6°xn d

or,d =3.6x10"*n———(i)
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For static loading correcting factor(k)

|<=[1+‘L5]:[1+(L5 —1.0833
c 6
We know that (7)=k 8P3D
nd

g - 8kPC l C_ 2 _ 61

T d
d= \/1 083385006 _ 5 5594 10*m = 5.252mm

7wx300x10

So D=cd=6%5.252mm=31.513mm

From, equation (i) n=14.59 ~15
Now length of spring wire(L) =7Dn =7 x31.513%x15 mm =1.485 m

Conventional Question ESE-2007

Question:

Answer:

A coil spring of stiffness 'k' is cut to two halves and these two springs are
assembled in parallel to support a heavy machine. What is the combined
stiffness provided by these two springs in the modified arrangement?

When it cut to two halves stiffness of

each half will be 2k. Springs in parallel. E
Total load will be shared so

Total load = W+W W w
or 8.K,, =9.(2k)+5.(2k)
or K, =4k.
2k 2k

Conventional Question ESE-2001

Question:

Answer:

A helical spring B is placed inside the coils of a second helical spring A ,
having the same number of coils and free axial length and of same material.
The two springs are compressed by an axial load of 210 N which is shared
between them. The mean coil diameters of A and B are 90 mm and 60 mm and
the wire diameters are 12 mm and 7 mm respectively. Calculate the load
shared by individual springs and the maximum stress in each spring.

Gd*

8D°N

Here load shared the springs are arranged in parallel

Equivalent stiffness (k, )=k, +kg

4 3 4 3
Hear Ka=|% | [Be| (asN, =N ] = [E] x[@] _ 2,559
K, |d) |D, 7) (o0

The stiffness of the spring (k) =

Let total deflectionis X' m  x Total load _ 210N

" Equivalet stiffness K, +K,
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Load shared by spring 'A'(F,)= K, x= - 210 6: 2101 5 =151N
78: + =
él N = g 2.559%
Load shared by spring 'A'(F,) = K, x= (210- 151)= 59N
For static load: t = gl 0 508P[3)
Cond
¥ 0.5 {8 151" 0.090 _
t =il+ - = 21.362MPa
o) 908 7 (0.012)
B12c
& 0
(tg),, =g+ 05 58 59" 0.060 = 27.816 MPa
&60& 7 (0.007)
¥ &

Conventional Question AMIE-1997

Question: A close-coiled spring has mean diameter of 75 mm and spring constant of 90
kN/m. It has 8 coils. What is the suitable diameter of the spring wire if
maximum shear stress is not to exceed 250 MN/m2? Modulus of rigidity of the
spring wire material is 80 GN/m2. What is the maximum axial load the spring
can carry?

Answer: Given D=75mm; k=80kN/m; n=8
7=250MN/m? G=80GN/m? =80x10°N/m?

Diameter of the spring wire, d:

T:z‘x%d3 (where T =P xR)
We know, PX0-0375=(250X106)x%d3 ———(i)
Also P=ké
or P=80x10°x¢ ___(ii)
Using the relation:
8PD’n 8P x(0.075)’ x8 P

S =

- _33.75x10 ™ x
Gd* 80x10° xd° R

Substituting for ¢ in equation (ii), we get

P=80x10°x33.75x10™" XdE“ or d=0.0128m or 12.8mm

Maximum axial load the spring can carry P:
From equation (1), we get

Px0.0375 = (250x10°) x % x(0.0128)*; o P=27452N=2.7452kN
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13.| Theories of Column

Theory at a Glance (for IES, GATE, PSU)

1. Introduction

Strut: A member of structure which carries an axial compressive load.

Column: If the strut is vertical it is known as column.

A long, slender column becomes unstable when its axial compressive load reaches a value
called the critical buckling load.

If a beam element is under a compressive load and its length is an order of magnitude larger
than either of its other dimensions such a beam is called a columns.

Due to its size its axial displacement is going to be very small compared to its lateral
deflection called buckling.

Buckling does not vary linearly with load it occurs suddenly and is therefore dangerous
Slenderness Ratio: The ratio between the length and least radius of gyration.

Elastic Buckling: Buckling with no permanent deformation.

Euler buckling is only valid for long, slender objects in the elastic region.

For short columns, a different set of equations must be used.

2. Which is the critical load?

At this value the structure is in equilibrium regardless of the magnitude of the angle
(provided it stays small)

Critical load is the only load for which the structure will be in equilibrium in the disturbed
position

At this value, restoring effect of the moment in the spring matches the buckling effect of the
axial load represents the boundary between the stable and unstable conditions.

If the axial load is less than P the effect of the moment in the spring dominates and the
structure returns to the vertical position after a small disturbance — stable condition.

If the axial load is larger than Pe the effect of the axial force predominates and the structure
buckles — unstable condition.

Because of the large deflection caused by buckling, the least moment of inertia I can be
expressed as, I = Ak?

Where: A is the cross sectional area and r is the radius of gyration of the cross sectional area,

|
Le. kmin = [0
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e Note that the smallest radius of gyration of the column, i.e. the least moment of inertia [

should be taken in order to find the critical stress. [/ k is called the slenderness ratio, it is a

measure of the column's flexibility.

3. Euler’s Critical Load for Long Column

Assumptions:
(1) The column is perfectly straight and of uniform cross-section
(11) The material is homogenous and isotropic
(111) The material behaves elastically
(iv) The load is perfectly axial and passes through the centroid of the column section.

(v) The weight of the column is neglected.

2
P n El
Euler’s critical load, S |2
e

Where / .=Equivalent length of column (1st mode of bending)

4. Remember the following table

Case Diagram Per Equivalent
length(le)
wZz Both ends
S *hinged
Both ends hinged/pinned 1 ¥ n’El l
\ [
Vo 2
L i ." ! ¢
: ! Le=L
I 1
! 1
| \
J E— ‘f \\
7277 B
pin/pin F
| fixed
Both ends fixed \ AEl 14
‘\ 05L 0?2 2
ol
If
fixed/fixed fixed
One end fixed & other end free m°El 2/
40°

fixed/free
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) Lr
One end fixed & other end pinned T 2
One en P [ omtRl L
nge L | p7o7L # V2
L L lll
!
1
pzAY, "
fixed/pm 1 fixed
5. Slenderness Ratio of Column
2
n°El
P, = E where 1=A K’
(5}
n’EA : .
= K., = least radius of gyration
kmin
o,
.. Slenderness Ratio =
kmin
6. Rankine’s Crippling Load
Rankine theory is applied to both
e Short strut /column (valid upto SR-40)
¢ Long Column (Valid upto SR 120)
short-column line
unit load
PeriA empirical failure zone
S}‘C Tohnson line
tangent point
Syel2 Euler line

Selp

slenderness ratio 5§,

Construction of column fallure lines
Slenderness ratio

.. P
(o, =critical stress)=—"
e Crippling Load , P

p= G A

2
ok fe]
k

For-2019 (IES, GATE & PSUs)

Page 419 of 480

Rev.0



Chapter-13 Theorigzagé €zdumn S K Mondal’s
GC

where k' = Rankine constant =—;
n°E

depends on material & end conditions

o, =crushing stress

e For steel columns

1
K’ = ——— for both ends fixed

25000
. . l
= for one end fixed & other hinged 20<-2<100
12500 k
7. Other formulas for crippling load (P)
e Gordon’s formula,
P= Lz b = a constant, d = least diameter or breadth of bar
1+ b(fej
d
e JohnsonStraight line formula,
/ ) .
P=oc.,All-cC ?e ¢ = a constant depending on material.

e Johnson parabolic formulae :

f

where the value of index ‘b' depends on the end conditions.

P=o,A

e Fiddler’s formula,

n’E
Where, G, :ﬁ
(%)
8. Eccentrically Loaded Columns

¢ Secant formula

P ey, £, P
Cmax = | 1+ —5sec| == |\ [=—
A{ k [ZKJ EA}

Where ©
P = load

max “Maximum compressive stress K J
M M
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A = Area of c/s

y.= Distance of the outermost fiber in compression from the NA
e = Eccentricity of the load

|, = Equivalent length

k = Radius of gyration :\/;

E = Modulus of elasticity of the material

M =P.e.Sec g_e i
2k \/ EA

Where M = Moment introduced.

e Prof. Perry’s Formula

Omax _q|l1-% |=&Ye
Cq o, k?

Where 6, = maximum compressive stress

P Load

A B c/s area
_ P, Euler's load

Gy =

e

* A c/sarea
2El
62

e

p, = Euler's load =

e' = Versine at mid-length of column due to initial curvature
e = Eccentricity of the load

e, =e'+1.2e

y, =distance of outer most fiber in compression form the NA
k = Radius of gyration

If 6., is allowed to go up to o, (permssible stress)

Then, 17 = e;({c
o +6,(1+7) \/{Gf +Ge(1+7])}2
o4 = > - > — 0,05

e Perry-Robertson Formula

!
=0.003| ==
7 (kj

/
Gy +0, (1+0~003kej o, +cse(1+o.oo3f(e

Oy = - — 0.0

2 2
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9. ISI’s Formula for Columns and Struts

ge
e For ?=0 to 160

(5/
p- fos
1+0.2sec Q,/M
k AE

Where, P = Permissible axial compressive stress

P. = A value obtained from above Secant formula

0, = Guaranteed minimum yield stress = 2600 kg/cm? for mild steel

fos = factor of safety = 1.68
[

-£ = Slenderness ratio

k
E = Modulus of elasticity = 2.045x10° kg / cm? for mild steel

I
e For Ee>160
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Strength of Column

b) ———
(C)\/E (b) K

GATE-1. The rod PQ of length L and with A
flexural rigidity EI is hinged at ;’
both ends. For what minimum
force F is it expected to buckle? ]

A

@ 7’El ) V272l g
L2 L2 -
i

7°El 7°El A
-

A

A

-

A

1

-~

PVl L i
[GATE-2008]

Equivalent Length

GATE-2. The ratio of Euler's buckling loads of columns with the same parameters
having (i) both ends fixed, and (ii) both ends hinged is:
[GATE-1998; 2002; IES-2001, GATE-2012]
(a) 2 (b) 4 (c)6 (d) 8

Euler's Theory (For long column)

GATE-3. A pin-ended column of length L, modulus of elasticity E and second moment of
the cross-sectional area I is loaded centrically by a compressive load P. The

critical buckling load (P.:) is given by: [GATE-2006]
El 7°El 7El 7°El
(@ P, = o b) R, = T ©P, = NN @ PR, = 2

GATE-3a. Consider a steel (Young’s modulus E = 200 GPa) column hinged on both sides.
Its height is 1.0 m and cross-section is 10 mm X 20 mm. The lowest Euler critical

buckling load (in N) is [GATE-2015]
GATE-3b. A vertical column has two moments of inertia Ixx and Iyy. The column will tend

to buckle in the direction of the [ISRO-2015]

(a) axis of load (b) perpendicular to the axis of load

(¢) maximum moment of inertia (d) minimum moment of inertia

GATE-3c. A steel column of rectangular section (15 mm x 10 mm) and length 1.5 m is
simply supported at both ends. Assuming modulus of elasticity, E = 200 GPa for
steel, the critical axial load (in kN) is (correct to two decimal places)

[GATE-2018]

GATE-3d. A column of height h with a rectangular cross-section of size ax2a has a
buckling load of P. If the cross-section is changed to 0.5a X 3a and its height
changed to 1.5h, the buckling load of the redesigned column will be
(a) P/12 (b) P/4 (c) P/2 (d) 3P/4 [CE: GATE-2018]
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GATE-4. The minimum axial compressive load, P required to initiate buckling for a
pinned-pinned slender column with bending stiffness EI and length L is

2 2 2 2

7 El 7 El 37 El 47°El
aP=—— (b)P= c)P=—— (d)P= [GATE-2018]

(a) e (b) B (c) T (d) B
GATE-4a. What is the expression for the crippling load for a column of length ‘I’ with one
end fixed and other end free? [IES-2006; GATE-1994]
27°El 2E| ArEl 2E|
(a) P= ﬂlz () P:ﬂ4|2 ©P= ”IZ @ P:”I2

GATE-5. The piston rod of diameter 20 mm and length 700 mm in a hydraulic cylinder is
subjected to a compressive force of 10 KN due to the internal pressure. The end
conditions for the rod may be assumed as guided at the piston end and hinged
at the other end. The Young’s modulus is 200 GPa. The factor of safety for the
piston rod is
(a) 0.68 (b) 2.75 (c) 5.62 (d) 11.0 [GATE-2007]

GATE-5a. A square cross-section wooden column of length 3140 mm is pinned at both
ends. For the wood, Young’s modulus of elasticity is 12 GPa and allowable
compressive stress is 12 MPa. The column needs to support an axial
compressive load of 200 kN. Using a factor of safety of 2.0 in the computation of
Euler’s buckling load, the minimum cross-sectional area (in mmz2) of the column
is [GATE-2018(PI1)]

GATE-6. A steel column, pinned at both ends, has a buckling load of 200 kN. If the
column is restrained against lateral movement at its mid-height, its buckling
load will be [CE: GATE-2007]

(a) 200 kN (b) 283 kN (c) 400 kN (d) 800 kN

GATE-7. Two steel columns P (length L and yield strength fy; = 250 MPa) and Q (length 2L

and yield strength fy = 500 MPa) have the same cross-sections and end-
conditions. The ratio of buckling load of column P to that of column Q is:
(a) 0.5 (b) 1.0 (c) 2.0 (d) 4.0 [CE: GATE-2014]

GATE-8. A long structural column (length = L) with both ends hinged is acted upon by
an axial compressive load P. The differential equation governing the bending
of column is given by:

2
EI % —_Py [CE: GATE-2003]
X
where y is the structural lateral deflection and EI is the flexural rigidity. The
first critical load on column responsible for its buckling is given by

 EI Jon? El
(@ )
L L
on’ EI 47’ EI
© =5 @)=

GATE-9. If the following equation establishes equilibrium in slightly bent position, the

mid-span deflection of a member shown in the figure is [CE: GATE-2014]
d? P
¢y Py
dx® El
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: P =X
M | N
= - -~

If a is amplitude constant for y, then

1 27X 1 . 27X
a)y=—|1-acos— b) y=—|1-asin—
@y-5(1-asZ™) @) y=1{1-asinZ]
() y:asin—nfx (d) y:acos—ntX

GATE-10. Cross-section of a column consisting of two steel strips, each of thickness ¢ and width b is
shown in the figure below. The critical loads of the column with perfect bond and without

bond between the strips are P and P, respectively. The ratio PB is [CE: GATE-2008]

0

() 2 (b) 4 (c) 6 d) 8

GATE-11. A rigid bar GH of length L is supported by a hinge and a spring of stiffness K as
shown in the figure below. The buckling load, P_, for the bar will be

cr?

6PKE
H

L
WiN
[CE: GATE-2008]
(@) 0.5 KL () 0.8 KL (© 1.0 KL (d) 1.2 KL

GATE-11a. An initially stress-free massless elastic beam of length L and circular cross-
section with diameter d (d << L) is held fixed between two walls as shown. The
beam material has Young's modulus E and coefficient of thermal expansion a.

/ r
/] Y ‘
%

/) [ T '

/
If the beam is slowly and uniformly heated, the temperature rise required to
cause the beam to buckle is proportional to [GATE-2017]
(a)d (b) d2 (c) d3 (d) d¢
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GATE-12. This sketch shows a column with a pin at the base and rollers at the top. It is

subjected to an axial force P and a moment M at mid height. The reaction(s) at

R is/are
0
x
N 7.
h
) P
¥ /'\ M
b
2
A A R
% [CE: GATE-2012]
(a) a-vertical force equal to P (b) a vertical force equal to g

(c) a vertical force equal to P and a horizontal force equal to %

(d) a vertical force equal to g and a horizontal force equal to%

Previous 25-Years IES Questions

Classification of Column

IES-1.

IES-2.

IES-2a

A structural member subjected to an axial compressive force is called

[TES-2008]
(a) Beam (b) Column (c) Frame (d) Strut

Which one of the following loadings is considered for design of axles?

(a) Bending moment only [TES-1995]
(b) Twisting moment only

(¢) Combined bending moment and torsion

(d) Combined action of bending moment, twisting moment and axial thrust.

An axle is a machine part that is subjected to: [IES-2011]
(a) Transverse loads and bending moment (b) Twisting moment only
(c) Twisting moment an axial load (d) Bending moment and axial load
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IES-3. The curve ABC is the Euler's P,
curve for stability of column. The =
horizontal line DEF is the
strength limit. With reference to
this figure Match List-I with List- h
II and select the correct answer Bi[ =~~~ 7~~~
using the codes given below the
lists:
List-I List-I1

(Regions) (Column specification)

A. Ri1 1. Long, stable

N

B. Rz 2. Short -
C. R3 3. Medium 0 1o v
D. R4 4. Long, unstable [TES-1997]
Codes: A B C D A B C D
(a) 2 4 3 1 (b) 2 3 1 4
© 1 2 4 3 (d) 2 1 3 4
IES-4. Mach List-I with List-IT and select the correct answer using the codes given
below the lists: [TAS-1999]
List-I List-I1I
A. Polar moment of inertia of section 1. Thin cylindrical shell
B. Buckling 2. Torsion of shafts
C. Neutral axis 3. Columns
D. Hoop stress 4. Bending of beams
Codes: A B C D A B C D
(a 3 2 1 4 (b) 2 3 4 1
(¢ 3 2 4 1 (d) 2 3 1 4
Strength of Column
IES-5. Slenderness ratio of a column is defined as the ratio of its length to its
(a) Least radius of gyration (b) Least lateral dimension [TES-2003]
(c) Maximum lateral dimension (d) Maximum radius of gyration

IES-5(i) What is the slenderness ratio of a 4 m column with fixed ends if its cross section

is square of side 40 mm? [TES-2014]
() 100 () 50 (c) 160 (d) 173
IES-6. Assertion (A): A long column of square cross section has greater buckling

stability than a similar column of circular cross-section of same length, same
material and same area of cross-section with same end conditions.

Reason (R): A circular cross-section has a smaller second moment of area than
a square cross-section of same area. [TES-1999; IES-1996]
(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A

(c) Ais true but R is false

(d) A 1s false but R is true

Equivalent Length

IES-6(i). The end conditions of a column for which length of column is equal to the

equivalent length are [TES-2013]
(a) Both the ends are hinged (b) Both the ends are fixed
(c) One end fixed and other end free (d) One end fixed and other end hinged

IES-7. Four columns of same material and same length are of rectangular cross-
section of same breadth b. The depth of the cross-section and the end
conditions are, however different are given as follows: [TES-2004]
Column Depth End conditions
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1 0.6b Fixed-Fixed
2 0.8Db Fixed-hinged
3 1.0Db Hinged-Hinged
4 2.6Db Fixed-Free
Which of the above columns Euler buckling load maximum?
(a) Column 1 (b) Column 2 (c) Column 3 (d) Column 4

IES-8. Match List-I (End conditions of columns) with List-Il (Equivalent length in
terms of length of hinged-hinged column) and select the correct answer using

the codes given below the Lists: [TES-2000]
List-I List-II
A. Both ends hinged 1.L
B. One end fixed and other end free 2. L/ \/E
C. One end fixed and the other pin-pointed 3. 2L
D. Both ends fixed 4. 1/2
Code: A B C D A B C D
(a 1 3 4 2 (b) 1 3 2 4
(¢ 3 1 2 4 (d) 3 1 4 2
IES-9. The ratio of Euler's buckling loads of columns with the same parameters

having (i) both ends fixed, and (ii) both ends hinged is:
[GATE-1998; 2002; IES-2001]
(a) 2 (b) 4 (c)6 (d) 8

Euler's Theory (For long column)
IES-10. What is the expression for the crippling load for a column of length ‘I’ with one

end fixed and other end free? [TES-2006; GATE-1994]
27°El 72El 47°El 72El
(2 P=—3 (b) P=—3; ©P=—5— (@ P=—;
I 41 I I
IES-10(i). The buckling load for a column hinged at both ends is 10 kN. If the ends are
fixed, the buckling load changes to [TES-2012]
(a) 40 kN (b) 2.5 kN (c) 5kN (d) 20 kN

IES-10(ii). For the case of a slender column of length L and flexural rigidity EI built in at
its base and free at the top, the Euler’s critical buckling load is [IES-2012]
( )47‘[2E1 ®) 2m2E] ( )TL’ZEI @ m2El
Y 12 “T 4L?

IES-11. A 4 m long solid round bar is used as a column having one end fixed and the
other end free. If Euler’s critical load on this column is found as 10 kN and E =
210 GPa for the material of the bar, the diameter of the bar [TES-2014]
(a) 50 mm (b) 40 mm (c) 60 mm (d) 45 mm

IES-11(i). Euler's formula gives 5 to 10% error in crippling load as compared to
experimental results in practice because: [TES-1998]
(a) Effect of direct stress is neglected
(b) Pin joints are not free from friction
(c) The assumptions made in using the formula are not met in practice
(d) The material does not behave in an ideal elastic way in tension and compression

IES-12.  Euler's formula can be used for obtaining crippling load for a M.S. column with
hinged ends.

Which one of the following conditions for the slenderness ratio F is to be

satisfied? [TES-2000]
| I I I

(a)5<E<8(b)9<E<18 (c)19<K<40 (d)KZSO

For-2019 (IES, GATE & PSUs) Page 428 of 480 Rev.0



Chapter-13 Thed¥age ¢2Column S K Mondal’s

IES-13.

IES-14.

IES-14a.

IES-15.

IES-16.

IES-17.

IES-18.

IES-19.

IES-20.

IES-20().

If one end of a hinged column is made fixed and the other free, how much is the

critical load compared to the original value? [TES-2008]
(a) % (b) % (c) Twice (d) Four times
If one end of a hinged column is made fixed and the other free, how much is the
critical load compared to the original value? [TES-2008]
(a) % (b) % (c) Twice (d) Four times

A long column hinged at both the ends has certain critical Euler’s buckling
load-carrying capacity. If the same column be fixed at both the ends (in place

of hinged ends), the load-carrying capacity then increases to [TES-2016]
(a) 4 times (b) 3 times (c) 2 times (d) Nil
Match List-I with List-II and select the correct answer using the code given
below the Lists: [TES-1995; 2007; IAS-1997]
List-I(Long Column) List-II(Critical Load)
A. Both ends hinged 1. 72El/472
B. One end fixed, and other end free 2.4 2E1/ 2
C. Both ends fixed 3.2 m2El/ [2
D. One end fixed, and other end hinged 4.7 2El/ 2
Code: A B C D A B C D

(a) 2 1 4 3 (b) 4 1 2 3

() 2 3 4 1 d 4 3 2 1
The ratio of the compressive critical load for a long column fixed at both the
ends and a column with one end fixed and the other end free is: [TES-1997]
(a)1:2 (b)1:4 () 1: 8 (d) 1: 16
The buckling load will be maximum for a column, if [TES-1993]

(a) One end of the column is clamped and the other end is free
(b) Both ends of the column are clamped

(¢) Both ends of the column are hinged

(d)  One end of the column is hinged and the other end is free

If diameter of a long column is reduced by 20%, the percentage of reduction in
Euler buckling load is: [IES-2001, 2012]
(a) 4 (b) 36 (c) 49 (d) 59

A long slender bar having uniform rectangular cross-section 'B x H' is acted
upon by an axial compressive force. The sides B and H are parallel to x- and y-
axes respectively. The ends of the bar are fixed such that they behave as pin-
jointed when the bar buckles in a plane normal to x-axis, and they behave as
built-in when the bar buckles in a plane normal to y-axis. If load capacity in
either mode of buckling is same, then the value of H/B will be: [TES-2000]
(a) 2 (b) 4 (c)8 (d) 16

The Euler's crippling load for a 2m long slender steel rod of uniform cross-
section hinged at both the ends is 1 kN. The Euler's crippling load for 1 m long
steel rod of the same cross-section and hinged at both ends will be: [IES-1998]
(a) 0.25 kN (b) 0.5 kN (c) 2kN (d) 4 kN

Determine the ratio of the buckling strength of a solid steel column to that of a
hollow column of the same material having the same area of cross section. The
internal diameter of the hollow column is half of the external diameter. Both
column are of identical length and are pinned or hinged at the ends: [IES-2013]

P 2 P 3 P 4 P
@ == () === Oz == @ =1
5 P, 5 P, 5 P,
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IES-21. If oc and E denote the crushing stress and Young's modulus for the material of
a column, then the Euler formula can be applied for determination of cripping
load of a column made of this material only, if its slenderness ratio is:

(a) More than 7,/E / 0, (b) Less than 7/E/ o, [IES-2005]
2| E o[ E
(c) More than 7°| — (d) Less than 77| —
GC JC
IES-22. Four vertical columns of same material, height and weight have the same end
conditions. Which cross-section will carry the maximum load? [TES-2009]
(a) Solid circular section (b) Thin hollow circular section
(c) Solid square section (d) I-section

Rankine's Hypothesis for Struts/Columns

IES-23. Rankine Gordon formula for buckling is valid for [TES-1994]
(a) Long column (b) Short column
(c) Short and long column (d) Very long column

Prof. Perry's formula
IES-24. Match List-I with List-II and select the correct answer using the code given

below the lists: [TES-2008]
List-I (Formula/theorem/ method) List-IT (Deals with topic)

A. Clapeyron's theorem 1. Deflection of beam

B. Maculay's method 2. Eccentrically loaded column

C. Perry's formula 3. Riveted joints

4. Continuous beam

Code: A B C A B C
(a 3 2 1 (b) 4 1 2
(c) 4 1 3 (d) 2 4 3

Previous 25-Years IAS Questions

Classification of Column

TAS-1. Mach List-I with List-IT and select the correct answer using the codes given

below the lists: [IAS-1999]
List-I List-11
A. Polar moment of inertia of section 1. Thin cylindrical shell
B. Buckling 2. Torsion of shafts
C. Neutral axis 3. Columns
D. Hoop stress 4. Bending of beams
Codes: A B C D A B C D
(a) 3 2 1 4 (b) 2 3 4 1
() 3 2 4 1 (d) 2 3 1 4
Strength of Column
IAS-2. Assertion (A): A long column of square cross-section has greater buckling
stability than that of a column of circular cross-section of same length, same
material, same end conditions and same area of cross-section. [TAS-1998]

Reason (R): The second moment of area of a column of circular cross-section is
smaller than that of a column of square cross section having the same area.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOTthe correct explanation of A
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TAS-3.

(c) Ais true but R is false
(d) A is false but R is true

Which one of the following pairs is not correctly matched? [IAS-2003]

(a) Slenderness ratio :  The ratio of length of the column to the least radius of gyration

(b) Buckling factor : The ratio of maximum load to the permissible axial loadon the
column

(¢) Short column : A column for which slenderness ratio < 32

(d) Strut : A member of a structure in any position and carrying an axial

compressive load

Equivalent Length

TAS-4.

TIAS-5.

A column of length 't' is fixed at its both ends. The equivalent length of the

column is: [TAS-1995]
(a) 21 (b) 0.51 ()21 d) !
Which one of the following statements is correct? [IAS-2000]

(a) Euler's formula holds good only for short columns

(b) A short column is one which has the ratio of its length to least radius of gyration
greater than 100

(¢) A column with both ends fixed has minimum equivalent or effective length

(d) The equivalent length of a column with one end fixed and other end hinged is half
of its actual length

Euler's Theory (For long column)

IAS-6.

IAS-7.

TIAS-8.

A7°El 0
2
(@) Column with both hinged ends [TAS-1999; 2004]
(b) Column with one end fixed and other end free
(¢) Column with both ends fixed
(d) Column with one end fixed and other hinged

For which one of the following columns, Euler buckling load =

Assertion (A): Buckling of long columns causes plastic deformation. [IAS-2001]
Reason (R): In a buckled column, the stresses do not exceed the yield stress.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A

(c) Ais true but R is false

(d) A 1s false but R is true

Match List-I with List-II and select the correct answer using the code given

below the Lists: [TES-1995; 2007; IAS-1997]
List-I(Long Column) List-II(Critical Load)
A. Both ends hinged 1. 7 2E1/412
B. One end fixed, and other end free 2.4 m2El/ [2
C. Both ends fixed 3.2 m2El/ [2
D. One end fixed, and other end hinged 4.7 2El/ 12
Code: A B C D A B C D
(a) 2 1 4 3 (b) 4 1 2 3
(0 2 3 4 1 @ 4 3 2 1
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OBJECTIVE ANSWERS

GATE-1.Ans. (b)Axial component of the forceFpq=F Sin 450
2
7 El

We know for both end fixed column buckling load (P) = 2

2
and Fsind5°=P or F :@
GATE-2. Ans. (b)Euler’s buckling loads of columns
47°El
|2
7°El

|2

(1) both ends fixed =

(2) both ends hinged =

GATE-3. Ans. (d)
GATE-3a. Ans. 3289.96

2Bl 7% x200x10° x0.02x0.01°
2 12

GATE-3b. Ans. (d) Area MOI means resistance to bending.

GATE-3c. Ans. (1.097)

Euler's critical load = =3289.96 N

3
. 7% % 200x10° x 22x10
Buckling Load = 2”“” = 15002 =1096.62 N ~1.097 kN
GATE-3d. Ans. (a)
2
F)Cr — 72- E2I min Or F)Cr o0 n;ln
Leq eq
) 3a><(0.5a)3 ,
or I:)cr2 — Imin2 % Leql — 12 x h =i
P | int Liqz 2axa’ 1.5h 12
12
or P =t
cr2 12

GATE-4. Ans. (b)

GATE-4a. Ans. (b)
GATE-5. Ans. (¢)

Assuming guided end to be fixed and other end given as hinged.
The Euler Critical load

2
p, = 2T EL 1 = 7 (20)" mm* = 7853.9mm*
L 64
2 3
p 2 x200:A0°XTB58 _ oo )7y
700
63.27

FOS =——=6.32
10

GATE-5a. Ans. 20000
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7’El
AR
allowable fOS fOS
4
a
7% x(12x10%)x =
12
2
200x10° = 3140
2
area,a’ = 20000
2
GATE-7. Ans. (d) Use formula TEL?I It is independent of yield strength.
GATE-8. Ans. (a)
2 2
The critical load, p-= TICP Bl
For first critical load, n=1
n* El
P = I
GATE-9. Ans. (¢)
GATE-6. Ans. (c¢)
Hoop stress, c, = %
1 pr F
Longitudinal stress, c,=—-
2t 2mrt
Now, for pure shear state, o_ should be compressive and is equal to o,.
c,=—0,
= pr__pr, ¥
t 2t 2mrt
- spr_ _F
2t 2nrt
= F = 3mpr?
GATE-10. Ans. (b)
We know that critical load for a column is proportional to moment of inertia irrespective
of end conditions of the column i.e.
PCV oc I
When the steel strips are perfectly bonded, then
bx(2t)° 8bt?
TR T
When the steel strips are not bonded, then
3 3
I, =2><bi——2bt
12 12
8bt®
P_ 12
| TA
12
= B =4
PO
GATE-11. Ans. (¢)
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Let the deflection in the spring be 6 and force in the spring be F.
Taking moments about G, we get

P x8=FxL [But F= K3d]
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Pcr:KSXL
)
= P =KL

GATE-11a. Ans. (b)
GATE-12. Ans. (c)

h
2 P
M
h
2
A 2 R
B>,
/4
A
Fy
>F, =
= F,-P=0
= F, =P
=M, =0
= F,.h-M=0
M
F ==
= H A

IES

IES-1. Ans. (d)A machine part subjected to an axial compressive force is called a strut. A strut may
be horizontal, inclined or even vertical. But a vertical strut is known as a column,
pillar or stanchion.

The term column is applied to all such members except those in which failure would be
by simple or pure compression. Columns can be categorized then as:

1. Long column with central loading
2. Intermediate-length columns with central loading
3. Columns with eccentric loading
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4, Struts or short columns with eccentric loading

IES-2. Ans. (a) Axle is a non-rotating member used for supporting rotating wheels etc. and do not
transmit any torque. Axle must resist forces applied laterally or transversely to their
axes. Such members are called beams.

IES-2a Ans. (a)Axle is a non-rotating member used for supporting rotating wheels etc. and
do not transmit any torque. Axle must resist forces applied laterally or transversely
to their axes. Such members are called beams.

IES-3. Ans. (b)

IES-4. Ans. (b)

IES-5. Ans. (a)

IES-5@(). Ans. (d)

IES-6. Ans. (a)

IES-6(i). Ans. (a)

IES-7. Ans. (b)

IES-8. Ans. (b)

IES-9. Ans. (b)Euler’s buckling loads of columns

47°El

|2

7°El

I2

(1) both ends fixed =

(2) both ends hinged =

IES-10. Ans. (b)
IES-10(i). Ans. (a)
IES-10(@ii). Ans. (d)
IES-11. Ans. (a)
For one end fixed and other end free;

= ,  m?x210x10° x (7 /64)xd*
Pcr —W or 10x10° = 4X42

IES-11(i). Ans. (¢)
IES-12. Ans. (d)
IES-13. Ans. (a)Critical Load for both ends hinged = 77 2EI/ [2
And Critical Load for one end fixed, and other end free = 77 2EI/4/[2
n%El
|2

or d ~50mm

IES-14. Ans. (a)Original load =

When one end of hinged column is fixed and other free. New Le = 2L

Bl Bl 1
> = —— = —xOriginal value
(2) 41 4

.. New load =

IES-14a. Ans. (a)

IES-15. Ans. (b)

IES-16. Ans. (d) Critical Load for one end fixed, and other end free is 77 2EI/4/2 and both ends fixed
is 4 72El/ 2

IES-17. Ans. (b)Buckling load of a column will be maximum when both ends are fixed

2

Ly dt—(dY) 4
IES-18. Ans. (d)P = =) Pool or Pood? or PP = (") =1—[0'—§dj ~0.59

L? p d*
2 2 '
El 4 El 3 3
IES-19. Ans. (@) P, = — and P, =~2 =" a5 P, =P, then |=4I or 01 —4x"2_ o H_5
L YoooL 12 12 B
7El

IES-20. Ans. (d)For column with both ends hinged, P =

2 If T 1s halved, P will be 4 times.
IES-20(i). Ans. (b)
IES-21. Ans. (a)For long column Pguler < Perushing

2 2 2 2 2
or”f|<o-cA or”llz'g\K <o A or(lfj >7[—E OFIE>7T\/E/O'C
e € o

IES-22. Ans. (b)

IES-23. Ans. (¢)

IES-24. Ans. (b)

c
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1AS

IAS-1. Ans. (b)

IAS-2. Ans. (a)

IAS-3. Ans. (b) Buckling factor:The ratio of equivalent length of the column to the least radius of
gyration.

IAS-4. Ans. (b)

IAS-5. Ans. (c) A column with both ends fixed has minimum equivalent effective length (1/2)

IAS-6. Ans. (c¢)

IAS-7. Ans. (d)And Critical Load for one end fixed, and other end free = 7 2EI/4/2

IAS-8. Ans. (b)

Previous Conventional Questions with Answers

Conventional Question ESE-2001, ESE 2000

Question: Differentiate between strut and column. What is the general expression used
for determining of their critical load?

Answer: Strut: A member of structure which carries an axial compressive load.

Column: If the strut is vertical it is known as column.

) _ Compressive force
For strut failure due to compression or S, = A
rea

If s, > s it fails.
2
nEl
Euler's formula for column (Pc ): |—2
e
Conventional Question ESE-2009
Q. Two long columns are made of identical lengths ‘I’ and flexural rigidities ‘EI’.
Column 1 is hinged at both ends whereas for column 2 one end is fixed and the
other end is free.

(i) Write the expression for Euler’s buckling load for column 1.
(ii) What is the ratio of Euler’s buckling load of column 1 to that column 2? [ 2 Marks]

Ans. (i) 2 2
n“EI nEl, .
Pl = ?; P2 = 4L2 (I'lght)
For columnl,bothendhinged|l, =L
(ii) L
P,

Conventional Question ESE-2010

Q. The piston rod of diameter 20 mm and length 700 mm in a hydraulic cylinder is
subjected to a compressive force of 10 kN due to internal pressure. The piston end
of the rod is guided along the cylinder and the other end of the rod is hinged at the
cross-head. The modulus of elasticity for piston rod material is 200 GPa. Estimate
the factor of safety taken for the piston rod design. [2 Marks]

Pﬁ \%/2Omm|&P
)

Ans.
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P PL V4 n’El

o=—;0=";/0 =—1—; P, = —— (considering one end of the column is fixed and
A'CTAE T 2 T ( 8

other end is hinged)

Pe = Euler Crippling load

Compressive load, P, =0, x Area =10 kN

21" (200 X 109) x (“ x0.020" /64) = 63.278 kN

Euler’s load, P, =

(0.7)%
FS= Euler's load
' Compressiveload
PS = 63.278 6.3
10

Conventional Question ESE-1999

Question: State the limitation of Euler's formula for calculating critical load on
columns

Answer: Assumptions:
(1) The column is perfectly straight and of uniform cross-section
(11) The material is homogenous and isotropic
(111) The material behaves elastically
(iv) The load is perfectly axial and passes through the centroid of the column section.
(v) The weight of the column is neglected.

Conventional Question ESE-2007
Question: What is the value of Euler's buckling load for an axially loaded pin-ended
(hinged at both ends) strut of length 'I' and flexural rigidity 'EI'? What would
be order of Euler's buckling load carrying capacity of a similar strut but
fixed at both ends in terms of the load carrying capacity of the earlier one?
Answer: From Euler's buckling load formula,
2
Critical load (P.) = “—ZE'
14

e

Equivalent length (¢,) = ¢ for both end hinged = ¢/ for both end fixed.

2
_ n°El
So for both end hinged (P.),.,, = Z
’El B An’E|

and for both fixed (P.),, =

(%)2 62

2

Conventional Question ESE-1996

Question: Euler's critical load for a column with both ends hinged is found as 40 kN.
What would be the change in the critical load if both ends are fixed?

Answer: We know that Euler's critical laod,
m’El . o
Ppue= —— [Where E = modulus of elasticity, I = least moment of inertia

e
¢, = equivalent length ]
For both end hinged (£¢) = ¢
And For both end fixed (£¢) = £/2

2
- (Pever Joon = “T'f':4o kN(Given)

2 2

and (PEuler)b.e.F. =
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Conventional Question ESE-1999

Question: A hollow cast iron column of 300 mm external diameter and 220 mm internal
diameter is used as a column 4 m long with both ends hinged. Determine the
safe compressive load the column can carry without buckling using Euler's
formula and Rankine's formula
E =0.7x105 N/mm?, FOS = 4, Rankine constant (a) = 1/1600

Crushing Stress (0,) =567 N/mm?

Answer: Given outer diameter of column (D) = 300 mm = 0.3 m.
Inner diameter of the column (d) = 220 mm = 0.22 m.
Length of the column (/) =4 m

End conditions is both ends hinged. Therefore equivalent length (£ D= =4m.

Yield crushing stress (G,) = 567 MPa = 567x106 N/m?
Rankine constant (a) = 1/1600 and E = 0.7%X105 N/mm?2 = 70 x 109 N/m?2

Momentof Inertia(l) = 6%r(D4 —d*) = é[o.ef‘ —0.22%|=2.826x10*m*

=0.093m

_\/D2+d2 _\/0.32+o.222
T 16

Area(A) = %(D2 —d?) = %(0.32 ~0.22%) = 0.03267m?
(i) Euler's buckling load, P

uler

Bl 7’ x(70x10°)x (2.826 x10™*)

I:)Euler = [‘; - 42 :122MN
. Safe load = Peuer = 12.2 = 3.05MN
fos 4
(iRankine's buckling load, P, e
567%x10°)x 0.03267
Rankine = GC'A 2 = ( ) 2 = 859 MN
14 1 4
l1+a|-*% 1+—x|———
k 1600 (0.093
. Safe load = Prankine = 859 =2.148MN
fos 4

Conventional Question ESE-2008

Question: A both ends hinged cast iron hollow cylindrical column 3 m in length has a
critical buckling load of P kN. When the column is fixed at both the ends, its
critical buckling load raise by 300 kN more. If ratio of external diameter to
internal diameter is 1.25 and E = 100 GPa determine the external diameter of

column.
p 7 El
Answer: c = I?

For both end hinged column
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For both end fixed column

2 2
p+300= 1= —ATEL__ i)
.
2
Dividing (i) by (i) we get
P+300

=4 or P=100kN

Moment of inertia of a hollow cylinder c/s is

| =—(D*~d*)= PL

64 °E
100x10°%)3?
orD* —d* :%<2 ) - =1.8577x10"°
m m°x100x10
given 2:1.25 ord= D
d 1.25-5
1 4
or D*|1—|——| |=1.8577x10"°
1.25

or D=0.0749 m =74.9 mm

Conventional Question AMIE-1996

Question: A piston rod of steam engine 80 cm long in subjected to a maximum load of 60
kN. Determine the diameter of the rod using Rankine's formula with
permissible compressive stress of 100 N/mm?2. Take constant in Rankine's

1
formula as %for hinged ends. The rod may be assumed partially fixed

with length coefficient of 0-6.
Answer: Given: | =80 cm=800mm ;P = 60kN = 60 x10°N, o, =100N/ mm?;

a=

for hinged ends; length coefficient =0.6
7500

To find diameter of the rod, d:
Use Rankine’s formula

o A

I 2
1+ a[e)
k

Here |, =0.61=0.6x800 =480 mm [.'length coefficient=0.6]

100 X(Z dzj
60x10°% =

! 480
7500| d/ 4

Solving the above equation we get the value of ‘d’

Note: Unit of d comes out from the equation will be mm as we put the equivalent
length in mm.

or d=33.23mm
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Conventional Question ESE-2005
Question: A hollow cylinder CI column, 3 m long its internal and external diameters as

80 mm and 100 mm respectively. Calculate the safe load using Rankine
formula: if

(i) Both ends are hinged and
(ii) Both ends are fixed.

Take crushing strength of material as 600 N /mm*, Rankine constant 1/1600
and factor of safety = 3.

Answer:  Moment of Inertia (I):6—7t4(0.14 —0.08")m* =2.898x10°m*

Area(A) = %(0.12 ~0.08%) = 2.8274x10 *m*

—6
Radius of gyration (k) :\/I :\/ 2.898x10 — =0.032m
A 2.8274x10

Rankine:%; [¢.= equivalent length]

_e

l1+a
k

B (6OO><106)>< (2.8274><10’3)

1 3 )
1+ X
1600 0.032

=261.026kN

()

; [¢.=1=3 m for both end hinged]

Safe load (P)="Raue _ 26126 _ g7 g\
FOS 3

(if) For both end fixed, 7, _4_1.5m
(600x10°)x(2.8274x10°°)

P _ 714.8kN
Rank 1 1.5 Y
1+ X
1600 *0.032
Safe load (P)="rae _ 1148 _ a0 571\
FOS 3

Conventional Question AMIE-1997
Question: A slender column is built-in at one end and an eccentric load is applied at the
free end. Working from the first principles find the expression for the

maximum length of column such that the deflection of the free end does not
exceed the eccentricity of loading.
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Answer: Above figure shows a slender column of length T’. The column is built in at one end B
and eccentric load P is applied at the free end A.
Let y be the deflection at any section XX distant x from the fixed end B. Let & be the
deflection at A.
The bending moment at the section XX is given by

d? )
EldXZ —P(5+e-y) ————(i)
d’y dy P P
Eldx2 +Py=P(5+e) or 0 +ayza(5+e)

The solution to the above differential equation is

SN Y 2 O 2 S

Where C,and C, are the constants.

At the end B,x=0andy=0

. 0=C, cos0+C, sin0+(5+e)
or C,=—(5+e)

Differentiating equation (ii) we get

ay_ —Cl\/E sin{x\/E} +C, \/E cos{x P :I
dx El El El El
Again,at the fixed end B,

Whenx=0,d—y=0
dx
0=(5+e) /E ><O+CZ‘/E cos0
El El
or C,=0

At the free end Ax =0y =6
Substituting for x and y in equation (i), we have

§=—(§+e)cos{£\/g}:(§+e)

cos[f %}:;e il
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It is mentioned in the problem that the deflection of the free end does not exceed the

eccentricity. It means that 6 =e
Substituting this value in equation (iii), we have

P e 1
cos| l |— |= ==
{ EI} o+e 2

/ Ezcos‘1 1.z
El 2 3

Conventional Question ESE-2005

Question: A long strut AB of length '/ is of uniform section throughout. A thrust P is
applied at the ends eccentrically on the same side of the centre line with
eccentricity at the end B twice than that at the end A. Show that the
maximum bending moment occurs at a distance x from the end A,

Where,tan(k= 2— 2L and k=, i
sin k¢ EI

Answer: Let at a distance 'x' from end A deflection of the
beam isy

d%y
dx?
d%y

- El =—Py

P
+—y=0

d%y =
or +k’y =0 | k=,|—given
dx? y l El ¢

C.F of this differential equation

y = A cos kx + B sin kx, Where A & B constant.
Itisclearatx=0,y=e 1
Andatx=/{, y=2e ?I X

or

2e —ecosk/

2e = Acosk/{+Bsink/? or B= -
sink?

2e —ecosk/
sink{
Where bending moment is maximum,

the deflection will be maximum so g_y =0
X

sinkx

.y =ecoskx +

2e —ecosk/
sink/?

.'.d—y:—eksinkx+k. coskx =0

dx

2 —cosk/

or tankx = .
sink/{

Conventional Question ESE-1996

Question: The link of a mechanism is subjected to axial compressive force. It has solid
circular cross-section with diameter 9 mm and length 200 mm. The two ends
of the link are hinged. It is made of steel having yield strength = 400 N/mm?
and elastic modulus = 200 kN/mm2. Calculate the critical load that the link

can carry. Use Johnon's equation.
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Answer: According to Johnson's equation
o (L]
4nn’E |k
2

Hear A=area of cross section= ﬂ = 63.62mm?

P, = Gy.A

least radius of gyration (k) = % = =—=2.25mm
For both end hinged n=1
2
P, =400x63.62|1— 5 400 3 [200] =15.262kN
4x1xm x(200x10°)x(2.25

Conventional Question GATE-1995
Question: Find the shortest length of a hinged steel column having a rectangular cross-
section 600 mm X 100 mm, for which the elastic Euler formula applies. Take

yield strength and modulus of elasticity value for steel as 250 MPa and 200
GPa respectively.

Answer: Given: Cross-section, (=b x d) = 600 mm x 100 mm = 0.6 m x 0.1 m = 0.06 m2;
Yield strength = %z 250MPa = 250MN / m%;E = 200 GPa = 200 x 10N / m?

Length of the column,L:

3 3
LeastareamomentofInertia, | = bd2 = O'szo'l =5x10"°m*
-5
Also, ot 25107 gas 10 m?
A 0.6x0.1
[ 1 = AK?(where A =area of cross-section, k = radius of gyration|]
From Euler's formula for column, we have
2 2
Crushing load, P, = WL—ZEI = WL—ZEI
For bothendhinged type of column,L =L
2 2
or P, = %
2
or Yield stress [&] _T EI
L
2 2
or - TEK
(PCr /A)

Substituting the value,we get

_ m*%x200x10° x0.0008333
250 x 10°

L2 =6.58

L=2.565m

Conventional Question GATE-1993
Question: Determine the temperature rise necessary to induce buckling in a Im long
circular rod of diameter 40 mm shown in the Figure below. Assume the rod to

be pinned at its ends and the coefficient of thermal expansion as20x107°¢/°C
. Assume uniform heating of the bar.
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40mm dia. rod

" im "
Answer: Letusassume the buckling load be'P".
0L =L.x.At, Where At is the temperature rise.
oL
or At = ——
L. x
Also, (SL:i or P= OL.AE
AE L
7El o
P, = E — — —(where L =equivalentlength)
2
or ﬂLzEI = 5L'€'E [QL.=L For bothendhinged]
7l
or oL=—
LA
oL 7 7
At

“Lx LALx LA
Substituting the values,we get

7% x - x(0.040)"
Temperature rise At = 64 =49.35°C
(1)* % x (0.040)* x 20 x10°°

So the rod will buckle when the temperature rises more than 49.35°C.
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14.]|| Strain Energy Method

Theory at a Glance (for IES, GATE, PSU)

1. Resilience (U) B

e Resilience is an ability of a material to absorb energy when  p,

elastically deformed and to return it when unloaded. Aram=12 Pai:

o The strain energy stored in a specimen when stained within

the elastic limit is known as resilience. L 3 i

2 2
=G—><Volume or (U=
2E

2. Proof Resilience
e Maximum strain energy stored at elastic limit. i.e. the strain energy stored in the body upto
elastic limit.
o This is the property of the material that enables it to resist shock and impact by storing

energy. The measure of proof resilience is the strain energy absorbed per unit volume.

3. Modulus of Resilience (u)

The proof resilience per unit volume is known as modulus of resilience.

If o is the stress due to gradually applied load, then

c” e E
u=—| or lu=——
2E 2
4. Application - T
T2AE T, e nd? LA —.
2—(2d)°E =
4( ) 2. 1 E -
| 2a |

le

Strain energy becomes smaller & smaller as the cross sectional area of bar
is increased over more & more of its lengthi.e. AT, Ul

5. Toughness

e This is the property which enables a material to be twisted, bent or stretched under impact

load or high stress before rupture. It may be considered to be the ability of the material to
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Modulus of Toughness

absorb energy in the plastic zone. The measure of toughness is the amount of energy
absorbed after being stressed upto the point of fracture.

Toughness is an ability to absorb energy in the plastic range.

The ability to withstand occasional stresses above the yield stress without fracture.
Toughness = strength + ductility

The materials with higher modulus of toughness are used to make components and
structures that will be exposed to sudden and impact loads.

Tenacity is defined as the work required to stretch the material after the initial resistance is

overcome.

The ability of unit volume of material

Inelastic
to absorb energy in the plastic range.

The amount of work per unit volume
that the material can withstand

without failure.

n¥

The area under the entire stress strain
diagram is called modulus of toughness,
which is a measure of energy that can Ut= Ous
be absorbed by the unit volume of
material due to impact loading before it

fractures.

6. Strain energy in shear and torsion

e Strain energy per unit volume, (u,) T A

2 2
= ~ o, u, = Gy
2G 2

Total Strain Energy (U) for a Shaft in Torsion

u

1
U,=>T
=519

2
or |U :Tﬂ—ZELI ’d

Cases

eSolid shaft, U, = -2 x 7r2|.
4G
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2 x(D'-d)L 2 (D*+d?)
eHollowshaft, U, =-x > = & % —xVolume
4G D 4G D

2

eThin walled tube, U, =2 xslt
4G

where s = Length of mean centre line

2 27zn
e Conical spring, U =%I(%j _% | (PRJ Rda (R =Radius)
X 0

2 2mn
- R%da (R varies with o)
2GJ
. . - 3( PL
e Cantilever beam with load 'p' at end, U, = —
5( bhG
2p3
e Helical spring , U, = PR (- L=27zRn)
GJ
7. Strain energy in bending. N
e  Strain energy stored in beam. & s o
L 2
U, :J‘ M, .dx
. 2EI
L 2 2 2
orUb—EJ‘dZ dx dy __M
2 Jdx dx El
e Cases
P2L3
o Cantilever beam with a end load P, Ub :a
P2L3

o Simply supported with a load P at centre, U, = 96EI

e Important Note
o For pure bending

e M is constant along the length ‘I’

[ ] 0 :%
El
2 2
U= MEII_ if Misknown = Elo if curvature @ / L isknown

o For non-uniform bending
e Strain energy in shear is neglected

e Strain energy in bending is only considered.
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8. Castigliano’s theorem

u
oP,
W_ 1y, (M),
op El op

° Note:

o Strain energy, stored due to direct stress in 3 coordinates

U =%[Z (c,)? —2,uZGXGy]

o Ifo,=0,=0,in case of equal stress in 3 direction then

30? o?
1-2u]=— volume strain ener
oE [1-24] K ( ay)

U=
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Strain Energy or Resilience

GATE-1.

GATE-2.

The strain energy stored in the beam with flexural rigidity EI and loaded as
shown in the figure is: [GATE-2008]

P P
- LH‘I;—— 2:.‘# L—

P2’ 2P?° 4P% 8P%°
(b) (©) (d)

(a)
3EI 3EI 3El 3El

3

is the deflection under the load P of a cantilever beam length L, modulus

of elasticity, E, moment of inertia-I]. The strain energy due to bending is:
[GATE-1993, 2017, ISRO-2015]
P2 L3 P2 LS P2 L3 PZ L3
(b) (c) (d)
3El 6El 4El 48El

(a)

GATE-2(i). U, and U, are the strain energies stored in a prismatic bar due to axial tensile

GATE-3.

GATE-4.

forces P, and P,, respectively. The strain energy U stored in the same bar due to

combined action of P, and P, will be [CE: GATE-2007]
(@@ U=0, +U, (b)) U=U1,
0 U<U, +1U, d U>1U, +U,
f A
The stress-strain behaviour of a gg i
material is shown in figure. Its 5
resilience and toughness, in Nm/ms3, S L
are respectively B j
(a) 28 x 104, 76 x 10* g |
(b) 28 x 104, 48 x 104 30 i
(c) 14 x 104, 90 x 104 _ L l >
(d) 76 x 104 0.004 0.008 0.012

Strain (mm/mm)

[GATE-2000]

A square bar of side 4 cm and length 100 cm is subjected to an axial load P. The
same bar is then used as a cantilever beam and subjected to all end load P. The
ratio of the strain energies, stored in the bar in the second case to that stored
in the first case, is: [GATE-1998]
(a) 16 (b) 400 (c) 1000 (d) 2500
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GATE-4(G) For linear elastic systems, the type of displacement function for the strain

energy is
(@) linear (b) quadratic [CE: GATE-2004]
(c) cubic (d) quartic

GATE-4(ii)A mild steel specimen is under uniaxial tensile stress. Young’s modulus and
yield stress for mild steel are 2x10° MPa and 250 MPa respectively. The

maximum amount of strain energy per unit volume that can be stored in this
specimen without permanent set is

(@) 156 Nmm/ mm”® (0) 15.6 Nmn/ mm®>  [CE: GATE-2008]
(¢) 1.56 Nmnv mm® (d) 0.156 Nmnv mm”*
Toughness
GATE-5. The total area under the stress-strain curve of a mild steel specimen tested up
to failure under tension is a measure of [GATE-2002]
(a) Ductility (b) Ultimate strength (c) Stiffness (d) Toughness
GATE-6.For a ductile material, toughness is a measure of [GATE-2013]
(a) resistance to scratching (b) ability to absorb energy up to fracture
(c) ability to absorb energy till elastic limit (d) resistance to indentation
GATE-6a. Consider the following statements: [PI: GATE-2016]

(P) Hardness is the resistance of a material to indentation.

(Q) Elastic modulus is a measure of ductility.

(R) Deflection depends on stiffness.

(S) The total area under the stress-strain curve is a measure of resilience.

Among the above statements, the correct ones are

(@) Pand Q only. (b) Q and S only. (c) Pand R only. (d) Rand S only.

Castigliano’s Theorem

GATE-7.A frame is subjected to a load P as shown in the figure. The frame has a constant
flexural rigidity EI. The effect of axial load is neglected. The deflection at point A

due to the applied load P is [GATE-2014, ISRO-2015]
1 Pl 2 P} \
(@) - ) -
3 EI 3 EI
PL} 4 PI}
d) =
© @ 3R L
l A
e— 1, —>
v

GATE-8. A simply supported beam of length 2L is subjected to a moment M at the mid-
point x = 0 as shown in the figure. The deflection in the domain 0 < x < L is given

by y= _—MX(L— x)(x+c) [GATE-2016]
12EIL
where E is the Young’s modulus, I is the area moment of inertia and c is a constant (to be
determined) .
y A
| — |
7 _ / X _000
\ e |
| L L ’
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The slope at the center x =0 is
(a) MLI/(2EI) (b) ML/(3EI) (c) MLI(BEI) (d) ML/(12EI)

Previous 25-Years IES Questions

Strain Energy or Resilience

IES-1. What is the strain energy stored in a body of volume V with stress o due to
gradually applied load? [TES-2006]
oE oE? oV? oV
(@) — (b) (c) (d) —
\Y \ E 2E

Where, E = Modulus of elasticity

IES-1a. The capacity of a material to absorb energy when deformed elastically and
then to have this energy recovered upon unloading is called [TES-2016]
(a) endurance (b) resilience (c) toughness (d) ductility

IES-1b. A circular bar L m long and d m in diameter is subjected to tensile force of F
kN. Then the strain energy, U will be (where, E is the modulus of elasticity in
kN/m?) [TES-2012]

()4F2 L(b F? L( 2F2Ld3F2L
Yoz 'E )ndz Ec)nd2 E( )T[dz E

IES-1c. Statement (I): Ductile materials generally absorb more impact energy than the
brittle materials.
Statement (II): Ductile materials generally have higher ultimate strength than
brittle materials. [TES-2012]
(a) Both Statement (I) and Statement (II) are individually true and Statement (II) is the
correct explanation of Statement (I)
(b) Both Statement (I) and Statement (II) are individually true but Statement (II) is not
the correct explanation of Statement (I)
(c¢) Statement (I) is true but Statement (II) is false
(d) Statement (I) is false but Statement (II) is true

IES-2. A bar having length L and uniform cross-section with area A is subjected to
both tensile force P and torque T. If G is the shear modulus and E is the
Young's modulus, the internal strain energy stored in the bar is: [TES-2003]

T’L P2L T’L P2L T°L P2 T°L P°L
+ (b) + (c) + (d) +
2GJ AE GJ 2AE 2GJ 2AE GJ AE

(a)

IES-3. Strain energy stored in a body of volume V subjected to uniform stress s is:
[TES-2002]
(asE/V (b) sE2/ V (c) sVZ/E (d) s2V/2E

IES-4. A bar of length L and of uniform cross-sectional area A and second moment of
area ‘I’ is subjected to a pull P. If Young's modulus of elasticity of the bar
material is E, the expression for strain energy stored in the bar will be:

[TES-1999]
PZL PL? PL? PZL
a b)— C)— d)—
()ZAE ()2E| ()AE ()AE
IES-4a. The strain energy per unit volume of a round bar under uniaxial tension with
axial stress and modulus of elasticity E is [TES-2016]
o2 o2 P P
a)— b)— c)— d)—
()E ()2E ()3E ()4E
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IES-5. Which one of the following gives the correct expression for strain energy
stored in a beam of length L. and of uniform cross-section having moment of
inertia ‘I’ and subjected to constant bending moment M? [TES-1997]

ML ML M?L M?L

(@) ()55 () (4)5g

IES-6. A steel specimen 150 mm?in cross-section stretches by 0:05 mm over a 50 mm
gauge length under an axial load of 30 kN. What is the strain energy stored in
the specimen? (Take E = 200 GPa) [TES-2009]
(a) 0.75 N-m (b) 1.00 N-m (c) 1.50 N-m (d) 3.00 N-m

IES-7. What is the expression for the strain energy due to bending of a cantilever
beam (length L. modulus of elasticity E and moment of inertia I)? [TES-2009]

PZ L3 PZ L3 PZ L3 P2 L3
(b) (c) (d)
3El 6El 4El 48El

(a)

IES-7(i). A cantilever beam, 2m in length, is subjected to a uniformly distributed load of
5kN/m. If E=200GPa and 1=1000CM*, the strain energy stored in the beam will be

(a) TNm (b) 12Nm (c) 8Nm (d) 1I0Nm [TES-2014]
IES-8. The property by which an amount of energy is absorbed by a material without
plastic deformation, is called: [TES-2000]
(a) Toughness (b) Impact strength (c) Ductility (d) Resilience
IES-8a Resilience of material becomes important when it is subjected to :
(a) Fatigue (b) Thermal stresses
(c) Shock loading (d) Pure static loading [IES-2011]

IES-8b. Which one of the following statements is correct?
(a) The strain produced per unit volume is called resilience.
(b) The maximum strain produced per unit volume is called proof resilience.
(c) The least strain energy stored in a unit volume is called proof resilience.
(d) The greatest strain energy stores in a unit volume of a material without
permanent deformation is called proof resilience. [IES-2017 Prelims]

IES-9. 30 C 8 steel has its yield strength of 400 N/mm?2 and modulus of elasticity of 2 X
105 MPa. Assuming the material to obey Hooke's law up to yielding, what is its

proof resilience? [TES-2006]
(a) 0-8 N/mm? (b) 0.4 N/mm?2 (c) 06 N/mm? (d) 07 N/mm?
IES9a Match List I with List II and select the correct answer using the code given
below the lists: [TES-2010]
List 1 List I1

A. Point of inflection 1. Strain energy

B. Shearing strain 2. Equation of bending

C. Section modulus 3. Equation of torsion

D. Modulus of resilience 4. Bending moment diagram

Code: A B C D A B C D
(a) 1 3 2 4 (b) 4 3 2 1
(c) 1 2 3 4 (d) 4 2 3 1
Toughness
IES-10. Toughness for mild steel under uni-axial tensile loading is given by the shaded
portion of the stress-strain diagram as shown in [TES-2003]
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(@) (b)
Oyu
—_— J—")
(c) UTS e
d
o _%_é ~§é;‘\x (@
I f— T / Fracture
——— ::':

Previous 25-Years IAS Questions

Strain Energy or Resilience

IAS-1. Total strain energy stored in a simply supported beam of span, 'L' and flexural
rigidity 'El 'subjected to a concentrated load 'W' at the centre is equal to:
[TAS-1995]
w2 w2 w2 WL
(a) (b) (c) (d)
40El 60El 96EI 240El
IAS-2. If the cross-section of a member is subjected to a uniform shear stress of
intensity 'q' then the strain energy stored per unit volume is equal to (G =
modulus of rigidity). [TAS-1994]
(a) 2q2/G (b) 2G / g2 (c) q2/2G (d) G/2 g2
IAS-4. Which one of the following statements is correct? [TAS-2004]
The work done in stretching an elastic string varies
(a) As the square of the extension (b) As the square root of the extension
(c) Linearly with the extension (d) As the cube root of the extension
Toughness
TIAS-5. Match List-I with List-II and select the correct answer using the codes given
below the lists: [TAS-1996]
List-I (Mechanical properties) List-II (Meaning of properties)
A. Ductility 1. Resistance to indentation
B. Hardness 2. Ability to absorb energy during plastic
C. Malleability deformation
D. Toughness 3. Percentage of elongation
4. Ability to be rolled into flat product
Codes: A B C D A B C D
(a) 1 4 3 2 ® 3 2 4 1
©) 2 3 4 1 @ 3 1 4 2
TAS-6. Match List-I (Material properties) with List-I1 (Technical

definition/requirement) and select the correct answer using the codes below

the lists: [TAS-1999]
List-I List-IT
A. Hardness 1. Percentage of elongation

For-2019 (IES, GATE & PSUs) Page 453 of 480 Rev.0



Chapter-14 Strain EReggyt84ethod S K Mondal’s

B. Toughness 2. Resistance to indentation
C. Malleability 3. Ability to absorb energy during plastic deformation
D. Ductility 4. Ability to be rolled into plates
Codes: A B C D A B C D
(a) 3 2 1 4 (b) 2 3 4 1
(c) 2 4 3 1 (d) 1 3 4 2

TAS-7. A truck weighing 150 kN and travelling at 2m/sec impacts which a buffer
spring which compresses 1.25cm per 10 kN. The maximum compression of the

spring is: [IAS—{995]
(a) 20.00 cm

(b) 22.85 cm

(c) 27.66 cm 150kN TRy

(d) 30.00 cm 7 17 3

-
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GATE-1.Ans. (0)7 Midx _ f M*dx f [ M?dx +7 MZdx
0

OBJECTIVE ANSWERS

2El 2E| 2El 2El

3L

L 2 2
M “dx M “dx
=2 +
[ZEI jL‘ZEI

M 2dx M 2dx
By symmetr
ysy yf 2El f 2El

'~ (Px)2dx :L (PLY’dx  4P2°

=2 =
2El | 2El 3El

GATE-2. Ans. (b)We may do it taking average

. i P PL3 P23
Strain energy = Average force x displacement = | —
2 3E| 6El

Alternative method: In a funny way you may use Castigliano’s theorem, 6 = 8_P Then

GATE-2(i). Ans. (d)

(9U PL3
= rU= | 0U= —8P Partially integrating with respect to P we get
9P 3ElC J f ¥ iearating P .
P 23
6El
. P’L
We know that Strain Energy, U =
2AE

It is obvious from the above equation that strain energy is proportional to the square of
load applied. We know that sum of squares of two numbers is less than the square of
their sum. Thus U > U, +U,.

GATE-3. Ans. (c) Resilience = area under this curve up to 0.004 strain

GATE-4.

= %><0.OO4><70><106 =14x10* Nm/m3

Toughness = area under this curve up to 0.012 strain

= 14x10* + 70x10° x (0.012 — 0.004) + %x (0.012 — 0.004) X (120 - 70) x10° Nm/m3
=90x10* Nm/m3

2
(VAVj AL 3
Ans. (d)U, = =
2E 2AE
U, - W wA ow o A= a2 o
4
6El (1 Ea
12
2
oru—_£_4 [100) = 2500 a
u a’ 4

GATE-4(i) Ans. (b)

Strain Energy = éx oxg= %Esz

GATE-4(ii)Ans. (d)

The strain energy per unit volume may be given as
2

u:lx& (250) =0.156 N- mm/ mm®
2 E 2 2x10°

GATE-5.Ans. (d)
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GATE-6.Ans. (b)

GATE-6a. Ans.(c) Percentage elongation is a measure of ductility. The total area under the stress-strain curve is
a measure of modulus of toughness.

GATE-7.Ans. (d)

d
GATE-8. Ans. (¢) Here we may use slope(e) = d_y but problem is that ‘¢’ is unknown. Finding ‘¢’
X

is difficult. Easiest method is use Castigliano’s Theorem.

'I,I'l.
A e\ B
| — |
. _/ X Peeie)
Ra=M/2L L ] L Rb=-MAL

Total Strain Energy (U) = Uac + Usc
2
L(R.x) 5 (R,X M2y -x 2
:I(a)dx+J( )d_j(/ )dXIML
o 2El o 2El 2El 12El
According to Castigliano’s Theorem
Slope(0) = oU _2ML _ ML
oM 12El 6El

IES

IES-1. Ans. (d) Strain Energy =

IES-1a. Ans. (b)
IES-1b. Ans. (c¢)
IES-1c. Ans. (c¢)

2
% v
E

I\JlH

IES-2. Ans. (c¢) Internal strain energy = 1P§+ ETé? = i P&+£T E
2 2 2 AE 2 GJ

IES-3. Ans. (d)

2
IES-4.Ans. (a) Strain energy = 1x stress x strain x volumezix P X E.L ><(AL) = PL
2 2 A A E 2AE
IES-4a. Ans. (b)
IES-5. Ans. (d)

IES-6. Ans. (a)Strain Energy stored in the specimen

2 30000)° x50 x10°
=£P6=1P(&j= PL )_Z __0.75N-m
2 2 \AE 2AE  2x150x107° x200x10
2 3 213
IES-7. Ans. (b)Strain Energy Stored = J(PX) dx P— X = PL
2E 2EI\ 3 6El

IES-7(i). Ans.(d)

L L 2\2
J-szdx J-(W;(j dx 25 %1068 25
_ 0 _ 0 4 — X — =
U=8"""28 8B IX X = 8 200x10° x 1000108 * 5 — LONm
IES-8. Ans. (d)
IES-8a. Ans. (¢)
TES-8b. Ans. (d)

For-2019 (IES, GATE & PSUs) Page 456 of 480 Rev.0



Chapter-14 StrairPegeed§y Method S K Mondal’s
2 400)°
IES-9. Ans. (b) Proof resilience (Rp) = 1o = 1>< ( )

2
> E "2 szAN/mm

IES9a Ans. (b)
IES-10. Ans. (d) Toughness of material is the total area under stress-strain curve.

IAS

L np2 LI2 \ g2 L/2 2 213
IAS-1. Ans. (c)Strain energy = IM dx = ZXI M"dx = ixj EMJ dx = WL
o 2El o 2El El § 2 96EI
. o ou ou
Alternative method: In a funny way you may use Castigliano’s theorem, 6 = 8_P = aW

3

We know that 6 = WL
48E

| for simply supported beam in concentrated load at mid span.

8U 8U w3 . . . .
Then 6= T = 48E| r U= f oU = f 28El OW partially integrating with
213
respect to W we get U= WL
96El
IAS-2. Ans. (c)
2 6l
IAS-4. Ans. (a) g _ 1 EE= ( 2)
2E 2 2| L
IAS-5. Ans. (d)
IAS-6. Ans. (b)

IAS-7. Ans. (c) Kinetic energy of the truck = strain energy of the spring
150 x10°
mv

=0.2766m =27.66cm

1, 1, \/ 9.81

—mv- ==kx- orx = =

2 2 k 10 x1000
0.0125

Previous Conventional Questions with Answers

Conventional Question IES 2009

Q. A close coiled helical spring made of wire diameter d has mean coil radius R,
number of turns n and modulus of rigidity G. The spring is subjected to an
axial compression W.
(1) Write the expression for the stiffness of the spring.
(2) What is the magnitude of the maximum shear stress induced in the spring

wire neglecting the curvature effect? [2 Marks]
4
Ans. (1) Spring stiffness, K = w_Gd o
X 8nD
8WD

(2) Maximum shear stress, T =

nd?

Conventional Question IES 2010

Q. A semicircular steel ring of mean radius 300 mm is suspended vertically with
the top end fixed as shown in the above figure and carries a vertical load of 200
N at the lowest point.
Calculate the vertical deflection of the lower end if the ring is of rectangular
cross- section 20 mm thick and 30 mm wide.
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Value of Elastic modulus is2x10° N/mm?.
Influence of circumferential and shearing forces may be neglected.
[10 Marks]

Ans. Load applied, F =200 N
Mean Radius, R = 300 mm

Elastic modules, E = 2 x 10° N/mm?
I = Inertia of moment of cross — section

3
I=£ b =20 mm
12

d =30 mm
3
20x(30
= L = 45,000 mm*
= Influence of circumferential and shearing force are neglected strain energy at the section.
b 2
a fMRIO o R
) 2RI 4
M =FxRsin0
M _ =R sin6
oF

2
:_u .[ 25in20 10 = FR
oF o 2EI
nFR? _ Tt><200><(300)2
2EI 2x2x10° x 45000
§ =0.942x10™° m = 0.942mm

o=

Conventional Question GATE-1996
Question: A simply supported beam is subjected to a single force P at a distance b from
one of the supports. Obtain the expression for the deflection under the load

using Castigliano's theorem. How do you calculate deflection at the mid-point
of the beam?

Answer: Let load P acts at a distance b from the support B, and L be the total length of the

beam.
Reaction at A, R, :PTb, and
Reaction at A, Rg = %
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P

w— a >11 b »

A

L c ;
L

Pb Pa

3 Fa

L

Strain energy stored by beam AB,
U=Strain energy stored by AC (U ac) + strain energy stored by BC (Usc)

~ Ia(& sz dx b(@ T dx _P%'d’  P%d’
ol L~

—+ X = +
2EI o\ L 2EI 6EIL} 6EIL

Pa’ P%a?>  P*(L-b)b*
~om \**) eEm T emiL [+(a+b)=1)]
AR B2 22
Deflection under the load P, 6=y = u = 2P(L b) b = P(L b) b
oP 6EIL 3EIL

Deflection at the mid-span of the beam can be found by Macaulay's method.
By Macaulay's method, deflection at any section is given by
3 Plx—a)’
Epy - £ox _Po (x—a)
6L 6L 6
Where y is deflection at any distance x from the support.

(L2 -b* )x -
L . .
At x = 3 i,e. at mid-span,

L 3
Pbx(L/2) P L P(z_aj
o7 il Skl R S PRSI SPA

6L 6L 2 6
2 Pb(L}-b* —2a)’
or, Ely = PbL - ( ) - P(L 2a)
48 12 48
_ P 2 2 72\ _ 3
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15.| Theories of Failure

Theory at a Glance (for IES, GATE, PSU)

1. Introduction

Failure: Every material has certain strength, expressed in terms of stress or strain, beyond
which it fractures or fails to carry the load.
Failure Criterion: A criterion used to hypothesize the failure.

Failure Theory: A Theory behind a failure criterion.

Why Need Failure Theories?

To design structural components and calculate margin of safety.
To guide in materials development.

To determine weak and strong directions.

Failure Mode

Yielding: a process of global permanent plastic deformation. Change in the geometry of the
object.

Low stiffness: excessive elastic deflection.

Fracture: a process in which cracks grow to the extent that the component breaks apart.
Buckling: the loss of stable equilibrium. Compressive loading can lead to bucking in
columns.

Creep: a high-temperature effect. Load carrying capacity drops.

Failure Modes:

Excessive elastic Yielding Fracture

deformation

1. Stretch, twist, or | e Plastic deformation at room | e Sudden fracture of brittle

bending temperature materials

2. Buckling e Creep at elevated | o Fatigue (progressive
temperatures fracture)

3. Vibration e  Yield stress is the important | e Stress rupture at elevated
design factor temperatures

. Ultimate stress 1is the
important design factor

2. Maximum Principal Stress Theory
(W. Rankin’s Theory- 1850) — Brittle Material

The maximum principal stress criterion:
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¢ Rankin stated max principal stress theory as follows- a material fails by fracturing when the
largest principal stress exceeds the ultimate strength ou in a simple tension test. That is, at
the onset of fracture, |01] =0uOR |03| = 0u

e Crack will start at the most highly stressed point in a brittle material when the largest
principal stress at that point reaches oy

e Criterion has good experimental verification, even though it assumes ultimate strength is

same in compression and tension
Ao
O Oy Gy= Oy

';'e: \\ G
\\\ o

Gy= — O i

/

/|

N

v

Failure surface according to maximum principal stress theory

e This theory of yielding has very poor agreement with experiment. However, the theory has
been used successfully for brittle materials.
e Used to describe fracture of brittle materials such as cast iron
e Limitations
0 Doesn’t distinguish between tension or compression
0 Doesn’t depend on orientation of principal planes so only applicable to isotropic
materials

e Generalization to 3-D stress case is easy:

T,

O3

3. Maximum Shear Stress or Stress difference theory
(Guest’s or Tresca’s Theory-1868)- Ductile Material
The Tresca Criterion:
e Also known as the Maximum Shear Stress criterion.
e Yielding will occur when the maximum shear stress reaches that which caused yielding in a

simple tension test.
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e Recall that yielding of a material occurred by slippage between planes oriented at 45° to
principal stresses. This should indicate to you that yielding of a material depends on the
maximum shear stress in the material rather than the maximum normal stress.

If 0, >0, >0, Then 0, -0, =0,

e Failure by slip (yielding) occurs when the maximum shearing stress, 7.,

exceeds the yield
stress 7, as determined in a uniaxial tension test.

e This theory gives satisfactory result for ductile material.

- - .‘F ﬂ'}r -

iy

_ﬂ'-r

Failure surface according to maximum shear stress theory

4. Strain Energy Theory (Haigh’s Theory)

The theory associated with Haigh

This theory is based on the assumption that strains are recoverable up to the elastic limit, and the
energy absorbed by the material at failure up to this point is a single valued function independent of

the stress system causing it. The strain energy per unit volume causing failure is equal to the strain

energy at the elastic limit in simple tension.

1 o,
U :E[O—f +0. +0f - 2u1(0,0, + 0,0, + 0'301” =£

o) +0; +0; —2u(0,0,+0,0,+0,0,) =0, For 3D- stress

y

2 2 _ 7
0, +0, —2u0c,0, =0, For 2D- stress

5. Shear Strain Energy Theory (Distortion Energy Theory or Mises-Henky
Theory or Von-Misses Theory)-Ductile Material

Von-Mises Criterion:
e Also known as the Maximum Energy of Distortion criterion

e Based on a more complex view of the role of the principal stress differences.

For-2019 (IES, GATE & PSUs) Page 462 of 480 Rev.0



Chapter-15 The8egs 483Failure S K Mondal’s

In simple terms, the von Mises criterion considers the diameters of all three Mohr’s circles as
contributing to the characterization of yield onset in isotropic materials.

When the criterion is applied, its relationship to the uniaxial tensile yield strength is:
4
(o, — a’z]l +{o,; —a’,]’ + (= —a’,]’ = 2o,

For a state of plane stress (o, =0)

2 2 2
0, —0,0,+0, =0,

It is often convenient to express this as an equivalent stress, o e:
1 2 2 272
00 = =0, = 0,) +(0, — 33) + (05 — )]

J2
1
—[(O'X —o, )+ (O'y —o, )+ (o, — (IZ)2 + G(Tfy + sz + TZZX)

V2

In formulating this failure theory we used generalized Hooke's law for an isotropic material

1/2
oro, = |

so the theory given is only applicable to those materials but it can be generalized to
anisotropic materials.

The von Mises theory is a little less conservative than the Tresca theory but in most cases
there is little difference in their predictions of failure. Most experimental results tend to fall
on or between these two theories.

It gives very good result in ductile material.

von Mises

Alavimumn Shear

OCTAHEDRAL SHEAR STRESS CRITERION (VON MISES)

Octahedral Shear Stress Criterion ( Von Mises)

Since hydrostatic stress alone does not cause yielding, we can find a material plane called the
octahedral plane, where the stress state can be decoupled into dilation strain energy and distortion
strain energy. On the octahedral plane, the octahedral normal stress solely contributes to the
dilation strain energy and the distortion strain energy in the state of stress is determined by the
octahedral shear stress

State of stress Octahedral normal stress Octahedral Shear Stress
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+0,+
Octahedral normal stress(o,,, ) :%

2 2

Octahedral shear stress(z,,, ) :é\/(al -0, )2 +(oy—0,) +(0y,—0,)

Octahedral stress criterion 7, < Tyiq for no failure.

NG

For Tyq =%\/(ay ~0) +(0-0)" +(0-0,) = 50, =04710,

Now 7, < Tyjea
or %\/(0'1—0'2)2+(62—O'3)2+(63—O'1)2 <

ot %\/(0-1 — 0, )2 + (0-2 — 0y )2 + (0'3 -0, )2 <o, [exactly same as Von-Mises]

V2
3%

But Maximum octahedral shear stress
2
ToutYield = Oy = 0.47 10'y ....... for Uni-axial Stress

O
T = = 0.577(7y ....... for Pure Shear stress

oct Yield — \/—

w

6. Maximum Principal Strain Theory (St. Venant Theory)

According to this theory, yielding will occur when the maximum principal strain just exceeds the
strain at the tensile yield point in either simple tension or compression. If 1 and e2 are maximum

and minimum principal strains corresponding to o1 and oz, in the limiting case

1
g =Efl‘$1—\'ﬁ:] IGIIE o,
1
Ez=—[G:—‘L‘Gl} |G:[2|51|
E
This gives, Eg; =0, —vo, = iGF
Ee, =0, —vo, :i-:s}';r
o
A

T .
—

(o]

Yield surface corresponding to maximum principal strain theory

7. Mohr’s theory- Brittle Material

Mohr’s Theory
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e Mohr’s theory is used to predict the fracture of a material having different properties in
tension and compression. Criterion makes use of Mohr’s circle

e In Mohr’s circle, we note that t depends on o, or 7 = f(0). Note the vertical line PC represents
states of stress on planes with same o but differing 7, which means the weakest plane is the
one with maximum 7, point P.

e Points on the outer circle are the weakest planes. On these planes the maximum and
minimum principal stresses are sufficient to decide whether or not failure will occur.

e Experiments are done on a given material to determine the states of stress that result in
failure. Each state defines a Mohr’s circle. If the data are obtained from simple tension,
simple compression, and pure shear, the three resulting circles are adequate to construct an
envelope (AB & A'B’)

e Mohr’s envelope thus represents the locus of all possible failure states.

Flag.t) Simple
tension
|
A Cy B
Ty ] 2 ¥ o

a' Torsion

Failure envelope

Higher shear stresses are to the left of origin, since most brittle materials have higher strength in

compression

8. Comparison
A comparison among the different failure theories can be made by superposing the yield surfaces as

shown in figure

-fl
" 4] -
e, I Loy Maxmmm prme pal stram theory
. o= ¢ _ T
'-..--,-"'F’ _,.-"H- s Moo distortion essrgy theory
FEe e i
N
TR BN 4 ,ru_ .5
o S .
{1 S hlaormmm shear stress theory
i vl ‘._3:"41 R Macommen prmepal stress theory
l'r S I
lII-r A e "
A x
.-
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OBJECTIVE QUESTIONS (GATE, IES, IAS)

Previous 25-Years GATE Questions

Maximum Shear stress or Stress Difference Theory
GATE-1. Match 4 correct pairs between list I and List IT for the questions [GATE-1994]

List-I List-II

(a) Hooke's law 1. Planetary motion
(b) St. Venant's law 2. Conservation Energy
(c) Kepler's laws 3. Elasticity

(d) Tresca's criterion 4. Plasticity

(e) Coulomb's laws 5. Fracture

(f) Griffith's law 6. Inertia

GATE-2. Which theory of failure will you use for aluminium components under steady

loading? [GATE-1999]
(a) Principal stress theory (b) Principal strain theory
(c) Strain energy theory (d) Maximum shear stress theory

GATE-2a. An axially loaded bar is subjected to a normal stress of 173 MPa. The shear
stress in the bar is [CE: GATE-2007]
(a) 75 MPa (b) 86.5 MPa (c) 100 MPa (d) 122.3 MPa

GATE-2b. A machine element is subjected to the following bi-axial state of stress; ox = 80
MPa; oy = 20 MPa txy = 40 MPa. If the shear strength of the material is 100 MPa,
the factor of safety as per Tresca’s maximum shear stress theory is [GATE-2015]
(a) 1.0 (b) 2.0 (c) 2.5 (d) 3.3

GATE-2c. The principal stresses at a point in a critical section of a machine component
are o1 = 60 MPa, o2 = 5 MPa and o3 = - 40 MPa. For the material of the
component, the tensile yield strength is oy = 200 MPa. According to the

maximum shear stress theory, the factor of safety is . [GATE-2017]
(a) 1.67 (b) 2.00 (c) 3.6 (d) 4.00
GATE-2d. The Mohr's circle of plane stress 7(MPa)

for a point in a body is shown.
The design is to be done on the
basis of the maximum shear

stress theory for yielding. Then, m

yielding will just begin if the a(MPa)
designer chooses a ductile | |

material whose yield strength is: 100 -10
(a) 45 MPa (b) 50 MPa )
(c) 90 MPa (d) 100 MPa [GATE-2005]

Shear Strain Energy Theory (Distortion energy theory)

GATE-3. According to Von-Mises' distortion energy theory, the distortion energy under
three dimensional stress state is represented by [GATE-2006]
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GATE-4.

GATE-4a.

GATE-4b.

(a) [ Uz +G’3 2V{U|U~ +3307 +O'10'3]

-2v
() 6E ['31 +03 +03 +2(0,05 +030, +_0'10’3)]

l+v 2 2 2
(c) 30 [01 +0% +03 —(010,+ 630, +clc3)]
2 2
(d) 3ELC1 102 +03 - V(0165 - 030, +01c:3)]

A small element at the critical section of a component is in a bi-axial state of
stress with the two principal stresses being 360 MPa and 140 MPa. The
maximum working stress according to Distortion Energy Theory is:

[GATE-1997]
(a) 220 MPa (b) 110 MPa (c) 314 MPa (d) 330 MPa

In a metal forming operation when the material has just started yielding, the
principal stresses are o1 = +180 MPa, 02 =-100 MPa, o3 = 0. Following von Mises'
criterion, the yield stress is MPa. [GATE-2017]

A shaft is subjected to pure torsional moment. The maximum shear stress
developed in the shaft is 100 MPa. The yield and ultimate strengths of the shaft
material in tension are 300 MPa and 450 MPa, respectively. The factor of safety
using maximum distortion energy (von-Mises)theory is ........... [GATE-2014]

GATE-5. The homogeneous state of stress for a metal part undergoing plastic deformation

is

10 5 0
T=5 20 0
0 0 -10

where the stress component values are in MPa. Using von Mises yield criterion,
the value of estimated shear yield stress, in MPa is
(a) 9.50 (b) 16.07 (c) 28.52 (d) 49.41 [GATE-2012]

GATE-5() The uni-axial yield stress of a material is 300 MPa. According to Von Mises

GATE-6.

criterion, the shear yield stress (in MPa) of the material is [GATE-2015]

Match the following criteria of material failure, under biaxial stresses o, and
o, and yield stress o,, with their corresponding graphic representations:
[GATE-2011]

P. Maximum-normal-stress criterion L.

—C

Q. Minimum-distortion-energy criterion M.
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2
G h
y
=, G; O1
—c
y
R. Maximum shear-stress criterion N.
o
2
G 3
y )
—Gy ( / G; Gl
(aP-M,Q-L,R-N b)P-N,Q-M,R-L
e©P-M,Q-N,R-L DP-N,Q-L,R-M

GATE-7. Consider the two states of stress as shown in configurations I and II in the figure
below. From the standpoint of distortion energy (von-Mises) criterion, which one

of the following statements is true? [GATE-2014]
c c
TT s |
¥ ¥
I 1I

(a) I yields after II (b) II yields after I

(c) Both yield simultaneously (d) Nothing can be said about their relative yielding
GATE-8. Which one of following is NOT correct? [GATE-2014]

(a) Intermediate principal stress is ignored when applying the maximum principal stress

theory

(b) The maximum shear stress theory gives the most accurate results amongst all the failure

theories

(c) As per the maximum strain energy theory, failure occurs when the strain energy per unit
volume exceeds a critical value

(d) As per the maximum distortion energy theory, failure occurs when the distortion energy
per unit volume exceeds a critical value

Previous 25-Years IES Questions

Maximum Principal Stress Theory

IES-1. Match List-I (Theory of Failure) with List-II (Predicted Ratio of Shear Stress to
Direct Stress at Yield Condition for Steel Specimen) and select the correct

answer using the code given below the Lists: [TES-2006]
List-1 List-1I
A. Maximum shear stress theory 1.10
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IES-2.

IES-3.

IES-4.

IES-5.

IES-5a

B. Maximum distortionenergy theory 2.0-577

C. Maximum principal stress theory 3.062

D. Maximum principal strain theory 4,050

Codes: A B C D A B C D
(a) 1 2 4 3 (b) 4 3 1 2
(c) 1 3 4 2 (d) 4 2 1 3

From a tension test, the yield strength of steel is found to be 200 N/mm?2. Using
a factor of safety of 2 and applying maximum principal stress theory of failure,
the permissible stress in the steel shaft subjected to torque will be: [IES-2000]
(a) 50 N/mm? (b) 57.7 N/mm? (c) 86.6. N/mm? (d) 100 N/mm?2

A circular solid shaft is subjected to a bending moment of 400 kNm and a
twisting moment of 300 kNm. On the basis of the maximum principal stress
theory, the direct stress is o and according to the maximum shear stress

theory, the shear stress is 7. The ratio o/ 7 is: [IES-2000]
1 3 9 11
a)— b) = c)= d)—
(a): OF (0)2 ()"
Which of the following is applied to brittle materials? [ISRO-2015]
(a) Maximum principal stress theory (b) Maximum principal strain theory
(c) Maximum strain energy theory (d) Maximum shear stress theory
Design of shafts made of brittle materials is based on [TES-1993]

(a) Guest's theory (b) Rankine’s theory (c) St. Venant's theory (d) Von Mises theory

Assertion (A): A cast iron specimen shall fail due to shear when subjected to a

compressive load. [TES-2010]
Reason (R): Shear strength of cast iron in compression is more than half its compressive
strength.

(a) Both A and R are individually true and R is the correct explanation of A

(b) Both A and R are individually true but R is NOT the correct explanation of A
(c) A is true but R is false

(d) A is false but R is true

Maximum Shear stress or Stress Difference Theory

IES-6.

IES-6(i).

IES-7.

If the principal stresses corresponding to a two-dimensional state of stress are

o, and 0, is greater than 0, and both are tensile, then which one of the

following would be the correct criterion for failure by yielding, according to

the maximum shear stress criterion? [IES-1993]
O, —O. (o) o (o2 o o
@I 1% 9)%iT% 9DisTe (@)=t
2 2 2 2 2 2
Which one of the following figures represents the maximum shear stress theory
or Tresca criterion? [TIES-1999]
szcl“‘.
¥p 32-!"03"13 0’2.-"0'” a5 JU!’

P
(a) Gifay,  (b) ﬁ;ﬁlhyp (c) %Uﬂc\'p (d) ‘@*“I’“vp

According to the maximum shear stress theory of failure, permissible twisting

moment in a circular shaft is 'T". The permissible twisting moment will the

same shaft as per the maximum principal stress theory of failure will be:
[TES-1998: ISRO-2008]

(a) T/2 ®) T © 2T (d) 2T
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IES-8.

IES-9.

IES-10.

IES-11.

IES-12.

Permissible bending moment in a circular shaft under pure bending is M
according to maximum principal stress theory of failure. According to
maximum shear stress theory of failure, the permissible bending moment in
the same shaft is: [TES-1995]

(@) 112 M () M © 2 M @) 2M

A rod having cross-sectional area 100 x 10-¢ m? is subjected to a tensile load.
Based on the Tresca failure criterion, if the uniaxial yield stress of the material
is 200 MPa, the failure load is: [TES-2001]
(a) 10 kN (b) 20 kN (c) 100 kN (d) 200 kN

A cold roller steel shaft is designed on the basis of maximum shear stress
theory. The principal stresses induced at its critical section are 60 MPa and - 60
MPa respectively. If the yield stress for the shaft material is 360 MPa, the
factor of safety of the design is: [TES-2002]
(a) 2 (b) 3 (c) 4 de

A shaft is subjected to a maximum bending stress of 80 N/mm? and maximum
shearing stress equal to 30 N/mm? at a particular section. If the yield point in
tension of the material is 280 N/mm?2, and the maximum shear stress theory of
failure is used, then the factor of safety obtained will be: [TIES-1994]
(a) 2.5 (b) 2.8 (c) 8.0 (d) 3.5

For a two-dimensional state stress (o, > 0,,0, > 0,0, <0) the designed values

are most conservative if which one of the following failure theories were used?

[TES-1998]
(a) Maximum principal strain theory (b) Maximum distortion energy theory
(c) Maximum shear stress theory (d) Maximum principal stress theory

Shear Strain Energy Theory (Distortion energy theory)

IES-13.

IES-14.

IES-15.

IES-16.

IES-17.

Who postulated the maximum distortion energy theory? [IES-2008]
(a) Tresca (b) Rankine (c) St. Venant (d) Mises-Henky

Who postulated the maximum distortion energy theory? [IES-2008]
(a) Tresca (b) Rankine (c) St. Venant (d) Mises-Henky

The maximum distortion energy theory of failure is suitable to predict the
failure of which one of the following types of materials? [TES-2004]
(a) Brittle materials  (b) Ductile materials  (c) Plastics (d) Composite materials

If oy is the yield strength of a particular material, then the distortion energy
theory is expressed as [IES-1994]

@) (o, - )2 +(o, —0'3)2 + (o, —01)2 =20,
(b)
(©)
(d)

( -0, +o0, ) 2u(oc,0,+0,0,+0,0,)= aj
((71 o ) ( 0'3)2+(03—01)2=30'§
(

2
1-2u)(0,+ 0, +0,) =2(1+u)o?

If a shaft made from ductile material is subjected to combined bending and
twisting moments, calculations based on which one of the following failure

theories would give the most conservative value? [IES-1996]
(a) Maximum principal stress theory (b) Maximum shear stress theory.
(d Maximum strain energy theory (d)Maximum distortion energy theory.
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Maximum Principal Strain Theory

IES-18. Match List-I (Failure theories) with List-II (Figures representing boundaries of
these theories) and select the correct answer using the codes given below the
Lists: [TES-1997]
List-1 List-IT
A. Maximum principal stress o2

theory |/JH
1. 9;
L

B. Maximum shear stress theory G
2.
o}
C. Maximum octahedral stress Cz
theory
3.
9
D. Maximum shear strain g5
energy theory 4.
o;
Code: A B C D A B C D
(a) 2 1 3 4 (b) 2 4 3 1
(c) 4 2 3 1 (d) 2 4 1 3

Previous 25-Years IAS Questions

Maximum Principal Stress Theory

IAS-1. For 0, # 0, and o3 = 0, what is the physical boundary for Rankine failure
theory? [TAS-2004]
(a) A rectangle (b) An ellipse (c) A square (d) A parabola

Shear Strain Energy Theory (Distortion energy theory)

IAS-2. Consider the following statements: [IAS-2007]

1. Experiments have shown that the distortion-energy theory gives an
accurate prediction about failure of a ductile component than any other
theory of failure.

2. According to the distortion-energy theory, the yield strength in shear is less
than the yield strength in tension.

Which of the statements given above is/are correct?

(a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2

TAS-3. Consider the following statements: [TAS-2003]
1. Distortion-energy theory is in better agreement for predicting the failure of

ductile materials.
2. Maximum normal stress theory gives good prediction for the failure of

brittle materials.
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3. Module of elasticity in tension and compression are assumed to be different
stress analysis of curved beams.
Which of these statements is/are correct?
(a)1,2and 3 (b) 1 and 2 (c) 3 only (d)1and3

IAS-4. Which one of the following graphs represents Mises yield criterion? [IAS-1996]

(2) (b)

Maximum Principal Strain Theory

IAS-5. Given that the principal stresses 0, > 0, > 0, and o is the elastic limit stress in

simple tension; which one of the following must be satisfied such that the
elastic failure does not occur in accordance with the maximum principal strain

theory? [TAS-2004]
O, 0, 0, O3 O, 0, 0, O3
| Dy b) = >| - py—2—py—
(a)E (E /UE 'qu ()E [E /UE ﬂEj
O, o, 0, O, O, O, o, O,
| D2y d) = <| Lppu2—py—=
© (E "E ﬂE] @ (E " ﬂE]

OBJECTIVE ANSWERS

GATE-1. Ans. (a) - 3, (¢c) -1, (d) -5, (e) -2

St. Venant's law: Maximum principal strain theory
GATE-2. Ans. (d) Aluminium is a ductile material so use maximum shear stress theory
GATE-2a. Ans. (b)

6, -6,

Shear stress =

173-0

.. Shear stress = = 86.5 MPa

GATE-2b. Ans. (b)

2 2
o 80+20+\/(80—20) 407 =100 and 0_2:80+20_\/[80—20) 40?0

2 2 2 2
I = 61;‘72 =10(;_0 =50 - FOS=%=2

GATE-2c. Ans. (b)
GATE-2d. Ans. (d) Likestressz =0, /2
GATE-3. Ans. (c)
v L
12G
GATE-4. Ans. (c) According to distortion energy theory if maximum stress (ot) then

{(0'1 ~0,) +(0,-a,) +(o, —01)2} Where E = 2G(1+ u) simplifyand getresult.

For-2019 (IES, GATE & PSUs) Page 472 of 480 Rev.0



Chapter-15 The®regs OBFailure S K Mondal’s
or ¢’ =0} +0;-0,0,
oro? = 3602 +140° — 360 x 140
oro, = 314 MPa

GATE-4a. Ans. Ans. (range 245 to 246)

GATE-b. Ans. 1.7 to 1.8 Exp. 7, =L = >0 =173 2MPa.. fos = = % ~1.732

3 B T
GATE-5. Ans. (b)
Weknow that equivalent stress (o, )

:%\/{(Gx -0, )2 +(0y -0, )2 +(o,-0,) +6(rfy +75, + 17, )}
:%\/{(10—20)2 +(20~(-10))" +(~10-20) +6(5? +0+0)}

=27.84 MPa
o o 27.84
Therefore Yield shearstress(7, | = —= = —= == =16.07 MPa
(=) B BB
o
GATE-5(i) Ans.173.28 r=—X= 0.5770'y =173.28 MPa

J3
GATE-6. Ans. (c)
GATE-7. Ans. (c) Von-Mises theory doesn’t depends on the orientation of planes.
GATE-8. Ans. (b) The maximum shear stress theory gives the most conservative results but the
Von-Mises theory gives the most accurate results for ductile materials.
IES-1. Ans. (d)
IES-2. Ans. (d)For pure shear 7 = +o0,

IES-3. Ans. () & =1T63(M+\/M2 +T2) and 7 =1T63(\/M2 +T2)
T T
o _M+VM*+T2  4+44°+3% 9

Therefore — =
T M T Ja?+3* 5

IES-4. Ans. (a)

IES-5. Ans. (b)Rankine's theory or maximum principle stress theory is most commonly used for
brittle materials.

IES-5a Ans. (d) A cast iron specimen shall fail due to crushing when subjected to a compressive
load.
A cast iron specimen shall fail due to tension when subjected to a tensile load.

IES-6. Ans. (b)

IES-6(i). Ans. (b)

O,
TES-7. Ans.(d) Given 7 = 131- = 7“ principal stresses for only this shear stressare
0y, = \/72 =47 maximum principal stress theory of failure gives
16(2T)
max[o,,0,] =0, = s
1 1
IES-S. Ans. (b) & = ;53 (MM +72) and 7 - ;53 (W77 puer=0
T
( SZMJ
' o 3
oro, = 32'? and 7 = 16'!' _In _\nd ) 16“:' ThereforeM' =M
zd md 2 2 zd
IES-9. Ans. (b) Tresca failure criterion is maximum shear stress theory.
i loJ
Weknow that, z _Psin2d T P _Omupo o, XA
2A 2

IES-10. Ans. (b)
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2
IES-11. Ans. (b) Maximum shear stress = \/ (%j +30% =50 N/mm?

: . o, 280
According to maximum shear stress theory,7 =—-; ... F.S.= =
2x50
IES-12. Ans. (c¢) )
N (o }] /-/f/
. k Y . e .
N, J -7 /& Maximum principal strain theory
hs Oy - e d .,
' s i s Maxmmum distortion energy theory
o e
-Gy f?: i ] /
N (s} > Gy
A 7P 1% :
Tl N At Maximmum shear stress theory
/ N 2t Maxmum principal stress theory
', /, \._/__./ —G,,| N
,f’ .- ~
- L J

Graphical comparison of different failure theories
Above diagram shows that o, >0,0, <0 will occur at 4t quadrant and most
conservative design will be maximum shear stress theory.

IES-13. Ans. (d)
IES-14. Ans. (d)

Maximum shear stress theory —  Tresca
Maximum principal stress theory —  Rankine
Maximum principal strain theory —  St. Venant
Maximum shear strain energy theory —  Mises — Henky
IES-15. Ans. (b)
IES-16. Ans. (a)
IES-17. Ans. (b) )
L
N % =7 _ L
N, 7 /e Maximum principal strain theory
. ol .~ 7/
— // % s Maximum distortion energy theory
e P
./.('\“\ e v
- Oy f"c / >
. 0., 1
VR .
i . N At Maxinmun shear stress theory
y RPN faximum principal stress theory
SN o~ -0
Jo \'\
/- - L J

IES-18. Ans. (d)
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IAS-1. Ans. (¢) Rankine failure theory or

IAS

Maximum principle stress theory. 2
e
|
1
a 0: e
B o I, = R R 4
1Oy

o}
IAS-2. Ans. ()7, =—==0.5770,

3

IAS-3. Ans. (b)
IAS-4. Ans. (d)
IAS-5. Ans. (b)Strain at yield point>principal strain

o o _, 0 0
E E “E "E

Previous Conventional Questions with Answers

Conventional Question ESE-2010

Q.

Ans.

@

(i)

The stress state at a point in a body is plane with
0, =60N/mm* & ¢, =-36N/mm”

If the allowable stress for the material in simple tension or compression is
100 N/mm? calculate the value of factor of safety with each of the following
criteria for failure

(1) Max Stress Criteria

(i) Max Shear Stress Criteria

(111) Max strain criteria

(iv) Max Distortion energy criteria [10 Marks]

The stress at a point in a body is plane
6, =60 N/mm? 6, =-36 N/mm”

Allowable stress for the material in simple tension or compression is 100 N/mm?
Find out factor of safety for

Maximum stress Criteria : - In this failure point occurs when max principal stress reaches

the limiting strength of material.
Therefore. Let F.S factor of safety

o (allowable)
F.S

01:

2
S:M:1,67 Ans.
60 N/ mm

Maximum Shear stress criteria : - According to this failure point occurs at a point in a
member when maximum shear stress reaches to shear at yield point
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@v)

Gyt 2

= o, =100 N/mm

fmax =9 R g st
Ymax201_62 _ 60+36:% 48 N/mm>
2 2 2

48 = 100

2xF.S
FS= 100 :@:1.042

2x48 96

FS=1.042 Ans.

Maximum Distortion energy criteria ! — In this failure point occurs at a point in a
member when distortion strain energy per unit volume in a bi — axial system reaches the
limiting distortion strain energy at the of yield

2
252 _[ Syt
G] + 0, — 0y X Oy TS
100"
60% +(36)° —x60x —36 = | —
F.S

FS=1.19

Conventional Question ESE-2006

Question:

Answer:

A mild steel shaft of 50 mm diameter is subjected to a beading moment of 1.5
kNm and torque T. If the yield point of steel in tension is 210 MPa, find the
maximum value of the torque without causing yielding of the shaft material
according to
(i) Maximum principal stress theory
(ii) Maximum shear stress theory.

32M

We know that, Maximum bending stress (c,) :?
T

and Maximum shear stress (1) = 1d3

Principal stresses are given by:

s, | 16

?’] 0=y [M TNIVE +T2]
T

(i) According to Maximum principal stress theory

c
b
0, =—*

2

Maximum principal stress=Maximum stress at elastic limit (ay)

or 1d63 M+ M7 72| =210 x10°
T
or L)s[woo + 15002 + T2 } —210x10°

w(0.0SO
or T=3332 Nm = 3.332 kNm
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(if) According to Maximum shear stress theory

or, 6, -0, =0,
or, ZX% M? +T? =210x10°
e

or, T=2096 N m =2.096 kNm

Conventional Question ESE-2005

Question: Illustrate the graphical comparison of following theories of failures for two-
dimensional stress system:
(i) Maximum normal stress theory
(i) Maximum shear stress theory

(iii) Distortion energy theory

Answer:
G3
N F 3 .
\ s
N, ol - - 7
- . N Maximum distortion energy theory
. \' . - /
7 N Ve !
/4 .
< O} ,_ > G
° [ N LAOy o1
1 N\ 4 Maximum shear stress theory
N ,-‘/\\ < Maxmum principal stress theory
: ¥
~ -~ |0 R
i y N
s X
'

Conventional Question ESE-2004

Question: State the Von- Mises's theory. Also give the naturally expression.

Answer: According to this theory yielding would occur when total distortion energy absorbed
per unit volume due to applied loads exceeds the distortion energy absorbed per unit
volume at the tensile yield point. The failure criterion is

((51 — (52)2 + <c52 - 03)2 + (03 - 01)2 = 2(55
[symbols has usual meaning]

Conventional Question ESE-2002
Question: Derive an expression for the distortion energy per unit volume for a body
subjected to a uniform stress state, given by the o,and o, with the third

principal stress o, being zero.

Answer: According to this theory yielding would occur when total distortion energy absorbed
per unit volume due to applied loads exceeds the distortion energy absorbed per unit
volume at the tensile yield point. Total strain energy Er and strain energy for volume
change Ev can be given as

av —av

1 E
B :E(GIEI +0,8, +03e;) and Ey, = EG £

Substituting strains in terms of stresses the distortion energy can be given as
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2(1+v)

Eq=Er-By= ——=
d T Cv 6L (

2 2 2
At the tensile yield point, 01 = oy, 02 = 03 = 0 which gives

£ o204y

2
dy — Gy

6E

The failure criterion is thus obtained by equating Eq and Eqay , which gives
g

b | »
i“ £ “ _ 2
(6,—0,) +(0,—03) +(03—067) =20,
In a 2-D situation if 03 = 0, the criterion reduces to
2 2 _ 2
Conventional Question GATE-1996

Question: A cube of 5mm side is loaded as shown in figure below.
(i) Determine the principal stresses 0,,0,,0,.
(ii) Will the cube yield if the yield strength of the material is 70 MPa? Use
Von-Mises theory.
Answer: Yield strength of the material o, =70 MPa = 70 MN/m? or 70 N/mm?2.
4 1000N
BOON
—
8OON | 5 mm
500N
2000N
/ a3 mm

M—5 mm ———
(i)Principal stress ¢,,0,,0,
2000

o, = =80 N/mm?; o, = 1000 _ 40 Nimm?
5x5 5x5

o, = 00 _ 5 N/mm?; Ty = 800 _ 35 njmm?
5x5 Y 5x5

2
i :8042—40i\/[80;40] + (327

=60 +4/(20)" +(32)° =97.74,22.26
o, =97.74N/mm?, or 97.74 MPa
and o, =22.96N/mm?* or 22.96 MPa
o, = 0, =20N/mm? or 22 MPa
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(ii) Will the cube yieldor not?

S K Mondal’s

According to Von-Mises yield criteria, yielding will occur if

A —02)2 + (o, —03)2 + (o, —01)2 > 2th
2

Now (Ul—0'2> +<02 —03)2 +(U3 —O’l>2
=(97.74—22.96)" +(22.96 — 20" + (20 — 97.74)°
—11745.8 (i)
and, 202 =2x(70)" = 9800 ———(ii)

Since 11745.8 > 9800 so yielding will occur.

Conventional Question GATE-1995

Question:

Answer:

For-2019 (IES, GATE & PSUs)

A thin-walled circular tube of wall thickness t and mean radius r is subjected
to an axial load P and torque T in a combined tension-torsion experiment.

(i) Determine the state of stress existing in the tube in terms of P and T.

(ii) Using Von-Mises - Henky failure criteria show that failure takes place

Jo? +37% = 0, Where o, is the yield stress in uniaxial tension,
o and 7 are respectively the axial and torsional stresses in the tube.

when

Mean radius of the tube =r,
Wall thickness of the tube =t,
Axial load = P, and

Torque = T.

(1) The state of stress in the tube:

P
Due to axial load, the axial stress in the tube oX = ﬁ
7r

Due to torque, shear stress,
~Tr Tr T
J 2mr3t 27t

Txy

J :g{(r th)4 - r“} = 2nr’t-neglecting t* higher power of t.

..The state of stress in the tube is, o0, = —, o = T -
2t Yoo 2nrdt

(11) Von Mises-Henky failure in tension for 2-dimensional stress is

o, =0,7

2 2 2
0y =0, +0, —0,0,

2
o, +0 o, —0
_ Ux y X y 2
o, = > —i-\/[ 5 J —|-7'Xy
o, +o0 o, —0. 2
0. = X y X y +7_2
z 2 2 X
o o2
In this case, o, =—*+,/—*+7%,,and
2 4
o o?
X X 2 .. _
0'2—7— T—i‘TXy (.O'y—O)
2 2 2
2 Oy sz 2 0y Ui 2 Oy Uf 2 || 9« sz 2
L Og ?—i- T—i—Txy —l-?— T+Txy —?—i- T—FTW ?— T_'_Txy
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2 2 2 2 2 2
o o 2 o, |o 2 o o 2 o, |o 2
R VI w2 SR [N s s R SO Nt Sy b SR
4 4 2\Na ¥

4 4 ¥ T2N4 ¥

2 2

% 9% 2

X'

4 4 Y
2 2
=o, —|—3Txy

Oy =40 + 37'5y

Conventional Question GATE-1994

Question: Find the maximum principal stress developed in a cylindrical shaft. 8 cm in
diameter and subjected to a bending moment of 2.5 kNm and a twisting
moment of 4.2 kNm. If the yield stress of the shaft material is 300 MPa.
Determine the factor of safety of the shaft according to the maximum
shearing stress theory of failure.

Answer: Given: d=8 cm =0.08 m; M = 2.5 kNm = 2500 Nm; T = 4.2 kNm = 4200 Nm

Ty (7 ) = 300 MPa = 300 MN/m”

Equivalent torque, T, =M? +T? = 1/(2.5)2 + (4.2)2 = 4.888kNm
Maximum shear stress developed in the shaft,
S 16T 16 4.888 x10°

"ord® rx(0.08)

Permissible shear stress = 3—(2)0 = 150MN/m?

x10° MN/m* = 48.62MN/m”

Factor of safety = 150 =3.085
48.62
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